高糖与尼古丁对乳鼠心肌细胞凋亡的影响及机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:研究高糖对乳鼠心肌细胞凋亡的影响及其机制。方法:分离培养SD乳鼠心肌细胞,分别用10-50 mmol/L终浓度的葡萄糖进行干预,MTT测定各组心肌细胞的生长活力;激光共聚焦显微镜、脱氧核糖核酸转移酶原位缺口末端标记法(TUNEL)和流式细胞术用于观察和检测心肌细胞凋亡;将心肌细胞分为3组:对照组、高糖组和抗氧化剂组,分别检测各组上清液中乳酸脱氢酶(LDH)、丙二醛(MDA)、超氧化物歧化酶(SOD)的含量以反映心肌细胞的氧化应激水平;荧光定量PCR检测高糖对凋亡相关基因P53、Pax3、Bmp4、Slug和Msx1表达的影响。结果:MTT结果显示高糖能浓度依赖性地抑制心肌细胞的生长活力;激光共聚焦显微术、TUNEL染色和流式细胞术均表明高糖能诱导心肌细胞凋亡;与对照组相比,高糖组LDH、MDA含量明显增高,SOD含量显著下降;与高糖组相比,抗氧化剂组LDH、MDA含量明显下降,SOD含量显著上升;抗氧化剂组LDH、MDA、SOD的含量较对照组无明显变化;流式细胞检测显示高糖组细胞凋亡率较对照组明显增加,而抗氧化剂组细胞凋亡率较高糖组则显著下降;荧光定量PCR结果表明高糖能上调P53、Msx1基因的表达,下调Pax3、Bmp4、Slug基因的表达。结论:高糖可能通过氧化应激和改变凋亡相关基因的表达从而诱导心肌细胞凋亡。
     目的:研究尼古丁对乳鼠心肌细胞凋亡的影响及其机制。方法:分离培养SD乳鼠心肌细胞,分别用0.1-100μM终浓度的尼古丁进行干预,MTT测定各组心肌细胞的生长活力;激光共聚焦显微镜、脱氧核糖核酸转移酶原位缺口末端标记法(TUNEL)和流式细胞术用于观察和检测心肌细胞凋亡;将心肌细胞分为3组:对照组、尼古丁组和抗氧化剂组,分别检测各组上清液中乳酸脱氢酶(LDH)、丙二醛(MDA)、超氧化物歧化酶(SOD)的含量以反映心肌细胞的氧化应激水平;荧光定量PCR检测尼古丁对凋亡相关基因P53、Bax、Bcl-2、Pax3、Bmp4、Slug和Msx1表达的影响。结果:MTT结果显示尼古丁能浓度依赖性地抑制心肌细胞的生长活力;激光共聚焦显微术、TUNEL染色和流式细胞术均表明尼古丁能诱导心肌细胞凋亡;与对照组相比,尼古丁组LDH、MDA含量明显增高,SOD含量显著下降;与尼古丁组相比,抗氧化剂组LDH、MDA含量明显下降,SOD含量显著上升;抗氧化剂组LDH、MDA、SOD的含量较对照组无明显变化;流式细胞检测显示尼古丁组细胞凋亡率较对照组明显增加,而抗氧化剂组细胞凋亡率较尼古丁组则显著下降;荧光定量PCR结果表明尼古丁能上调P53、Bax和Msx1基因的表达,下调Bcl-2、Pax3、Bmp4和Slug基因的表达。结论:尼古丁可能通过氧化应激和改变凋亡相关基因的表达诱导心肌细胞凋亡。
Objective: To investigate the effects of high glucose on apoptosis in neonatal rat cardiomyocytes and to explore the potential mechanisms involved. Methods: The MTT assay was used to detect the viability of cultured cardiomyocytes exposed to different concentrations of glucose (10 to 50 mmol/L). Laser confocal microscopy, TUNEL assay and flow cytometry were utilized to detect cardiomyocyte apoptosis. Oxidative stress was evaluated by the levels of lactic dehydrogenase (LDH), malondialdehyde (MDA) and superoxide dismutase (SOD) in the supernatant of culture media. Real-time PCR was conducted to identify mRNA expression changes in apoptosis-related genes between the high glucose group and the control group. Results: High glucose was found to inhibit cardiomyocyte viability in a concentration-dependent manner. Our results demonstrated that high glucose can promote cardiomyocyte apoptosis and the antioxidant can protect cardiomyocytes from apoptosis via inhibition of high glucose-induced oxidative stress. Real-time PCR indicated that the expression of Pax3, Bmp4 and Slug were down-regulated in the high glucose group, while the expression of P53 and Msx1 were up-regulated. Conclusion: High glucose promotes cardiomyocyte apoptosis by inducing oxidative stress and disrupting apoptosis-related gene expression.
