RF MEMS可变电容及压控振荡器的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,随着无线通信系统的飞速发展,对低相位噪声压控振荡器(VCO)的需求也同益增加。VCO的调谐能力通常由可变电容来实现,要获得低相位噪声,需要高Q值的片上可变电容。然而,利用标准的集成电路工艺实现高Q值的片上可变电容是非常困难的。因此,现在的VCO器件通常采用片外分立的PN结变容二极管,这样不仅增加了系统的面积,而且存在封装复杂、功耗高以及成本高等缺点。因此,迫切需要能与VCO电路单片集成的高Q值的可变电容。
     本论文采用全波电磁场仿真软件对凹型结构RF MEMS可变电容的结构参数进行了优化,优化目标为可变电容在2GHz时Q值最高。并对寄生电容量进行了讨论,在此基础上,得出了可变电容的单端口等效电路模型。根据优化后的结构,采用有限元分析软件得到了吸合电压及一阶谐振频率。
     对平行板结构RF MEMS可变电容的运动过程进行了非线性分析。采用迭代方法对其动力学方程进行了求解,建立了动力学模型。并对空气压膜阻尼以及外加电压对运动的影响进行了详细讨论。首次发现了在RF MEMS可变电容存在的双稳态现象,并对此现象出现的原因进行了说明。把双稳态的特性应用于研究可变电容的调节范围,在理论上预言了调节范围大于50%的状态是存在的。
     在RF MEMS开关加工工艺基础上,提出了适合凹型结构RF MEMS可变电容的表面微机械工艺流程,并进行了流片验证,其Q值为目前国内报道的最高数值,并且制造工艺与标准的集成电路工艺兼容,易于实现片上集成。
     对振荡器中的两种相位噪声模型:线性时不变模型和线性时变模型进行了系统分析和概括。并对RF MEMS可变电容引起的机械热噪声进行了讨论,提出了以可变电容响应时间最短作为标准,优化阻尼孔数目,降低相位噪声的方法。对MEMS VCO电路的相位噪声进行了讨论,得出了与文献一致的结论,即当频偏位于可变电容的机械谐振频率近端时,电路中起主要作用的相位噪声是RF MEMS可变电容的机械热噪声,而频偏较大时,起主要作用的是电热噪声。
     将凹型结构的RF MEMS可变电容与微波薄膜混合集成电路工艺制造的电路键合在一起,制备了国内第一个微波MEMS VCO器件。其单边带相位噪声性能优于90年代末国外同频率器件。谐波抑制以及杂波抑制性能优于采用变容管的VCO器件。
In recent years, increased demand for wireless communication systems motivates a growing interest in low phase noise voltage controlled oscillator (VCO). The tunability of VCO is normally provided by a variable capacitor. Achieving low phase noise requires a high-Q on-chip variable capacitor. However, it is very difficult to realize a high-Q on-chip variable capacitor by standard integrated circuit (IC) process. Hence, current VCO is often implemented by an external PN junction varactor. The off-chip device not only increases final system area, but also increases package complexity, power consumption and cost. Therefore, a high-Q on-chip variable capacitor is needed stringently which can be integrated monolithically with VCO circuit.
    The quality factor of concave shape RF MEMS variable capacitor is optimized by full-wave electromagnetic field simulation software, and the goal of optimization is to receive the highest quality factor at the frequency of 2GHz. The parasitic capacitance is also discussed. One-port lumped parameters equivalent circuit model is then found based on above analysis. According to the optimized structure, we have calculated pull-in voltage and the first-order resonant frequency.
    The nonlinear analysis is conducted for parallel-plate variable capacitor. The second-order dynamic equation is solved by iterative method, then the dynamic model is built. We have discussed detailedly the effect of air squeeze film damping and direct current (DC) bias on the motion of suspended plate. The bistable state phenomenon which exists in variable capacitor is discovered for the first time, furthermore, the reason for this phenomenon is also explained. At last, the characteristic of bistable state is applied to investigate the tuning range of variable capacitor, and we draw a conclusion that the tuning range may be larger than 50% theoretically.
    Based on existing process of RF MEMS switch, the surface micromachining process is proposed which is the same with concave shape variable capacitor, and RF MEMS variable capacitor samples are successfully made out. The test results show that quality factor is the
引文
