ZVZCS三电平PWM逆变弧焊电源的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
逆变焊接电源具有体积小,、重量轻、高效节能、动态响应快等许多优点,被焊接界公认为最有发展前途的焊接电源。随着电力电子技术和各种先进控制方法的发展,和功率器件IGBT的出现及其性能的不断完善,逆变弧焊电源的前景将更加光明。
    为了减小弧焊电源的体积,可以通过提高其频率的方法来实现。同时弧焊电源频率的进一步提高会带来很多的优良特性。但是传统的PWM控制的弧焊电源中,开关器件均是强迫开关过程,因而存在开通和关断损耗大、感性关断、容性开通、二极管方向恢复等一系列问题。开关损耗随逆变频率的提高而增加,很难进一步高频化。软开关PWM技术能较好地解决传统PWM技术中的问题,越来越成为焊接界所关注的焦点之一。
    同时传统的焊接逆变电源均为二极管整流、大电容滤波,从而造成输入电流和电压相位相差很大,并且电流畸变很大。这样不仅功率因数很低,而且输入电流中谐波的含量相当高,从而严重污染了电网。现在人们以来时意识到这一点,并开始制定一系列规定来限制接入电网的设备的谐波含量。为了抑制谐波、提高功率因数,人们引入了功率因数校正技术。同时为了减小体积,大多采用有源功率因数校正技术。三相有源功率因数校正技术大多采用boost变换器作为主电路,其输出电压一般为760-800V DC,有时甚至高达1000V,这就要求后级开关管的耐压要高,从而导致电源成本的大幅度提高。而三电平变换器中,管子承受的电压为输入电压的一半,因此非常合适作为三相功率因数校正的后级电路。同时为了减小开关损耗,将软开关技术引入到三电平变换器,从而产生了一种新颖的软开关PWM变换器——三电平软开关变换器。三电平软开关变换器分为ZVS-PWM三电平变换器和ZVZCS-PWM三电平变换器。考虑到ZVS-PWM三电平存在以下缺点:①超前臂是利用输出滤波电感和漏感的能量实现ZVS,比较容易;但后桥只能利用漏感的能量来实现ZVS,由于漏感一般较小,在负载较轻时其能量不足以实现滞后管的ZVS,如够将漏感做得很大,将会带来较大的占空比丢失;②在零状态时,一次侧不给负载提供能量,但一次侧有环流存在,在开关管和变压器一次绕组中产生通态损耗,影响了变换效率的提高。本文采用ZVZCS-PWM三电平变换器作为弧焊电源的主电路。
    本文详细介绍了ZVZCS-PWM三电平变换器的工作原理,给出了其实现软开关的条件及其参数设计的理论依据。在设计电路前用电路仿真软件Pspice 9.2对主电路进行了仿真,在理论上验证了方案的可行性。同时利用控制理论对系统进行分析,推导出该电源系统的传递函数模型。为了使电压、
    
