时域积分方程快速算法及并行计算的研究与应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
时域积分方程(TDIE)方法在雷达目标隐身和反隐身技术研究、雷达目标特性分析与识别、复杂天线系统设计、现代电子系统电磁兼容性分析等领域表现出特别的优势,已成为计算电磁学领域的研究热点之一。然而,TDIE传统的数值解法—时间步进算法(MOT)在实现中面临两方面的问题:数值解不稳定和计算效率低。本文的目的就是发展有效、快速的时域积分方程求解方法,并将其应用于工程实践。
     论文首先对良导体电磁散射问题中电场积分方程(EFIE)、磁场积分方程(MFIE)和混合场积分方程(CFIE)的建立方法,以及时域积分方程的离散和求解过程进行了深入研究,系统分析了导致MOT算法不稳定的因素,在算法谐振模式基础上提出了误差一致性原则,完善了MOT算法稳定性理论。为了提高计算精度,深入研究了阻抗矩阵元素计算中的奇异迟滞边界积分问题,提出了一种通过坐标轴变换解析计算奇异积分的方法。在此基础上还提出了一种精确求解时滞积分的解析方法。
     为了降低MOT算法的高计算量和存储量,论文重点研究了MOT的三种快速算法,分别为时域自适应算法(TD-AIM)、时域平面波算法(PWTD)、时域积分方程与高频近似混合算法。在TD-AIM算法研究中,对算法的基本思想、一般步骤、理论依据以及各个算子的具体实现方法进行了详细阐述。在PWTD算法研究中,对算法的基本理论进行了深入研究,提出了一种利用出射表和入射表改进聚集、转移和投射的新方法,并且投射方式采用标准子信号前向贡献式投射。该方法不但降低了内存需求,大幅度提高了计算规模,而且投射方式有利于时间点的对齐,降低了投射次数,提高了计算速度和精度。在混合算法研究中,提出了一种一致性绕射理论(UTD)与时域积分方程混合的算法,为求解电大平台电磁兼容问题提供了一条有效途径。
     基于.NET Remoting技术,实现了MOT、TD-AIM、PWTD算法的分布式并行计算,从而可充分利用现有的网络计算资源高效解决实际工程问题。
     基于上述算法的研究,设计和开发了快速电磁计算软件包,论文展示了软件包的结构,并利用该软件包对一些工程电磁问题进行了仿真计算。计算结果验证了软件包的有效性和通用性,也展现了时域积分方程快速算法的优点。
In the areas of radar stealth and anti-stealth, radar target identification, complex antenna system design and EMC analysis of modern electric systems, time domain integral equation (TDIE) has provided an appealing avenue and has become considerable interest in the computational electromagnetic community. However, marching-on-in-time (MOT) based on TDIE solver has been suffered from numerical instability and low computational efficiency. The purpose of this thesis is to develop an effective, fast method for solving time-domain integral equation, and to apply it to engineering practice.
     Derivations of time domain EFIE, MFIE and CFIE in the transient analysis of electromagnetic wave scattering from perfect electrical conducting objects are reviewed firstly in this thesis, and the solving procedures of TDIE are elaborated. Then the causes of MOT instability are systematically studied, and the error consistency principle is proposed based on the algorithm resonant mode, which consummates the stability theory of MOT algorithm. An analytical calculation method is proposed to improve the calculation accuracy of impedance matrix elements by shifting and rotating the coordinates. In addition, a precise analytical method for solving time-delay integration is proposed.
     Three accelerated MOT algorithms, named Time Domain Adaptive Integral Method (TD-AIM), Plane Wave Time Domain (PWTD) and hybrid method of high-frequency approximation coupled TDIE respectively, are presented to reduce the computational complexity and memory requirement of classical MOT. Firstly, the basic ideas, the general processes, the theory foundation and the implementation of the operators of the TD-AIM are elaborated. Secondly, PWTD algorithm is studied deeply in this thesis. The outgoing rays table and incoming rays table strategy which uses a new forward contribution project method is presented. This strategy reduces the memory requirements and greatly increases the size of the calculation on the one hand, and on the other hand it is conducive to the alignment point in time, reducing the number of projection to enhance the computing speed and accuracy. Lastly, coupling process and realization method of UTD and TDIE are elaborated.