[1] Harrie A C Tilmans, Walter De Raedt and Eric Beyne, MEMS for wireless communications: 'from RF-MEMS components to RF-MEMS-SiP', Journal of micromechanics and microengineering, 2003, 13, S139-S163.
    [2] C. T.-C. Nguyen, Micromechanical components for miniaturized low-power communications (invited plenary), Proceedings, IEEE MTT-S International Microwave Symposium RF MEMS Workshop (on Microelectromechanical Devices for RF Systems: Their Construction, Reliability, and Application), Anaheim, California, June 18, 1999, 48-77.
    [3] Lucyszyn, S, Review of radio frequency microelectromechanical systems technology, IEE Proceedings-Science, Measurement and Technology, Vol. 151, Issue 2, 3,March 2004, 93-103.
    [4] Bouchaud J., Wicht H., RF MEMS: status of the industry and roadmaps, Radio Frequency integrated Circuits (RFIC) Symposium, 2005 Digest of Papers, 12-14 June 2005,379-384.
    [5] Pillans B., Rebeiz G., Lee J.-B.,Advances in RF MEMS technology, Gallium Arsenide Integrated Circuit (GaAs IC) Symposium, 2003, 25th Annual Technical Digest, IEEE, 17-20.
    [6] Vijay Varadan, K. J. Vinoy, K. A. Jose, RF MEMS and Their Applications, John Wiley & Sons, Ltd, December 2002.
    [7] Rogers J.W.M., Macedo J.A., Plett C., The effect of varactor nonlinearity on the phase noise of completely integrated VCOs, Sept. 2000, IEEE Journal of Solid-State Circuits, Vol. 35(9):1360-1367.
    [8] 朱研,变容调谐二极管,电子技术,1995,12,36-37。
    [9] T. Soorapanth, C. P. Yue, D.K. Shaeffer, et al., Analysis and optimization of accumulation-mode varactor for RF ICs, 1998 Symposium on VLSI Circuits Technical Digest, 32-33.
    [10] 易新敏,王向展,杨谟华,基于积累型MOS变容管的射频压控振荡器设计,今日电子。
    [11] 刘恩科,朱秉升,罗晋生,半导体物理学,国防工业出版社,2003年12月。
    [12] Kumar R., Bhattacharyya A.B., Variability study and design considerations of p-n junction hyperabrupt varactor diodes, Oct 1977, IEEE Transactions on Electron Devices, Vol. 24(10): 1270-1272.
    [13] A. Rofougaran, J. Rael, M. Rofougaran, et al., A 900MHz CMOS LC-Oscillator with Quadrature Outputs, Technical Digest, 1996 International Solid-State Circuits Conference, 392-393,.
    [14] J. Parker and D. Ray, A Low-Noise 1.6GHz CMOS PLL with On-chip Loop Filter, May 1997, Proceedings Custom Integrated Circuits Conference, 407-410.
    [15] T. Cho, et al., A Single-chip CMOS Direct-Conversion Transceiver for 900MHz Spread-Spectrum Digital Cordless Phones, 1999 International Solid-State Circuits Conference Technical Digest, 228-229.
    [16] Paik, S.E, Q Degradation in Varactor-Tuned Oscillators, May 1974, IEEE Transactions on Microwave Theory and Techniques, Vol. 22, (5): 578-579.
    [17] Gregory V. Ionis, Design and analysis of micro-electro-mechanical variable capacitors for high-frequency filter applications, PhD thesis, Graduate school of Arts and Sciences, Columbia university, 2003.
    [18] Pietro Andreani and Sven Mattisson, On the Use of MOS Varactors in RF VCO's, June 2000, IEEE Journal of Solid-State Circuits, Vol. 35, (6), 905-910.
    [19] Andreani P., Mattisson S., On the use of MOS varactors in RF VCOs, IEEE Journal of Solid-State Circuits, Vol. 35(6): 905-910.
    [20] Clark T.-C. Nguyen, Linda P. B. Katehi and Gabriel M. Rebeiz, Micromachined Devices for Wireless Communications, 1998, Proceedings of the IEEE, Vol.86(8): 1756-1767.
    