    
    电流扰动对系统输出影响减小,合理选择了调节器及校正环节,通过选择合适的参数,得到了一个具有较高稳定性、很好动态性能和较高稳定精度的控制系统。并用MATLAB对控制系统进行了仿真,验证了设计的正确性。最后根据参数计算和理论分析,设计了一台最大输出电流为120A的逆变弧焊电源模拟机,其输出电流范围在20A-120A之间,空载电压载65V-70V之间.。实验证明对ZVZCS-PWM三电平变换器的原理分析、参数计算和仿真模拟是完全正确的。该变换器的前桥实现了零电压开关、后桥实现了零电流开关,同时管子承受的压降值为为输入电压值的一半。
    本论文采用EXB841设计了开关管IGBT的驱动电路,开关管开通时的正相驱动电压为15V,反向截止电压为-5V,同时采用外围电路设计了过流时的保护电路,当IGBT过流时,EXB841将输出低电平,从而关断开关管。同时为了避免电网对控制电路的的干扰,采用双管正激变换器设计了一辅助开关电源,为电路中的各种芯片供电,从而很好的实现了电网和控制电路的严格隔离。避免了电网对控制电路的干扰,实验证明效果很好。
    本文对整个系统的可靠性和抗干扰能力进行了理论分析和实践,采取减小干扰源,切断传播途径,屏蔽被干扰源的方法增强系统的可靠性。在整个系统的布局上,使强干扰源远离对干扰敏感的器件,器件之间的连线用屏蔽线,IGBT的驱动线用绞合线并且尽可能的短等,在设计PCB时,全方位考虑了EMI问题,采取措施使控制板中的各种信号线尽可能的互不干扰,使整个系统的驱动脉冲和工作时序按计划进行。
    总之,ZVZCS-PWM三电平变换器不仅有软开关PWM的各种优点,而且开关管承受的电压值为输入电压的一半,特别适用于采用了有源功率因数校正技术或者输入电压很高的场合。三电平技术的发展,必将促进绿色环保电源的飞速发展。
Arc welding inverters have many good qualities, such as small volume、lightness、 high efficiency and rapid dynamic response and are recognized as the most prospective welding power supply in the welding field . With the improvement of power electronics technology, especially the emergence of the power element IGBT and the consummation in its consummation, in its performance, the arc welding inverter’s future will be more beautiful.
    In order to decrease volume of Arc welding power supply, we can fulfill it through increasing frequency of it. And the further improvement in arc welding power supply’s inverter frequency can bring more good qualities, But in conventional PWM control arc welding power supply, switching elements are forced to be on or off, so there exit many problems, such as great loss, inductive switch-off, capacitive switch-on and diode’s reverse current. The switch loss increases with the improvement of inverter’s frequency, so it is hard to improve inverter frequency further. Soft switching PWM technique can resolve this problem existing in conventional PWM technique, so it becomes one focus of welding field more and more.
    Conventional input current of Arc-welding is rectified by diodes, and smoothed by big capacitors. So this causes the differences between input voltage and input current to be very large, and the distortion of the current is large too .The results of which are as follows: first, power factor is low; second, harmonic current of input current is so high; at last it pollutes electrified wire netting. Now people begin to realize this point, and start to make some rules to limit the harmonic current of the equipment connected to electrified wire netting .In order to restrain harmonic current and enhance power factor, power factor correction is introduced. At the same time, in order to lighten volume, active power factor correction is the first choice. Most of three phase active power correction utilizes “boost” converter to be its main circuit, and its output voltage is 760-800V, sometimes even to 1000V, which requires the rear switch to have high endure voltage, the result of which is the costing of the equipment becomes so high .In three-level converter, endure voltage of the switch is half of input voltage, so it fits to be the rear circuit of the three phase power factor correction. And in order to lighten switching loss, soft switching is introduced to
    
    
    thee level converter. So a novel soft-switching PWM converter emerges. Soft switching PWM three level converters can be classified as ZVS three level converter and ZVZCS three level converter. ZVS three level converter has following drawbacks:①forelegs can fulfill its ZVS very easy by the energy in the filter and leakage inductor , but the lag legs can only fulfill its ZVS by the energy in the leakage inductor , when the load current is not enough ,the energy is too small to fulfill ZVS of lag legs , if we make the leakage inductor too large , big loss of duty cycle will emerge . ②When it is at the state of zero , primary don’t conduct energy to load , but there exits loop current ,which cause conduct loss in switch and primary of transformer , so limits the efficiency. For this reason, I choose ZVZCS-PWM three level converter to be Arc-welding’ main circuit.
    This paper analyze the principle of ZVZCS-PWM three level converters in detail, gives out the condition of soft switching and solution to design the parameter. Before designing circuit, I simulate it by use of software Pspice9.2, and demonstrate the feasibility in theory. At the same time, this paper uses control theory to analyze the system and gets the system transfer function model. To reduce the influence of voltage and current disturbance on the output, the regulator and corrector are reasonably selected, By selecting suitable parameters, a control system with high stability, good dynamic characteristic and high static accuracy is got. Following this, this paper simulates the control system by use of MATLAB, and demonstrates the correctness of the de
引文
赵家瑞.逆变焊接与切割电源.机械工业出版社.1996
    黄石生.逆变理论与弧焊逆变器.机械工业出版社.1995.5
    王军波.半桥式IGBT逆变焊接电源工作过程分析及焊机的研制.吉林工业大学.硕士论文.1997.3
    王 聪.软开关逆变电路及其应用.机械工业出版社.1993.11
    杨德刚 赵良炳.软开关技术回顾与展望.电力电子技术.1998.2 96~100
    张恩怀.开关电源的发展概况.电力电子技术.1996.1 74~78
    Ashoka K. S. Bhat.Analysis and Design of LCL-Type Series Resonant Converter.IEEE Transactions on Industry Applications1994 Vol 41 No.1 118~124
    Ashoka K. S. Bhat.Analysis and design of a parallel resonant converter including the effect of a high-frequency transformer.IEEE Transactions on Industry Applications1990 Vol 37 No.4 297~305
    Young-Goo Kang.Analysis and Design of a half-Bridge Parallel Resonant Converter Operating Above Resonant.IEEE Transactions on Industry Applications1991 Vol 27 No.2 386~395
    Stanimir S. Valtchev.Efficient resonant power conversion.IEEE Transactions on Industry Applications1990 Vol 37 No.6 490~495
    Ojo,Phd.Performance prediction of third-order series resonant converter.IEE Proc-Electr Power Appl. 1995 Vol 142 No.1 January 29~34
    Robert L. Steigerwald.A comparison of high-power DC-DC soft-switched converter topologies.IEEE Transactions on Industry Applications1996 Vol 32 No.5 1139~1145
    J.G.Cho.IGBT based zero voltage transition full bridge PWM converter for high power applicationIEE Proc-Electr Power Appl.1996 Vol 143 No.6 November 475~480
    阮新波.软开关通讯电源的研究.南京航空航天大学.博士论文.1996
    Pinheiro J Renes,Baibi Ivo.The three-level ZVS PWM converter—A new concept in high-voltage dc-to-dc conversion.IEEE IECON,1992,173~178
    Pinheiro J Renes,Barbi Ivo.Wide load range the three-level ZVS PWM dc-to-dc converter .IEEE PESC,1993,171~177
    