     Distributed and parallel computation for algorithm of MOT, TD-AIM and PWTD is realized based on .NTE Remoting technology, which enables efficiently and adequately using of modern network computing resources to solve practical engineering problems.
     The design ideas of the rapid electromagnetic computation package are described. At the same time, the package structure and some engineering calculation results are shown. On the one hand these examples verify the effectiveness and versatility of the package, and on the other hand the advantages of time domain integral equation’s fast algorithms are demonstrated.
引文
[1]王长清.现代计算电磁学基础[M].北京:北京大学出版社,2006.
    [2]高本庆.时域有限差分法[M].北京:国防工业出版社,1995.
    [3]金建铭(美)著,王建国译.电磁场有限元方法[M].西安:西安电子科技大学出版社,1998.
    [4]盛新庆,计算电磁学要论[M].北京:科学出版社, 2004.
    [5] Bennett C L. A technique for computing approximate impulse response for conducting bodies [D]. Indiana: Purdue Univ., 1968.
    [6] Liu T K, Mei K K. A time domain integral equation solution for linear antennas and scatterers[J]. Radio Sci., 1973,8:797~804.
    [7] Miller E K. Direct time domain techniques for transient radiation and scattering from wires[J]. Proc. IEEE Communications and radar, 1980,6:1396~1423.
    [8] Rao S M, Sarkar T K, Dianat S A. A novel technique to the solution of transient electromagnetic scattering from thin wires[J]. IEEE Trans. Antennas propagate.,1986,34: 630~634.
    [9] Blaricum M V, Miller E K. A computer program for the time domain analysis of thin wire structures. UCRL-51277,CA,Livermore, Lawrence Livermore Nat.Lab,1972.
    [10] Bennett C L, Weeks W L. Transient scattering from conducting cylinders[J]. IEEE Trans. Antennas Propagat.,1970,18:627~633.
    [11] Bennett C L, Mieras H. Time domain scattering from open thin conducting surfaces[J]. Radio Sci.,1981,16:1231~1239.
    [12] Rao S M. Electromagnetic scattering and radiation of arbitrarily-shaped surfaces by triangular patch modeling[D], Univ.Mississippi 1980.
    [13] Rao S M, Wilton D R, Glisson A W. Electromagnetic scattering by surfaces of arbitrary shape [J]. IEEE Trans. Antennas and Propagation, 1982,30(3):409~418.
    [14] Rao S M, Wilton D R. Transient scattering by conducting surfaces of arbitrary shape [J]. IEEE Trans. Antennas Propagat.,1991,39(1):56~61.
    [15] Vechinski D A, Rao S M. A stable procedure to calculate the transient scattering by conducting surfaces of arbitrary shape[J]. IEEE Trans. Antennas Propagat., 1992,40 (6): 661~665.
    [16] Sadigh A, Arvas D. Treating the instabilities in marching-on-in-time method from a different perspective[J]. IEEE Trans. Antennas Propagat.,1993,41 (12): 1695~ 1702.
    [17] Davies P J. On the stability of time-marching schemes for the general surface electric-field integral equation[J]. IEEE Trans. Antennas Propagat.,1996,44(11): 1467~1473.
    [18] Manara C, Monorchio A, Reggiannini R. A space-time discretization criterion for a stable time-marching solution of the electric field integral equation[J]. IEEE Trans. Antennas Propagat.,1997,45(3):527~532.
    [19] Hu J L, Chan C H. Improved temporal basis function for time domain electric field integral equation method[J]. Electronics Letters,1999,35 (11):883~885.
    [20] Hu J L, Chan C H. A new temporal basis function for the time-domain integral equation method[J]. Microwave Opt. Tech. Lett., 2001,11(11):465~466.
    [21] Davies P J. A stability analysis of a time marching scheme for the general surface eletric field integral equation[J]. Applied Numerical Mathematics, 1998,27: 33~57.
    [22] Sadigh A, Arvas E. Treating instabilities in marching-on-in-time method from a different perspective [J]. IEEE Trans. Antennas and Propagation, 1993, 41(12): 1695~ 1702.
    [23] Davies P J. A stability analysis of a time marching scheme for the general surface electric field integral equation[J]. Appl.Numer.Math.,1998,27(1):35~57.