    [21]Fan L., Chen R.T., Nespola A., et al., Universal mems platforms for passive RF components: suspended inductors and variable capacitors, Micro Electro Mechanical Systems, MEMS 98. Proceedings., The Eleventh Annual International Workshop, 29 -33.
    
    [22]Lawrence E. Larson, Roy H. Hackett, Melissa A. Melendes, et al., Micromachined microwave actuator(MIMAC) technology-a new tuning approach for microwave integrated circuits, IEEE Microwave and Millimeter-wave Monolithic Circuits Symposium, 1991,27-30.
    
    [23]Darrin J. Young, Bernhard E. Boser, A micromachined variable capacitor for monolithic low-noise VCOs, Tech. Digest of Solid-state sensors and Actuator Workshop, Hilton Head Island, SC, 1996,86-89.
    
    [24]Aleksander Dec, Ken Suyama, Micromachined electro-mechanically tunable capacitors and their applications to RF IC's, December 1998, IEEE Transactions on microwave theory and techniques, Vol. 46(12): 2587-2596.
    
    [25]Aleksander Dec. Ken Suyama, Microwave MEMS-based Voltage-controlled oscillators, November 2000, IEEE Transactions on microwave theory and techniques, Vol. 48(11): 1943-1949.
    
    [26]Maher Bakri-Kassem and Raafat R. Mansour, An improved design for parallel plate MEMS variable capacitor, MTT-s Digest, 2004, 865-868.
    
    [27]Yongduk Kim, Sang-Geun Lee and Sekwang park, Design of the Two-Movable Plate Type MEMS Voltage Tunable Capacitor, Conference on Modeling and Simulations of Microsystems, 2002.
    
    [28]Maher Bakri-Kassem and Raafat R. Mansour, Two movable-plate nitride-loaded mems variable capacitor, IEEE Transactions on microwave theory and techniques, 2004,V61.52(3) :831-837.
    
    [29]J. Zou, C. Liu, and J. Schutt-Aine, Development of a wide tuning-range MEMS two-parallel-plate tunable capacitor for integrated wireless communication systems, Int. J. RF Microwave CA, Vol.11, 322-329, Auguet 2001.
    
    [30]Tommy K. K. Tsang and Mourad N. El-Gamal, Very Wide Tuning Range Micro-Electromechanical Capacitors in the MUMPs Process for RF Applications, 2003 Symposium on VLSI Circuits Digest of Technical Papers, 33-36.
    
    [31] N, Hoivik, M.A. Michalicek, Y.C. Lee, et al., Digitally controllable variable high-Q MEMS capacitor for RF applications, Proceedings of IEEE MTT-S Symposium, May 2001, Volume 3, IEEE, Washington, DC: 2115-2118.
    
    [32] Jun-Bo Yoon and Clark T.-C. Nguyen, A High-Q Tunable Micromechanical Capacitor With Movable Dielectric for RF Applications, Technical Digest, IEEE Int. Electron Devices Meeting, San Francisco, California, Dec. 11-13, 2000, pp. 489-492.
    
    [33] J.J. Yao,S.Park and J.DeNatale,High tuning ratio MEMS based tunable capacitor for RF communications applications, Proceedings of Solid-state sensors and Actuator Workshop, IEEE,Washington,DC: 124-127,1998.
    