     Objective: To investigate the effects of nicotine on apoptosis in neonatal rat cardiomyocytes and to explore the potential mechanisms involved. Methods: The MTT assay was used to detect the viability of cultured cardiomyocytes exposed to different concentrations of nicotine (0.1 to 100μM). Laser confocal microscopy, TUNEL assay and flow cytometry were utilized to detect cardiomyocyte apoptosis. Oxidative stress was evaluated by the levels of lactic dehydrogenase (LDH), malondialdehyde (MDA) and superoxide dismutase (SOD) in the supernatant of culture media. Real-time PCR was conducted to identify mRNA expression changes in apoptosis-related genes between the nicotine and the control group. Results: Nicotine was found to inhibit cardiomyocyte viability in a concentration-dependent manner. Our results demonstrated that nicotine can promote cardiomyocyte apoptosis and antioxidant can protect cardiomyocytes from apoptosis via inhibition of nicotine-induced oxidative stress. Real-time PCR indicated that the expression of Bcl-2, Pax3, Bmp4 and Slug were down-regulated in the nicotine group, while the expression of P53, Bax and Msx1 were up-regulated. Conclusion: Nicotine promotes cardiomyocyte apoptosis by inducing oxidative stress and disrupting apoptosis-related gene expression.
引文
[1] Leung AA, Eurich DT, Lamb DA, et al. Risk of heart failure in patients with recent-onset type 2 diabetes: population-based cohort study. J Card Fail, 2009, 15: 152-157.
    [2] Bartnik M, Malmberg K, Hamsten A, et al. Abnormal glucose tolerance--a common risk factor in patients with acute myocardial infarction in comparison with population-based controls. J Intern Med, 2004, 256: 288-297.
    [3] Kumar SD, Dheen ST, Tay SS. Maternal diabetes induces congenital heart defects in mice by altering the expression of genes involved in cardiovascular development. Cardiovasc Diabetol, 2007, 6: 34.
    [4] Fiorina, P., Corradi, D., Pinelli, S., et al. Apoptotic/mytogenic pathways during human heart development. International Journal of Cardiology, 2004, 96: 409–417.
    [5] Saraste A, Pulkki K, Kallajoki M, et al. Apoptosis in human acute myocardial infarction. Circulation, 1997, 95: 320–323.
    [6] Aharinejad S, Andrukhova O, Lucas T, et al. Programmed cell death in idiopathic dilated cardiomyopathy is mediated by suppression of the apoptosis inhibitor Apollon. Ann Thorac Surg, 2008, 86: 109–114.
    [7] Singh VP, Le B, Khode R, et al. Intracellular angiotensin II production in diabetic rats is correlated with cardiomyocyte apoptosis, oxidative stress, and cardiac fibrosis. Diabetes, 2008, 57: 3297-3306.
    [8] Shen E, Li Y, Li Y, et al. Rac1 is required for cardiomyocyte apoptosis during hyperglycemia. Diabetes, 2009, 58: 2386-2395.
    [9] Li Y, Li Y, Feng Q, et al. Calpain activation contributes to hyperglycaemia-induced apoptosis in cardiomyocytes. Cardiovasc Res, 2009, 84: 100-110.
    [10] Janero DR, Hreniuk D, Sharif HM. Hydrogen peroxide-induced oxidative stress to the mammalian heart-muscle cell ( cardiomyocyte) : lethal peroxidative membrane injury. J Cell Physiol, 1991, 149: 347-364.
    [11] Ilhan N, Halifeoglu I, Ozercan HI, et al. Tissue malondialdehyde and adenosine triphosphatase level after experimental liver ischaemia-reperfusion damage. Cell Biochem Funct, 2001, 19: 207-212.