    [24] Vechinski D A, Rao S M. A stable procedure to calculate the transient scattering by conducting surfaces of arbitrary shape[J]. IEEE Trans. Antennas and Propagation, 1992,40(6):661~665.
    [25] Rynne B P, Smith P D. Stability of time marching algorithoms for the electric field integral equations[J]. Electromagn.Waves Applicat.,1990,12(4):1181~1205.
    [26] Dodson S J, Walker S P, Bluck M J. Implicitness and stability of time domain integral equation scattering analysis [J]. Applied Computational Electromagnetics Society Journal,1998,13:291~301.
    [27] Rao S M, Sarkar T K. Transient analysis of electromagnetic scattering from wire structures utilizing an implicit time-domain integral equation technique[J]. Microw.Opt. Technol.Lett.,1998,17(1):66~69.
    [28] Shanker B, Erigin A A, Aygun K. Analysis of transient electromagnetic scattering from closed surfaces using a combined field integral equation[J]. IEEE Trans. Antennas and Propagation, 2000,48(7):1064~1074.
    [29] Taylor D J. Accurate and efficient numerical integration of weakly singular integrals in Galerkin EFIE solutions[J]. IEEE Trans. Antennas Propag., 2003,51(7):1630~1637.
    [30] Zhou H X, Hong W, Hua G. An accurate approach for the calcaulation of MoM matrix elements[J]. IEEE Trans. Antennas Propag., 2006,54(4):1185~1191.
    [31] Abdulkadir C Y, Ergin A A. Exact evalution of retarded-time potential integrals for the RWG bases[J]. IEEE Trans. Antennas Propag., 2006,54(5):1496~1502.
    [32]赵延文,聂在平,徐建华,武胜波.精确稳定求解时域电场积分方程的一种新方法[J].电子学报,2006,34(6):1104~1108.
    [33] Jung B H,Chung Y S, Sarkar T K. Time-domain efie, mfie, and cfie formulations using laguerre polynomials as temporal basis functions for theanalysis of transient scattering from arbitrary shaped conducting structures [J]. Prog. Electromagn. Res., 2003, 39:1~45.
    [34] Hu J L, Chan C H, Xu Y. A new temporal basis function for the time-domain integral equation method [J]. IEEE Microwave Wireless Comp. Lett., 2001,11:465~466.
    [35] Hu J L, Chan C H. An improved temporal basis function for the time domain electric field integral equation method [J]. Electron. Lett., 1999,35:883~885.
    [36] Vecchi G. Loop-star decomposition of basis functions in the discretization of the EFIE[J]. IEEE Antennas Propag., 1999,47(2):339~346.
    [37] Zhao J S, Chew W C. Integral equation solution of maxwell’s equation from zero frequency to microwave frequency[J]. IEEE Antennas Propag., 2000, 48(10): 1635~1645.
    [38] Pisharody G, Weile D S. Robust solution of time-domain integral equations using loop-tree decomposition and bandlimited extrapolation[J]. IEEE Trans. Antennas Propagat., 2005,53(6):2089~2098.
    [39] Vechinski D A, Rao S M. Transient Scattering from Dielectric Cylinders: E-Field, H-Field, and Combined Field Solutions [J]. Radio Science, 1992,27(5):611~622.
    [40] Vechinski D A, Rao S M. Transient Scattering from Two-Dimensional Dielectric Cylinders of Arbitrary Shape [J]. IEEE Transactions on Antennas and Propagation, 1992, 40(9):1054~1060.
    [41]Vechinski D A, Rao S M, Sarker T K.Transient Scattering from Three-Dimensional Arbitrarily Shaped Dielectric Bodies [J]. Journal of the Optical Society of America A, 1994(11):1458~1470.
    [42] Jung B H, Sarkar T K, Chung Y-S. A Survey of Various Frequency Domain Integral Equations for the Analysis of Scattering from Three-Dimensional Dielectric Objects[J]. Progress In Electromagnetic Research, 2002,36:193~246.
    [43] Shanker B, Aygun K, Michielssen E. Fast Analysis of Transient Scattering from Lossy Inhomogeneous Dielectric Bodies [J]. Radio Science,2004,39 (2).