    [34] Seonho Seok,Wonseo Choi and Kukjin Chun,A novel linearly tunable MEMS variable capacitor,J Micromech. Microeng., 12(2002), 82-86.
    
    [35] J.Y.Park,Y.J.Yee,H.J.Nam,et al., Micromachined RF MEMS tunable capacitors using piezoelectric acuators,Proceedings of IEEE MTT-S Symposium,May 2001,Volume 3,IEEE,Washington,DC:2111-2114.
    
    [36] Zhiping Feng, Huantong Zhang, Wenge Zhang, et al., Mems-based variable capacitor for millimeter-wave applications, Solid-State Sensor and Actuator Workshop Hilton Head Island, South Carolina, June 4-8, 2000,255-258.
    [37] Z. Feng et al., Design and modeling of RF MEMS tunable capacitor using electro-thermal actuators, IEEE MTT-S International Microwave Symposium Digest, Anaheim, CA, June 1999, 1507-1510.
    [38] A. Mohamed, H. Elsimary and M. Ismail, Design of MEMS Tunable Capacitor all Metal Microstructure for RF Wireless Applications, Technical Proceedings of the 2000 International Conference on Modeling and Simulation of Microsystems, 174-177.
    [39] D. T. Haluzan, Microwave LIGA-MEMS Variable Capacitors, M.Sc. thesis, University of Saskatchewan, Saskatoon, Saskatchewan, Fall 2004.
    [40] D. T. Haluzan and D. M. Klymyshyn, High-Q LIGA-MEMS Vertical Cantilever Variable Capacitors for Upper Microwave Frequencies, Microwave and Optical Technology Letters, vol. 42, pp. 507-511, 2004.
    [41] Leonard Fang, David Klymyshyn, Anh Dinh, et al., Phase noise performance comparison between LIGA-MEMS and on-chip CMOS capacitors for a VCO application, CCECE/CCGEI, Saskatoon, May 2005,425-428.
    [42] 梁雪冬,刘泽文,刘理天,李志坚,高调节范围RF MEMS压控电容的设计与模拟,半导体学报,2003,24卷增刊:179-182.
    [43] 梁雪冬,刘泽文,刘理天,等.用于射频领域的高调节范围MEMS压控电容.压电与声光,2003,25(3):252-254.
    [44] Liang Xuedong, et al. Design and simulation of a wide tuning range RF-MEMS tunable capacitor for RF application, The fifth international IEEE symposium on High Density Packaging and Component Failure Analysis in Electronics(HDP'2002), Shanghai, China, June 30-July 3, 2002, 59-61.
    [45] 韦嘉,梁雪冬,刘泽文,等,三极板型RF MEMS压控电容的分析与制作,仪器仪表学报,2004,25卷第4期增刊,422-423。
    [46] 李德胜,王东红,孙金玮等,MEMS技术及其应用,哈尔滨工业大学出版社,2002年3月。
    [47] 云振新,压控振荡器技术的回顾与展望,半导体技术,2004(29),7:5-11。
    [48] O 'CONNOR C.Tracking advances in VCO technology [EB/OL]. www. Maxim-ic.com/tarticle/view_article.Cfm/article_id/1768/-51k-2004-4-28.
    [49] D.J.Young, B. E. Boser, A micromachine-based RF low-noise voltage-controlled-oscillator, Technical Digest, IEEE Custom Integrated Circuits Conference, Santa Clara, CA, May 1997, 431-434.
    [50] D. J. Young, V. Malba, J. J. Ou, et al., A Low-Noise RF Voltage-Controlled Oscillator Using On-chip High-Q Three-Dimensional Coil Inductor and Micromachined Variable Capacitor, Technical Digest, IEEE Solid-State Sensor and Actuator Workshop, Hilton Head Island, South Carolina, June 1998, 128-131.