    [12] Lantos J, Temes G, G?b?l?s L, et al. Is peripheral blood a reliable indicator of acute oxidative stress following heart ischemia and reperfusion. Med Sci Monit, 2001, 7: 1166-1170.
    [13] Pietsch EC, Sykes SM, McMahon SB, et al. The p53 family and programmed cell death. Oncogene, 2008, 27: 6507-6521.
    [14] Danilova N, Sakamoto KM, Lin S. p53 family in development. Mech Dev, 2008, 125: 919-931.
    [15] Phelan SA, Ito M, Loeken MR. Neural tube defects in embryos of diabetic mice: role of the Pax-3 gene and apoptosis. Diabetes, 1997, 46: 1189-1197.
    [16] Morgan SC, Lee HY, Relaix F, et al. Cardiac outflow tract septation failure in Pax3-deficient embryos is due to p53-dependent regulation of migrating cardiac neural crest. Mech Dev, 2008, 125: 757-767.
    [17] Nakajima Y, Yamagishi T, Hokari S, et al. Mechanisms involved in valvuloseptal endocardial cushion formation in early cardiogenesis: roles of transforming growth factor (TGF)-beta and bone morphogenetic protein (BMP). Anat Rec, 2000, 258: 119-127.
    [18] Stottmann RW, Choi M, Mishina Y, et al. BMP receptor IA is required in mammalian neural crest cells for development of the cardiac outflow tract and ventricular myocardium. Development, 2004, 131: 2205-2218.
    [19] Zhao Z, Rivkees SA.. Programmed cell death in the developing heart: regulation by BMP4 and FGF2. Dev Dyn, 2000, 217: 388-400.
    [20] Tríbulo C, Aybar MJ, Sánchez SS, et al. A balance between the anti-apoptotic activity of Slug and the apoptotic activity of msx1 is required for the proper development of the neural crest. Dev Biol, 2004, 275: 325-342.
    [1] Suzuki J, Bayna E, Dalle Molle E, et al. Nicotine inhibits cardiac apoptosis induced by lipopolysaccharide in rats. J Am Coll Cardiol, 2003, 41: 482–488.
    [2] Wielgus JJ, Corbin Downey L, Ewald KW, et al. Exposure to low concentrations of nicotine during cranial nerve development inhibits apoptosis and causes cellular hypertrophy in the ventral oculomotor nuclei of the chick embryo. Brain Res, 2004, 1000: 123–133.
    [3] Utsumi T, Shimoke K, Kishi S, et al. Protective effect of nicotine on tunicamycin-induced apoptosis of PC12h cells. Neurosci Lett, 2004, 370: 244–247.
    [4] Hejmadi MV, Dajas-Bailador F, Barns SM, et al. Neuroprotection by nicotine against hypoxia-induced apoptosis in cortical cultures involves activation of multiple nicotinic acetylcholine receptor subtypes. Mol Cell Neurosci, 2003, 24: 779–786.
    [5] Copeland RLJ, Leggett YA, Kanaan YM, et al. Neuroprotective effects of nicotineagainst salsolinolinduced cytotoxicity: implications for Parkinson’s disease. Neurotox Res, 2005, 8: 289–293.
    [6] Tizabi Y, Manaye KF, Taylor RE. Nicotine blocks ethanol-induced apoptosis in primary cultures of rat cerebral cortical and cerebellar granule cells. Neurotox Res, 2005, 7: 319–322.
    [7] Zhang T, Lu H, Shang X, et al. Nicotine prevents the apoptosis induced by menadione in human lung cancer cells. Biochem Biophys Res Commun, 2006, 342: 928–934.
    [8] Zhao Z, Reece EA. Nicotine-induced embryonic malformations mediated by apoptosis from increasing intracellular calcium and oxidative stress. Birth Defects Res B Dev Reprod Toxicol, 2005, 74: 383–391.
    [9] Arredondo J, Nguyen VT, Chernyavsky AI, et al. Central role of alpha7 nicotinic receptor in differentiation of the stratified squamous epithelium. J Cell Biol, 2002, 159: 325–336.
    [10] Wu YP, Kita K, Suzuki N. Involvement of human heat shock protein 90 alpha in nicotine-induced apoptosis. Int J Cancer, 2002, 100: 37–42.