    [44] Shin J, Glisson A W, Kishk A A. Analysis of Combined Conducting and Dielectric Structures of Arbitrary Shapes Using an E-PMCHW Integral Equation Formulation [M]. University of Mississippi, 2000.
    [45] Yang C Y, Jandhyal V. A Time Domain Surface Integral Technique for Mixed Electromagnetic and Circuit Simulation [A]. In: IEEE [C],2002,41~44.
    [46] Jung B H, Sarkar T K. Analysis of Scattering from Arbitrarily Shaped 3-D Conducting Dielectric Composite Objects Using a Combined Field Integral Equation [J].Journal of Electromagnetic Wave and Applications, 2004,18(6):729~743.
    [47] Pasi Yl?-Oijala, Taskinen M. Application of Combined Field Integral Equation for Electromagnetic Scattering by Dielectric and Composite Objects [J]. IEEE Transactions on Antennas and Propagation, 2005,53(3):1168~1173.
    [48] Yang C Y, Jandhyala V. Combined Circuit-Electromagnetic Simulation Using Multiregion Time Domain Integral Equation Scheme [J]. IEEE Transactions on Electromagnetic Compatibility, 2006,48(1):2~9.
    [49] Ruehli A E, Antonini G, Esch J, Ekman J, Mayo A, Orlandi A. Nonorthogonal PEEC Formulation for Time- and Frequency-Domain EM and Circuit Modeling [J]. IEEE Trans. Electromagn. Compat., 2003,45(2):167~176.
    [50] Yang C, Jandhyala V. Coupled Circuit-Electromagnetic Simulation with Time Domain Integral Equations [C]. in Proc. IEEE APS Dig., 2003,3:316~319.
    [51] Wang Y, Gope D, Jandhyala V. Generalized Kirchoff's Current and Voltage Law Formulation for Coupled Circuit-Electromagnetic Simulation with Surface Integral Equations [J]. IEEE Transactions on Microwave Theory and Techniques.2004,52(7): 1673~1682.
    [52] Aygun K, Fisher B C, Meng J, Michielssen E. A Fast Hybrid Field-Circuit Simulator for Transient Analysis of Microwave Circuits[J]. IEEE Trans. Microwave Theory Tech., 2004,52(2): 573~583.
    [53] Wang Y, Gope D, Jandhyala V. Generalized Kirchoff’s current and voltage law formulation for coupled circuit-electromagnetic simulation with surface integral equations [J]. IEEE Trans. Microwave Theory Tech., 2004,52(7): 1673~1682.
    [54] Y?lmaz A E, Jin J M, Michielssen E. Time domain adaptive integral method for the combined field integral equation[C]. IEEE Antennas Propagat S. Int. Symp., 2003,3:543~546.
    [55] Y?lmaz A E, Jin J M, Michielssen E. Time domain adaptive integral method for surface integral equations [J]. IEEE Trans. Antennas Propagat., 2004,52(10):2692~2708.
    [56] Y?lmaz A E, Weile D S, J.M.Jin, E.Michielssen. A fast Fourier transform accelerated marching-on-in-time algorithm for electromagnetic analysis [J]. Electromagn., 2001,21:181~197.
    [57] Y?lmaz A E, Weile D S, Jin J M, Michielssen E. A hierarchical FFT algorithm for the fast analysis of transient electromagnetic scattering phenomena[J]. IEEE Trans. Antennas Propagat., 2002,50(7):971~982.
    [58] Y?lmaz A E, Li S Q, Jin J M, Michielssen E. A parallel framework for FFT-accelerated time-marching algorithms[J]. USNC/URSI National Radio Sci. Meet., 2002, p. 319.
    [59] Hu J L, Chan C H, Xu Y. A fast solution of time domain integral equation using fast Fourier transformation[J]. Microwave Opt. Tech. Lett., 2000,25(3):172~175.
    [60] Heyman E. Time-dependent plane-wave spectrum representations for radiation from volume source distributions [J]. J. Math. Phys., 1996,37(2):658~681.
    [61] Devaney A J, Sherman G C. Plane-wave representations for scalar wave fields [J]. SIAM Review, 1973,15(4):764~786
    [62] Shanker B, Ergin A A, Aygun K. Analysis of transient electromagnetic scattering phenomena using a two-level plane wave time-domain algorithm[J]. IEEE Trans. Antennas Propagat., 2000,48:510~523.