    [51] D. J. Young, J. L. Tham, B. E. Boser, A Micromachine-Based Low Phase-Noise GHz Voltage-Controlled Oscillator for Wireless Communication, Technical Digest, The 10th International Conference on Solid-State Sensors and Actuators (Transducers'99), Sendai, Japan, June 1999,1386-1389.
    [52] Aleksander Dec, Ken Suyama, 1.9GHz Micromachined-based low-phase-noise CMOS VCO, IEEE ISSCC Dig. Tech. Papers, Feb. 1999,80-81.
    [53] B. De Muer, C. De Ranter, and M. Steyaert, A fully integrated 2 GHz LC-VCO with phase noise of-125 dBc/Hz at 600 kHz offset, in Eur.Solid-State Circuits Conf., 1999, 206-209.
    [54] C. Hung and K. O, A 1.1-GHz packaged CMOS VCO with phase noise of-126 dBc/Hz at a 600 kHz offset, in Eur. Solid-State Circuits Conf., 1999, 330-333.
    [55] Aleksander Dec, Ken Suyama, A 2.4 GHz CMOS LC VCO using micromachined variable capacitors for frequency tuning, IEEE MTT-S International Microwave Symposium Digest, Vol. 1, June 1999,79-82.
    [56] Eun-Chul Park, Yun-Seok Choi, Jun-Bo Yoon, et al., Fully integrated low phase-noise VCOs with on-chip MEMS inductors, January 2003, IEEE Transactions on microwave theory and techniques, Vol. 51(1): 289-295.
    [57] Eun-Chul Park, Jun-Bo Yoon, Songcheol Hong, et al., A 2.6 GHz Low Phase-Noise VCO Monolithically Integrated with High Q MEMS Inductors, European Solid-State Circuit Conf.,2002, 143-146.
    [58] Eun-Chul Park, Sang-Hyun Baek, Taek-Sang Song, et al., Performance comparison of 5GHz VCOs integrated by CMOS compatible high Q MEMS inductors, 2003 IEEE MTT-S Digest, 721-724.
    [59] 韩建强,朱长纯,赵红坡,刘君华,邵军,微机械桥型压控振荡器,中国科学E辑技术科学2004,34(1):14-19。
    [60] Han Jianqiang, Zhu Changchun, Zhao Hongpo, et al., A micromechanical bridge-shaped voltage-controlled oscillator, Science in China Ser. E Technological Sciences 2004, Vol.47 (1): 26-32.
    [61] Maxim V. Shakhrai, Microelectromechanical (MEMS) varactors for mobile communications, Seventh International Workshop on Nondestructive Testing and Computer Simulations in Science and Engineering, edited by Alexander I. Melker, Proc. of SPIE Vol. 5400 (SPIE, Bellingham, WA, 2003),30-33.
    [62] Gregory V. Ionis, Micro-Electro-Mechanical Variable Capacitors for High-Frequency Filter Applications, Ph.D. Thesis, Columbia University, 2003.
    [63] Ansoft HFSS 10 Documantation, Technical Notes.
    [64] 廖承恩,微波技术基础,西安电子科技大学出版社,1999年3月,第三版。
    [65] Rainee N. Simons, Coplanar Waveguide Circuits, Components, and Systems, 2001 John Wiley & Sons, Inc. publication, New York. Chichester·Weinheim·Brisbane·Singapore·Toronto.
    [66] Robert W. Jackson, Consideration in the use of coplanar waveguide for millimeter-wave integrated circuits, Dec. 1986, IEEE Trans. Microwave Theory Tech., Vol.34, 1450-1456.
    [67] A. Gopinath, Losses in coplanar waveguides, July 1982, IEEE Trans. Microwave Theory Tech., Vol.30, 1101-1104.