    [11] Galitovsky V, Chowdhury P, Zharov VP, et al. Photothermal detection of nicotine-induced apoptotic effects in pancreatic cancer cells. Life Sci, 2004, 75: 2677–2687.
    [12] Yoshida H, Sakagami H, Yamanaka Y, et al. Induction of DNA fragmentation by nicotine in human myelogenous leukemic cell lines. Anticancer Res, 1998, 18: 2507–2511.
    [13] Crowley-Weber CL, Dvorakova K, Crowley C, et al. Nicotine increases oxidative stress, activates NF-kappaB and GRP78, induces apoptosis and sensitizes cells to genotoxic/xenobiotic stresses by a multiple stress inducer, deoxycholate: relevance to colon carcinogenesis. Chem Biol Interact, 2003, 145:53-66.
    [14] Guan ZZ, Yu WF, Nordberg A. Dual effects of nicotine on oxidative stress and neuroprotection in PC12 cells. Neurochem Int, 2003, 43: 243-249.
    [15] Barr J, Sharma CS, Sarkar S, et al. Nicotine induces oxidative stress and activates nuclear transcription factor kappa B in rat mesencephalic cells. Mol Cell Biochem, 2007, 297: 93-99.
    [16] Bruin JE, Petre MA, Lehman MA, et al. Maternal nicotine exposure increases oxidative stress in the offspring. Free Radic Biol Med, 2008, 44: 1919-1925.
    [17] Saraste A, Pulkki K, Kallajoki M, et al. Apoptosis in human acute myocardial infarction. Circulation, 1997, 95: 320–323.
    [18] Aharinejad S, Andrukhova O, Lucas T, et al. Programmed cell death in idiopathic dilated cardiomyopathy is mediated by suppression of the apoptosis inhibitor Apollon. Ann Thorac Surg, 2008, 86: 109-114.
    [19] Narula J, Haider N, Virmani R, et al. Apoptosis in myocytes in end-stage heart failure. N Engl J Med, 1996, 335: 1182-1189.
    [20] Janero DR, Hreniuk D, Sharif HM. Hydrogen peroxide-induced oxidative stress to the mammalian heart-muscle cell ( cardiomyocyte) : lethal peroxidative membrane injury [J]. J Cell Physiol, 1991, 149: 347-364.
    [21] Ilhan N, Halifeoglu I, Ozercan HI, et al. Tissue malondialdehyde and adenosine triphosphatase level after experimental liver ischaemia-reperfusion damage. Cell Biochem Funct, 2001, 19: 207-212.
    [22] Lantos J, Temes G, G?b?l?s L, et al. Is peripheral blood a reliable indicator of acute oxidative stress following heart ischemia and reperfusion. Med Sci Monit, 2001, 7: 1166-1170.
    [23] Pietsch EC, Sykes SM, McMahon SB, et al. The p53 family and programmed cell death. Oncogene, 2008, 27: 6507-6521.
    [24] Chari NS, Pinaire NL, Thorpe L, et al. The p53 tumor suppressor network in cancer and the therapeutic modulation of cell death. Apoptosis, 2009, 14: 336-347.
    [25] Yip KW, Reed JC. Bcl-2 family proteins and cancer. Oncogene, 2008, 27: 6398-6406.
    [26] Youle RJ, Strasser A. The BCL-2 protein family: opposing activities that mediate cell death. Nat Rev Mol Cell Biol, 2008, 9: 47-59.
    [27] Brunelle JK, Letai A. Control of mitochondrial apoptosis by the Bcl-2 family. J Cell Sci, 2009, 122: 437-441.
    [28] Conway SJ, Henderson DJ, Copp AJ. Pax3 is required for cardiac neural crest migration in the mouse: evidence from the splotch (Sp2H) mutant. Development, 1997, 124: 505-514.
    [29] Morgan SC, Lee HY, Relaix F, et al. Cardiac outflow tract septation failure in Pax3-deficient embryos is due to p53-dependent regulation of migrating cardiac neural crest. Mech Dev, 2008, 125: 757-767.