    
    阮新波 周林泉 严仰光.一种新颖的零电压零电流开关PWM三电平直流变换器.电工技术学报,2001.(4) 41~46
    蔡宣三.高频功率电子学.科学出版社.1993.5
    丁道宏.电力电子技术.航空工业出版社.1992.6
    张 立.现代电力电子技术.科学出版社.1995.5
    赵良炳. 现代电力电子技术基础.清华大学出版社. 1995.5 第一版
    张占松 蔡宣三. 开关电源的原理与设计.电子工业出版社. 1998.6. 第一版
    郑宜庭 黄石生.弧焊电源。机械工业出版社.1988.11 第二版
    殷树言 耿正等.晶闸管整流弧焊机设计与调试.机械工业出版社,1997.3
    阮新波 严仰光.脉宽调制DC/DC全桥变换器的软开关技术.科学出版社,1999
    李爱文.现代逆变技术及其应用.科学出版社,1999
    刘胜利.现代高频电源实用技术.电子工业出版社,2001,9
    杨玉岗.现代电力电子的磁技术.科学出版社,2003,8
    A.J.Forsyth.Dynamic characteristics and closed-loop performance of the series-parallel resonant.IEE Proc-Electr Power Appl. 1996 Vol 143 No.5 September 345~353
     Ashoka K. S. Bhat.A Generalized Approach for the Steady-State Analysis of Resonant Inverter.IEEE Transactions on Industry Applications1989 Vol 25 No.2 326~338
    黄河 车育生.相移谐振控制器UC3875及其应用.移动电源与车辆,2001.(1) 15~18
    李宏.电力电子设备用器件与集成电路应用指南.机械工业出版社,2001
    朱贤龙 严仰光等.电压软开关电流磁环检测IGBT弧焊逆变器.焊接学报,1996(2)111-114
    区健昌.电子设备的电磁兼容性设计.电子公社出版社,2003,9
    Issa Batarseh.High-Frequency High-Order Parallel Resonant Converter.IEEE Transactions on Industry Applications1989 Vol 36 No.4 485~498
    H.M.Suryawanshi.Modified LCLC-type series resonant converter with improved performance.IEE Proc-Electr Power Appl. 1996 Vol 143 No.5 September 354~360
    苏开才.现代功率电子技术.国防工业出版社.1995.9
    华 伟. IGBT驱动及短路保护M57959L的研究.电力电子技术.1998(2) 88~91
    
    周永忠 章进法等. 功率MOSFET模块驱动电路. 电力电子技术.1993(4) 1~5
    卢 红 梁任秋等. IGBT驱动保护与应用技术. 电力电子技术.1993(2) 1~5
    张 平 冯 沛等. IGBT应用中的过流保护.电力电子技术.1996(2) 58~59
    王正仕 吴益良等. IGBT的过流保护.电力电子技术.1996(3) 70~102
    丁浩华 陈辉明. 带过流和短路保护的IGBT驱动电路研究. 1997(2) 30~32
    阮新波 严仰光. 一种适用于IGBT,MOSFET的驱动电路.电力电子技术.1996(4) 21~23
    尹 海 李思海等. IGBT驱动电路性能分析.电力电子技术.1998(3) 86~89
    郑 洁 串 禾. MOSFET开关的驱动. 电力电子技术. 1998(2) 92~94
    郑利军 任天良. IGBT驱动与电源可靠性. 电力电子技术. 1999(5) 23~25
    Rahul S. Chokhawala.Gate drive considerations for IGBT modules.IEEE Transactions on Industry Applications1995 vol 31 No.3 603~671
    施涛昌.功率IGBT的驱动保护及其应用技术.电子技术,1996.(7)12~14
    张 青 康 永等. IGBT驱动模块EXB841剖析. 电气传动. 1994(4) 40~46
    张国安 朱忠尼等. EXB841驱动模块的扩展用法. 电力电子技术.1997(3) 97~98
    Rahul S. Chokhawala.A discussion on IGBT short-circuit behavior and fault protection schemes.IEEE Transactions on Industry Applications1995 Vol 31 No.2 256~263
    张为佐 白继彬.电力电子技术发展的新动向.电力电子技术.1996.4 1~5
    Yuan Chin.Constant-frequency parallel-resonant converter ,IEEE Transactions on Industry Applications1989 Vol 25 No.1 133~142
    朱 彦 丁道宏等. 一种零电压PWM直直变换器的设计与优化.电力电子技术.1996(2) 16~20
    萧 岚 童永胜等. 升降压式软开关DC-DC变换器的研究.电力电子技术.1997(1) 16~18
    