    [68] 廖承恩,陈达章,微波技术基础,国防工业出版社,1979年12月。
    [69] Ansoft Serenade 8.7 Documantation, Technical Notes.
    [70] 王勖成,邵敏,有限元法基本原理与数值方法,清华大学出版社,1995。
    [71] 陈精一,蔡国忠,电脑辅助工程分析-ANSYS使用指南,中国铁道出版社,2001年4月。
    [72] 博嘉科技,有限元分析软件ANSYS融会贯通,中国水利水电出版社,2002年11月。
    [73] ANSYS 9.0 Documentation, ANSYS, Inc. Verification Manual.
    [74] ANSYS 9.0 Documentation, ANSYS, Inc. Theory Reference.
    [75] 刘国庆,杨庆东,ANSYS工程应用教程-机械篇,中国铁道出版社,2003年1月。
    [76] 龚曙光,罗显光,赵又红等,ANSYS基础应用与范例解析,机械工业出版社,2003年1月。
    [77] Jun Zou, MicroElectroMechanical Systems(MEMS) for Radio Frequency Applications, Ph.D. Thesis, University of Illinois at Urbana-Champaign, May 2002.
    [78] Xiaojing Wang, Yongwu Liu, Min Wang, et al., The effect of air-damping on the planar MEMS structures, Proceeding of HDP'04, pp.349-352.
    [79] G. M. Rebeiz, RF MEMS Theory, Design, and Technology, John Wiley & Sons Inc., New York, NY2003.
    [80] 孙东明,董玮,郭文滨等,MOEMS光开关动力学过程分析,半导体学报,2005,26(7):1448-1452。
    [81] 吴剑,胡波,掌握和精通Mathematica 4.0,机械工业出版社,2001年3月。
    [82] Tanner EDA, L-Edit v9.00 Documantation, Technical Notes.
    [83] 唐长文,电感电容压控振荡器,复旦大学博士学位论文,2004年4月。
    [84] 费元春,陈世伟,孙燕玲,等,微波固态频率源理论-设计-应用,国防工业出版社,1994年6月。
    [85] 刘明亮,振荡器的原理和应用,高等教育出版社,1983年9月。
    [86] 陈邦媛,射频通信电路,科学出版社,2002年8月。
    [87] Reinhold Ludwig,Pavel Bretchko,射频电路设计—理论与应用,电子工业出版社,2002年9月。
    [88] 陈为怀,李玉梅,微波振荡源,人民邮电出版社,1984年第一版。
    [89] K. Kurokawa, Some basic characteristics of broadband negative resistance oscillator circuits, Bell Syst. Tech. J., July 1969, 1937-1955.
    [90] 白居宪,低噪声频率合成,西安交通大学出版社,1995年5月。
    [91] W.P.罗宾斯著,秦士,姜遵富译,相位噪声,人民邮电出版社,1988。
    [92] 陈滨,低相噪LC VCO的研究设计与制作,电子科技大学硕士学位论文,2003年4月。
    [93] Klimovitch, G.V., Near-carrier oscillator spectrum due to flicker and white noise, The 2000 IEEE International Symposium on Circuits and Systems, 28-31 May 2000, Proceedings. ISCAS 2000 Geneva., Vol. 1, 703-706.
    [94] Brambilla A., Method for simulating phase noise in oscillators, IEEE Transactions on Circuits and Systems Ⅰ: Fundamental Theory and Applications, Nov. 2001, Vol. 48(11): 1318-1325.
    [95] D. B. Leeson, A simple model of feedback oscillator noises spectrum, Proc. IEEE, vol. 54, pp. 329-330, Feb. 1966.
    [96] W. Robins, Phase Noise in Signal Sources: Theory and Applications. Stevenage, U.K.: Peregrinus, 1982, pp. 49-53.
    [97] Nallatamby J.C., Prigent M., Camiade M., et al., Phase noise in oscillators-Leeson formula revisited, April 2003, lIEEE Transactions on Microwave Theory and Techniques, Vol.51(4), Part 2, 386-1394.
    [98] Ulrich L. Rohde and David P. Newkirk, RF/Microwave Circuit Design for Wireless Applications, 2000 John Wiley & Sons, Inc.。
    [99] J. Craninckx and M. Steyaert, Low-noise voltage-controlled oscillators using enhanced LC-tanks, Dec. 1995, IEEE Trans. Circuits Syst.-Ⅱ, vol. 42, pp. 794-904.