    [30] Nakajima Y, Yamagishi T, Hokari S, et al. Mechanisms involved in valvuloseptal endocardial cushion formation in early cardiogenesis: roles of transforming growth factor (TGF)-beta and bone morphogenetic protein (BMP). Anat Rec, 2000, 258: 119-127.
    [31] Camenisch TD, Molin DG, Person A, et al. Temporal and distinct TGFbeta ligand requirements during mouse and avian endocardial cushion morphogenesis. Dev Biol, 2002, 248: 170-181.
    [32] Stottmann RW, Choi M, Mishina Y, et al. BMP receptor IA is required in mammalian neural crest cells for development of the cardiac outflow tract and ventricular myocardium. Development, 2004, 131: 2205-2218.
    [33] Zhao Z, Rivkees SA. Programmed cell death in the developing heart: regulationby BMP4 and FGF2. Dev Dyn, 2000, 217: 388-400.
    [34] Tríbulo C, Aybar MJ, Sánchez SS, et al. A balance between the anti-apoptotic activity of Slug and the apoptotic activity of msx1 is required for the proper development of the neural crest. Dev Biol, 2004, 275: 325-342.
    1. Srivastava D, Olson EN. A genetic blueprint for cardic devlopment . Nature, 2000, 407: 221-226.
    2. Harvey R P. Patterning the vertebrate heart. Nat Rev Genet, 2002, 3: 544-556.
    3. Srivastava D. Making or breaking the heart: from lineage determination to morphogenesis. Cell, 2006, 126: 1037-1048.
    4. Olson E N. Gene regulatory networks in the evolution and development of the heart. Science, 2006, 313: 1922-1927.
    5. Bruneau BG. Transcriptional Regulation of Vertebrate Cardiac Morphogenesis. Circ Res. 2002;90(5):509-519.
    6. Zaffran S, Frasch M. Early Signals in Cardiac Development. Circ Res, 2002, 91: 457-469.
    7. Tanaka M, Chen Z, Bartunkova M, et al. The cardiac homeobox gene Csx/Nkx2.5 lies genetically upstream of multiple genes essential for heart development. Development, 1999, 126: 1269–1280.
    8. Lyons I, Parsons LM, Hartley L, et al. Myogenic and morphogenetic defects in the heart tubes of murineembryos lacking the homeobox gene Nkx2-5. Genes Dev, 1995, 9: 1654–1666.
    9. Biben C, Weber R, Kesteven S, et al. Cardiac septal and valvular dysmorphogenesis in mice heterozygous for mutations in the homeoboxgene Nkx2-5. Circ Res, 2000, 87: 888–895.
    10. Ueyama T , Kasahara H , Ishiwata T , et al . Myocardin expression is regulated by Nkx2. 5 , and its function is required for cardiomyogenesis. Mol Cell Biol, 2003,23: 9222 - 9232.
    11. Pashmforoush M, Lu JT, Chen H, et al. Nkx2-5 pathways and congenital heart disease :loss of ventricular myocyte lineage specification leads to progressive cardiomyopathy and complete heart block. Cell, 2004, 117: 373 - 386.
    12. Dai YS, Cserjesi P, Markham BE, et al. The transcription factors GATA4 and dHAND physically interact to synergistically activate cardiac gene expression through a p300-dependent mechanism. J Biol Chem, 2002, 277: 24390-24398.
    13. Chen H, Shi S, A costa L, et al. BMP10 is essential for maintaining cardiac growth during murine cardiogenesis. Development, 2004, 131: 2219-2231.
    14. Brown CO, Chi X, Garcia-Gras E, et al. The cardiac determination factor, Nkx2-5, is activated by mutual cofactors GATA-4 and Smad1/4 via a novel upstream enhancer. J Biol Chem, 2004, 279: 10659- 10669.
    15. Small EM, Krieg PA. Transgenic analysis of the atrial natriuretic factor (ANF) promoter : Nkx2-5 and GATA4 binding sites are required for atrial specific expression of ANF. Dev Biol, 2003, 261: 116-131.
    16. Sepulveda JL, Vlahopoulos S, Iyer D, et al. Combinatorial expression of GATA4, Nkx2-5, and serum response factor directs early cardiac gene activity. J Biol Chem, 2002, 277: 25775-25782.
    17. McElhinney D B, Geiger E, Blinder J, et al. NKX2.5 mutations in patients with congenital heart disease. J Am Coll Cardiol, 2003,42: 1650– 1655.