    宾江宏 陈伯时等. 一种开关式功率变换器的研究.电力电子技术.1998(1) 32~34
    周继华.ZVT-PWM反激变换电路研究与设计. 电力电子技术. 1999(2) 34~36
    杨 旭.辅助开关零电流关断的零电压过渡PWM正激电路. 电力电子技术. 1999(3) 20~22
    丁道宏 杨东平. 串联输出谐振变换器开关特性与效率分析. 电力电子技术.1994(1) 29~31
    甘鸿坚 丁道宏. 新型ZVT-PWM正激变换器. 电力电子技术.1997(3) 26~29
    H.Pollock.Series-parallel load-resonant converter for controlled-current arc welding power supply.IEE Proc-Electr Power Appl. 1996 Vol 143 No.3 May 211~218
    Luigi Malesani.Electronic welder with high-frequency resonant inverter.IEEE Transactions on Industry Applications 1995 Vol 31 No.2 273~279
    孙威威. 谐振弧焊逆变电源控制电路分析及设计 吉林工业大学.硕士论文.1999.2
    熊腊森 徐软松等. 用于弧焊逆变电源的谐振变流器设计. 电焊机.1997(2) 7~9
    熊腊森 徐软松等. 谐振变流技术及其在弧焊逆变电源中的应用. 电焊机.1997(3) 8~11
    张光先 李爱文等. 大功率串联谐振式逆变焊机的设计与研究.电力电子技术.1996(4) 51~54
    殷树言 陈树君. 软开关变换技术在弧焊逆变电源中的应用. 电力电子技术. 1999(1) 18~21
    阮新波 严仰光等.移相控制恒频零电压开关变换器的发展及现状.电力电子技术.1996(2) 85~90
    阮新波 严仰光等. 移相控制零电压开关PWM变换器的分析.电力电子技术.1998(2) 1~3
    杨 旭 赵志伟等. 移相全桥型零电压软开关电路谐振过程的研究.电力电子技术.1998(3) 36~39
    朱贤龙 陈伯时. 移相式PWM逆变器软开关分析与主电路改进. 电力电子技术. 1998(1) 29~31
    陈延明. 一种新型的移相软开关变换电路. 电力电子技术. 1999(1) 12~14
    徐晓峰. 移相控制ZVS全桥变换器滞后臂死区时间分析. 电力电子技
    
    
    术. 1999(1) 15~17
    徐功潜 李网生等.零电压和零电流开关的伪相移式变换器.电力电子技术.1997(3) 11~13
    王创社 乐开端等.新型大功率IGBT全桥零电流DC-DC变换器.电力电子技术.1998(3) 18~20
    张纯江 王宝诚等.自激式半桥式零电压PWM变换器.电力电子技术.1997(2) 39~40
    Jung-Goo Cho Novel Zero-Voltage and Zero-Current-Switching Full-Bridge PWM Converter Using a Simple Auxiliary Circuit IEEE Trans industry application vol.35.No.1JAN/FEB 1999/12/26 15~20
    Philip C. Theron.The zero voltage switching partial series resonant converter.IEEE Transactions on Industry Applications1995 Vol 31 No.4 879~886
    王新之 陈武柱等. 用可饱和电感提高逆变电源动态特性的研究.电力电子技术.1998(1) 26~28
    陈竹君 耿 正等. 用饱和电感改善软开关弧焊逆变电源的性能
    S.Hamada.Steady-state analysis and performance of a saturable reactor assisted soft-switching DC-DC converter.IEE Proceedings-B 1992 Vol 139 No.4 July 281~288
    S.Hamada.Saturable reactor-assisted soft-switching asymmetrical PWM DC-DC converter with high-frequency transformer link.IEE Proc-Electr Power Appl. 1998 Vol 145 No.2 March 79~84
    S.Hamada.Saturable reactor assisted soft-switching full-bridge DC/DC power converters.IEE Proceedings-B 1991 Vol 138 No.2 March 95~103
    姚立真.通用电路模拟技术及软件应用SPICE和PSpice.电子工业出版社.1994.5
    Alexander Kurnia.Impact of IGBT Behavior on Design Optimization of Soft Switching Inverter Topologies.IEEE Transactions on Industry Applications1995 Vol 31 No.2 280~286

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700