    [63] Shanker B, Ergin A A, Lu M Y. Fast analysis of transient electromagnetic scattering phenomena using the multilevel plane wave time domain algorithm [J]. IEEE Trans. Antennas Propagat., 2003,51(3):628~641.
    [64] Ergin A A, Shanker B, Michielssen E. Fast evaluation of three-dimensional transient wave fields using diagonal translation operators[J]. J.Comp.Phys., 1998,146:157~180.
    [65] Ergin A A, Shanker B, Michielssen E. The plane wave time domain algorithm for the fast analysis of transient wave phenomena[J]. IEEE Antennas and Propagation Magazine, 1999,41:39~52.
    [66] Darve E. The fast multipole method: numerical implemention[J]. Journal of Computational Physics, 2000,16:195~240.
    [67] Song J M, Lu C C, Chew W C. Multilevel fast multipole algorithm for electromagnetic scattering by large complex objects[J]. IEEE Trans. Antennas and Propagation, 1997,45(10):1488~1493.
    [68] Ergin A A. Plane Wave Time Domain algorithms for efficient analysis of three-dimensional transient wave phenomena [D], USA,UIUC,2000.
    [69] Kobidze G, Gao J, Shanker B, Michielssen E. A fast time domain integral equation based scheme for analyzing scattering from dispersive objects[J]. IEEE Trans. Antennas Propag., 2005,53(3):1215~1226.
    [70] Aygün K, Shanker B, Ergin A A. A two-level plane wave time-domain algorithm for fast analysis of EMC/EMI problems[J]. IEEE Trans. Electromagn. Compat., 2002,44 (1):152~164.
    [71] Aygun K, Fischer B C, Meng J, Shanker B, Michielssen E. A fast hybrid field-circuit simulator for transient analysis of microwave circuits[J]. IEEE Transactions on Microwave Theory and Techniques, 2004,52:573~583.
    [72]Yilmaz A E, Jin H M, Michielssen E. A TDIE-based asynchronous electromagnetic circuit simulator[J]. IEEE Microwave and Wireless Components Letters, 2006,16:122~124.
    [73] Shanker B, Ergin A A, Michielssen E. Plane wave time domain acceleration of exact radiation boundary conditions in FDTD analysis of electromagnetic phenomena[M]. Toronto, Canada, 1999.
    [74] Shanker B, Lu M Y, Ergin A A, Michielssen E. Plane-wave time domainaccelerated radiation boundary kernels for FDTD analysis of 3-D electromagnetic phenomena[J], IEEE Trans. Antennas and Propagation, 2005,53(11):3704~3716.
    [75] Jiao D, Ergin A A, Shanker B. A fast time-domain finite element-boundary integral method for three-dimensional electromagnetic scattering analysis[M]. Urbana: University of Illinois, 2000.
    [76] Liu N, Lu M, Shanker B. The parallel plane wave time domain algorithm accelerated marching on in time solvers for large-scale electromagnetic scattering problems [M], 2004.
    [77] Jakobus U, Meyer F J C. A hybrid physical optics/method of moments numerical technique: theory, investigation and application[J]. IEEE Trans.Antennas and Propagation, 1996, 282~287.
    [78] Ulrich J, Friedrich M. Improved PO/MM hybrid formulation for scattering from three-dimensional perfectly conducting bodies of arbitrary shape[J]. IEEE Trans.Antennas and Propagation, 1995,43(2):162~169.
    [79] Ulrich J, Friedrich M. Improvement of the PO-MM hybrid method by accounting for effects of perfectly conducting wedges[J]. IEEE Trans.Antennas and Propagation, 1995,43(10):1123~1129.
    [80] Miroslav D, Branislav M. Higher order hybrid method of moments-physical optics modeling technique for radiation and scattering from large perfectly conduncting surfaces[J]. IEEE Trans. Antennas and Propagation, 2005,53(2):800~813.
    [81] Richard E H, Yahya R S. Theory of physical optics hybrid method [C]. IEEE Antennas and Prop,Soc, 1994:1374~1377.
    [82] Walker S P, Markku J V. Hybridization of curvilinear time-domain integral equation and time-domain optical methods for electromagnetic scattering analysis[J]. IEEE Trans.Antennas and Propagation, 1998,46(3):318~324.