    18. Elliott D A, Kirk E P, Yeoh T, et al. Cardiac homeobox gene NKX2-5 mutations and congenital heart disease: associations with atrial septal defect and hypoplastic left heart syndrome. J Am Coll Cardiol, 2003, 41: 2072–2076.
    19. Kuo CT, Morrisey EE, Anandappa R, et al. GATA4 transcription factor is required for ventral morphogenesis and heart tube formation. Genes Dev, 1997, 11: 1048-1060.
    20. Molkentin JD, Lin Q, Duncan SA, et al. Requirement of the transcription factor GATA4 for heart tube formation and ventral morphogenesis. Genes Dev, 1997, 11: 1061-1072.
    21. Zeisberg EM, Ma Q, Juraszek AL, et al. Morphogenesis of the right ventricle requires myocardial expression of Gata4. J Clin Invest, 2005, 115: 1522-1531.
    22. Pu WT, Ishiwata T, Juraszek AL, et al. GATA4 is a dosage-sensitive regulator of cardiac morphogenesis. Dev Biol, 2004, 275: 235-244.
    23. Brunskill EW, Witte DP, Yutzey KE, et al. Novel cell lines promote the discovery of genes involved in early heart development. Dev Biol, 2001, 235: 507-520.
    24. Peterkin T, Gibson A, Loose M, et al. The roles of GATA-4,-5,and-6 in vertebrate heart development. Semin Cell Dev Biol, 2005, 16: 83-94.
    25. Tevosian SG, Deconinck AE, Tanaka M, et al. FOG-2, a cofactor for GATA transcription factors, is essential for heart morphogenesis and development of coronary vessels from epicardium. Cell, 2000, 101: 729-739.
    26. Crispino JD, Lodish MB, Thurberg BL, et al. Proper coronary vascular development and heart morphogenesis depend on interaction of GATA-4 with FOG cofactors. Genes Dev, 2001, 15: 839–844.
    27. Garg V, Kathiriya IS, Barnes R, et al. GATA4 mutations cause human congenital heart defects and reveal an interaction with TBX5. Nature, 2003, 424: 443 - 447.
    28. Okubo A, Miyoshi O, Baba K, et al. A novel GATA4 mutation completely segregated with atrial septal defect in a large Japanese family. J Med Genet, 2004, 41: e97.
    29. Basson CT, Huang T, Lin RC, et al. Different TBX5 interactions in heart and limb defined by Holt-Oram syndrome mutations. Proc Natl Acad Sci U S A, 1999, 96: 2919-2924.
    30. Satoda M, Zhao F, Diaz GA, et al . Mutations in TFAP2B cause Char syndrome,a familial formof patent ductus arteriosus. Nat Genet, 2000, 25: 42-46.
    31. Zaragoza MV, Lewis LE, Sun G, et al. Identification of the TBX5 transactivating domain and the nuclear localization signal. Gene, 2004, 330: 9-18.
    32. Reamon-Buettner SM, Borlak J. TBX5 mutations in non-Holt-Oram syndrome (HOS) malformed hearts. Hum Mutat, 2004, 24: 104.
    33. Hatcher CJ, Goldstein MM, Mah CS, et al. Identification and localization of TBX5 transcription factor during human cardiac morphogenesis. Dev Dyn, 2000, 219: 90-95.
    34. Bruneau BG, Logan M, Davis N, et al. Chamber-specific cardiac expression of TBX5 and heart defects in Holt - Oram syndrome. Dev Biol, 1999, 211: 100-108.
    35. Bruneau BG, Nemer G, Schmitt JP, et al. A murine model of Holt–Oram syndrome defines roles of the T-box transcription factor Tbx5 in cardiogenesis and disease. Cell, 2001, 106: 709–721.
    36. Hiroi Y, Kudoh S, Monzen K, et al. Tbx5 associates with Nkx2–5 and synergistically promotes cardiomyocyte differentiation. Nat Genet, 2001, 28: 276-280.
    37. Bruneau BG, Nemer G, Schmitt JP, et al. A murine model of Holt–Oram syndrome defines roles of the T-box transcription factor Tbx5 in cardiogenesis and disease. Cell, 2001, 106: 709–721.