    [100] B. Razavi, A study of phase noise in CMOS oscillators, Mar. 1996, IEEE J. Solid-State Circuits, vol. 31, pp.331-343,
    [101] A. Demir, A. Mehrotra, and J. Roychowdhury, Phase noise in oscillators: a unifying theory and numerical methods for characterization, May 2000, IEEE Trans. Circuits and Systems-Ⅰ, vol. 47, 655-674.
    [102] A. Demir, Phase noise in oscillators: DAEs and colored noise sources, Proc. ICCAD, 170-177, Nov. 1998.
    [103] 范建兴,权进国,杨中华,等,振荡器时变相位噪声分析技术研究进展,微电子学,34(5),2004年10月,501-504。
    [104] Ali hajimiri, Thomas H.Lee, A general theory of phase noise in electrical oscillators, February 1998, IEEE Journal of solid-state circuits, Vol. 33(2): 179-193。
    [105] Thomas H. Lee, and Ali Hajimiri, Oscillator Phase Noise: a Tutorial, March 2000, IEEE Journal of Solid-State Circuits, vol. 35, (3): 326-336.
    [106] Ali Hajimiri, Jitter and Phase Noise in Electrical Oscillators, Ph.D. Thesis, Stanford University, November 1998.
    [107] (美)Thomas H.LEE著,余志平,周润德等译,CMOS射频集成电路设计,电子工业出版社,2004年7月。
    [108] Darrin Jun Young, MicroElectroMechanical Devices and Fabrication Technologies for Radio-Frequency Analog Signal Processing, Ph.D. Thesis, University of California, Berkeley, 1999.
    [109] T. B. Gabrielson, Mechanical-thermal noise in micromachined acoustic and vibration sensors, May 1993, IEEE Trans. Electron Devices, vol. 40, pp. 903-909.
    [110] Hector J. De Los Santos, RF MEMS Circuit Design for Wireless Communications, Artech House, Boston, London, 2002.
    [111] Darrin J. Young, Micromachined RF Voltage-controlled Oscillator with Phase Noise Characterization, 9th International Conference on Electronics, Circuits and Systems, 15-18 Sept. 2002,Vol. 1,295-298.
    [112] 郑福元,厚薄膜混合集成电路-设计、制造和应用,北京科学出版社,1984年。
    [113] (美)格普塔著,王瑞庭等译,厚薄膜混合微电子学手册,电子工业出版社,2005年6月。
    [114] 张国忠,晶体管原理,天津科学技术出版社,1983年10月。
    [115] Randall W. Rhea, Oscillator Design and Computer Simulation, Noble Publishing Corporation, 1995.
    [116] H. Liao and J. Shi, A design of low power multi-GHz LC VCO,/EEE 2003 5th International Conference on ASIC Proceedings, 1070-1073, Nov. 2003.
    [117] Jing-Hong Conan Zhan, Kyle Maurice, Jon Duster, et al., Analysis and Design of Negative Impedance LC Oscillators Using Bipolar Transistors, IEEE Transactions on Circuits and Systems—Ⅰ: Fundamental Theory and Applications, November 2003,Vol. 50(11): 1461-1464.
    [118] W. Z. Chen and J. T. Wu, A 2-V 2-GHz BJT variable frequency oscillator, IEEE J. Solid-State Circuits, Sep. 1998, vol. 33, 1406-1410.
    [119] B. Jansen, et al., Silicon Bipolar VCO Family for 1.1 to 2.2GHz with Fully-Integrated Tank and Tuning Circuits, IEEE International Solid-State Circuits Conf. (ISSCC), 1997, 392-393.
    [120] 郭文胜,申永进,要志红,集成宽带压控振荡器的设计,无线电工程,2005,35(5):59-61。

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700