    [83] Kobidze G, Shanker B, Michielssen E. Hybrid PO-PWTD scheme for analyzing of scattering from electrically large PEC objects[C], IEEE Antennas and Propagation Society International Symposium, 2003,3:547~550.
    [84]张玉, FDTD与矩量法的关键技术及电磁场并行计算[D],西安:西安电子科技大学出版社,2004.
    [85]马兴义,基于积分方程的目标电磁散射特性数值求解方法研究[D],长沙:国防科技大学,2008.
    [86]潘小敏,计算电磁学中的并行技术及其应用[D],中国科学院电子学研究所,2006.
    [87]周东明,时域积分方程快速算法及其应用研究[D],长沙:国防科技大学,2006.
    [88] Rao S M. Time domain electromagnetics[M]. Academic press. 1999.
    [89] Rao S M, Sarkar T K. Transient analysis of electromagnetic scattering fromwire structures utilizing an implicit time-domain integral equation technique[J]. Microw.Opt. Technol. Lett.,1998,17(1):66~69.
    [90] Aygün K, Fisher S E, Ergin A A. Transient analysis of multielement wire antennas mounted on arbitrarily shaped perfectly conducting bodies [J]. Radio Science, 1999,34:781~796.
    [91] Balanis C A. Antenna Theory, Analysis and Design, 2nd Edition[M]. New York: John Wiley &Sons, 1997.
    [92] Costa M F. Electromagnetic radiation and scattering from a system of conducting bodies interconnected by wires [D].Syracuse University, 1983.
    [93] Makarov S N. Antenna and EM Modeling with MATLAB[M]. New York: John Wiley & Sons, 2002.
    [94]董健,柴舜连,毛钧杰.任意形状线、面、体组成导体目标的电磁建模[J].电子学报, 2005.38(9):1657~1659.
    [95] Khayat M A, Wilton D R. Numerical evaluation of singular and nearsingular potential integrals[J]. IEEE Trans.Antennas and Propagation, 2005,53(10):3180~3190.
    [96] Bluck M J, Pocock M D, Walker S P. An accurate method for the calculation of singular integrals arising in time-domain integral equation analysis of electromagnetic scattering[J]. IEEE Trans.Antennas and Propagation, 1997,45(12):1793~1797.
    [97] Duffy M G. Quadrature over a pyramid or cube of integrands with a singularity at a vertex[J]. SIAM J.Numer.Analysis, 1982,19(6):1260~1262.
    [98]任猛,时域边界积分方程及其快速算法的研究与应用[D],长沙:国防科技大学, 2008.
    [99] Saad Y. Iterative methods for sparse linear systems[M]. Boston, MA: PWS-Kent, 1996.
    [100] Alleon G. Sparse preconditioners for dense linear systems from electromagnetic applications[D]. Institute National Polytechnique de Toulouse, 2002.
    [101] http://math.nist.gov/iml++/
    [102] http://math.nist.gov/sparselib++/
    [103] http://www.osl.iu.edu/research/itl
    [104] http://osl.iu.edu/research/mtl/
    [105]董健,边界积分方程及快速算法在分析复杂电磁问题中的研究与应用[D],长沙:国防科技大学,2006.
    [106] Hu J L. A new temporal basis function for the time-domain integral equation method[J].IEEE Microwave and wireless components letters,2001,11(11).
    [107]赵延文等,时域电场积分方程的稳定求解[J].电波科学学报, 2004,19(2):148~152.
    [108] Rynne B P.Stability of time marching algorithms for the electric fieldintegral equation[J].Electromagnetic Waves Appl.,1990,4(12).
    [109] Rynne B P. Instabilities in time marching methods for scattering problems[J]. Electromagnetic Waves Appl.,1986,6.
    [110] Manara G. A space-time discretization criterion for a stable time-marching solution of the electric field integral equation[J]. IEEE Trans. Antennas Propagat., 1997,45(3).
    [111]数学手册编写组.数学手册[M].北京:高等教育出版社,1990.
    [112] Wilton D R. Review of current status and trends in the use of integral equations in computational electromagnetics[J].Electromagn.,1992,12:287~341
    [113] Chew W C,Jin J M, Lu C C, Michielssen E. Fast solution methods in electromagntic[J]. IEEE Trans. Antennas Propagat., 1997,45:533~543.