    38. Lin Q, Schwarz J, Bucana C, et al. Control of mouse cardiac morphogenesis and myogenesis by transcription factor MEF2C. Science, 1997, 276: 1404-1407.
    39. Skerjanc I S, Petropoulos H, Ridgeway A G, et al. Myocyte enhancer factor 2C and Nkx2-5 up-regulate each other’s expression and initiate cardiomyogenesis in P19 cells. J Biol Chem, 1998, 273: 34904-34910.
    40. Han J, Molkentin J D. Regulation of MEF2 by p38MAPK and its implication in cardiomyocyte biology. Trends Cardiovasc Med, 2000, 10: 19-22.
    41. Zang M X, Li Y, Xue L X, et al. Cooperative activation of atrial naturetic peptide promoter by dHAND and MEF2C. J Cell Biochem, 2004, 93: 1255-1266.
    42. Vong L, Bi W, O'Connor-Halligan KE, et al. MEF2C is required for the normal allocation of cells between the ventricular and sinoatrial precursors of the primary heart field. Dev Dyn, 2006, 235: 1809-1821.
    43. Vincentz JW, Barnes RM, Firulli BA, et al. Cooperative interaction of Nkx2.5 and Mef2c transcription factors during heart development. Dev Dyn, 2008, 237: 3809-3819.
    44. Vong L H, Ragusa M J, Schwarz J J. Generation of conditional Mef2c loxP / loxP mice for temporal- and tissue-specific analyses. Genesis, 2005, 43: 43-48.
    45. Srivastava D, Thomas T, Lin Q, et al. Regulation of cardiac mesodermal and neural crest development by the bHLH transcription factor, dHAND. Nat Genet, 1997, 16: 154–160.
    46. Srivastava D.HAND proteins: molecular mediators of cardiac development and congenital heart disease. Trends Cardiovasc Med, 1999, 9: 11-8.
    47. Thomas T, Yamagashi H, Overbeek PA, et al. The bHLH factors, dHAND and eHAND, specify pulmonary and systemic cardiac ventricles independent of left-right sidedness. Dev Biol, 1998, 196: 228–236.
    48. Firulli AB, McFadden DG, Lin Q, et al. Heart and extra-embryonic mesodermal defects in mouse embryos lacking the bHLH transcription factor Hand1. Nat Genet, 1998, 18: 266–270.
    49. Yamagishi H, Yamagishi C, Nakagawa O, Harvey RP, Olson EN,Srivastava D. The combinatorial activities of Nkx2.5 and dHAND are essential for cardiac ventricle formation. Dev Biol. 2001;239:190–203.
    50. Togi K, Kawamoto T, Yamauchi R, et al. Role of Hand1/eHAND in the dorso-ventral patterning and interventricular septum formation in the embryonicheart. Mol Cell Biol, 2004, 24: 4627-4635.
    51. Biben C, Harvey RP. Homeodomain factor Nkx2–5 controls left/right asymmetric expression of bHLH gene eHand during murine heart development. Genes Dev, 1997, 11: 1357-1369.
    52. Chen CY, Schwartz RJ. Recruitment of the tinman homolog Nkx-2.5 by serum response factor activates cardiac alpha-actin gene transcription. Mol Cell Biol, 1996, 16: 6372-6384.
    53. Huang WY, Chen JJ, Shih N, et al. Multiple musclespecific regulatory elements are associated with a DNase I hypersensitive site of the cardiac beta-myosin heavy-chain gene. Biochem J, 1997, 327: 507-512.
    54. Molkentin JD, Jobe SM, Markham BE. Alpha-myosin heavy chain gene regulation: delineation and characterization of the cardiac muscle-specific enhancer and muscle-specific promoter. J Mol Cell Cardiol, 1996, 28: 1211-1225.
    55. Belaguli NS, Sepulveda JL, Nigam V, et al. Cardiac tissue enriched factors serum response factor and GATA-4 are mutual coregulators. Mol Cell Biol, 2000, 20: 7550-7558.
    56. Morin S, Paradis P, Aries A, et al. Serum response factor-GATA ternary complex required for nuclear signaling by a G-proteincoupled receptor. Mol Cell Biol, 2001, 21: 1036-1044.
    57. Gupta M, Kogut P, Davis FJ, et al. Physical interaction between the MADS box of serum response factor and the TEA/ATTS DNA-binding domain of transcription enhancer factor-1. J Biol Chem, 2001, 276: 10413–10422.
    58. Hauschka SD. Myocardin. a novel potentiator of SRF-mediated transcription in cardiac muscle. Mol Cell, 2001, 8: 1-2.
    59. Wang D, Chang PS, Wang Z, et al. Activation of cardiac gene expression by myocardin, a transcriptional cofactor for serum response factor. Cell, 2001, 105:851-862.
    60. Wang DZ, Li S, Hockemeyer D, et al. Potentiation of serum response factor activity by a family of myocardin-related transcription factors. Proc Natl Acad Sci U S A, 2002, 99: 14855-14860.
    61. Zhang X, Azhar G, Chai J, et al. Cardiomyopathy in transgenic mice with cardiac-specific overexpression of serum response factor. Am J Physiol Heart Circ Physiol, 2001, 280: H1782-1792.
    62. Zhang X, Chai J, Azhar G, et al. Early postnatal cardiac changes and premature death in transgenic mice overexpressing a mutant form of serum response factor. J Biol Chem, 2001, 276: 40033-40040.
    63. Parlakian A, Tuil D, Hamard G, et al. Targeted Inactivation of Serum Response Factor in the Developing Heart Results in Myocardial Defects and Embryonic Lethality. Mol Cell Biol, 2004, 24: 5281-5289.
    64. Schultheiss TM, Burch JB, Lassar AB. A role for bone morphogenetic proteins in the induction of cardiac myogenesis. Genes Dev, 1997, 11: 451–462.
    65. Shi Y, Katsev S, Cai C, et al. BMP signaling is required for heart formation in vertebrates. Dev Biol, 2000, 224: 226–237.
    66. Walters M, Wayman G, Christian J. Bone morphogenetic protein function is required for terminal differentiation of the heart but not for early expression of cardiac marker genes. Mech Dev, 2001, 100: 263–273.
    67. Stottmann RW, Choi M, Mishina Y, et al. BMP receptor IA is required in mammalian neural crest cells for development of the cardiac outflow tract and ventricular myocardium. Development, 2004, 131: 2205-2218.
    68. Nakajima Y, Yamagishi T, Hokari S, et al. Mechanisms involved in valvuloseptal endocardial cushion formation in early cardiogenesis: roles of transforming growth factor (TGF)-beta and bone morphogenetic protein (BMP). Anat Rec,2000, 258: 119-127.
    69. Yamagishi T, Nakajima Y, Miyazono K, et al. Bone morphogenetic protein-2 acts synergistically with transforming growth factor-beta3 during endothelial-mesenchymal transformation in the developing chick heart. J Cell Physiol, 1999, 180: 35-45.
    70. Zhao Z, Rivkees SA. Programmed cell death in the developing heart: regulation by BMP4 and FGF2. Dev Dynam, 2000, 217: 388-400.
    71. Abdelwahid E, Rice D, Pelliniemi LJ, et al. Overlapping and differential localization of Bmp-2, Bmp-4, Msx-2 and apoptosis in the endocardial cushion and adjacent tissues of the developing mouse heart. Cell Tissue Res, 2001, 305: 67-78.
    72. Keyes WM, Logan C, Parker E, et al. Expression and function of bone morphogenetic proteins in the development of the embryonic endocardial cushions. Anat Embryol (Berl), 2003, 207: 135-147.
    73. Hoffman J I, Kap lan S. The incidence of congenital heart disease. J Am Coll Cardiol, 2002, 39: 1890-1900.
    74. Kaynak B, von Heydebreck A, Mebus S, et al. Genome-wide array analysis of normal and malformed human hearts. Circulation, 2003, 107: 2467-2474.
    75. Garg V. Insights into the genetic basis of congenital heart disease. Cell Mol Life Sci, 2006, 63: 1141-1148.
    76. Nemer M. Genetic insights into normal and abnormal heart development. Cardiovasc Pathol, 2008, 17: 48-54.
    77. Gelb BD. Genetic basis of congenital heart disease. Curr Opin Cardiol, 2004, 19: 110-115.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700