    [114] Song J M, Chew W C. Multilevel fast-multipole algorithm for solving combined field integral equations of electromagnetic scattering[J]. Microwave Opt. Tech. Lett., 1995,10(1):14~19.
    [115] Bleszynski E, Bleszynski M, Jaroszewicz T. AIM: adaptive integarl method for solving large-scale electromagnetic scattering and radiation problem[J]. Radio Sci., 1996,31(5):1225~1251.
    [116] Phillips J R, White J K. A precorrected-FFT method for electrostatic analysis of complicated 3-D structrues[J]. IEEE Trans. Computer-Aided Design of Integrated Circuits and Systems, 1997,16(10):1059~1072.
    [117] Nie X C,Li L W, Yuan N. Precorrected-FFT algorithm for solving combined field integral equations in electromagnetic scattering[C]. IEEE Antennas Propagat. S. Int. Symp., 2002,3:574~577.
    [118] Y?lmaz A E, Aygun K, Jin J M, Michielssen E. Matching criteria and the accuracy of time domain adaptive integral method[C]. IEEE Antennas Propagat. S. Int. Symp., 2002,2:166~169.
    [119] Yilmaz A E,Weile D S, Shanker B, Jin J M, Michielssen E. Fast analysis of transient scattering in lossy media[J]. IEEE Antennas Wireless Propagat. Lett., 2002,1(1):14~17.
    [120] Bagci H, Yilmaz A E, Lomakin V, Michielssen E. Fast and accurate solution of time domain electric field integral equation for dielectric half-space[C]. IEEE Antennas Propagat. S. Int. Symp., 2003,3:583~586.
    [121] Yilmaz A E, Jin J M, Michielssen E. Incorporation of frequency dependent multiport macromodels into a fast time-domain integral equation solver[C]. IEEE Antennas Propagat. S. Int. Symp., 2005.
    [122] Ling F, Wang C F, Jin J M. An efficient algorithm for analyzing large-scale microstrip structures using adaptive integral method combined with discrete complex image method[J]. IEEE Trans. Microwave Theory Tech.[J]. 2000, 48(5):832~ 839.
    [123] Ewe W B, Li L W, Wu Q, Leong M S. AIM solution to electromagnetic scattering using parametric geometry[J]. IEEE Antennas and Wireless Propagation Letter, 2005,4:107~111.
    [124] Davis P J. Circulant Matrices[M]. 2nd ed. New York: Chelsea, 1994
    [125]陈忠宽,预修正快速傅立叶变换方法在电磁散射分析中的研究及应用[D],长沙:国防科技大学, 2009.
    [126]周后型,大型电磁问题快速算法的研究[D],南京:东南大学, 2002.
    [127]徐敬波,薄亚明. MEI系数循环卷积的快速解法[J],电波科学学报, 2004,19(1):40~44.
    [128]胡广书.数字信号处理-理论、算法与实现[M],清华大学出版社,北京, 1999.
    [129] Huestis S. Interpolation formulas for oversampled band-limited functions[J]. SIAM Review, 1992,34(3):477~481.
    [130] Knab J J. Interpolation of band-limited functions using the approximate prolate series[J]. IEEE Trans. Information Theory, 1979,25(6):717~720.
    [131]胡俊,复杂目标矢量电磁散射的高效方法-快速多极子方法及其应用[D],成都:电子科技大学,2000.
    [132]陆卫兵,复杂电磁问题的快速算法研究和软件实现[D],南京:东南大学,2005.
    [133]丁大志,复杂电磁问题的快速分析和软件实现[D],南京:南京理工大学,2006.
    [134] Jakob R C, Alpert B K. A fast spherical filter with uniform resolution[J]. J. Computat. Phys., 1997,13:580~584.
    [135]翟会清,复杂电磁系统中的混合及快速算法研究及其应用[D].西安:西安电子科技大学,2004.
    [136]汪茂光,几何绕射理论[M].西安:西安电子科技大学出版社, 1994.
    [137] Robert G K, Prabhakar H P. A uniform geometrical theory of diffraction for an edge in a perfectly conducting surface[J].Proceeding of the IEEE, 1974,62(11):1448 ~1461.
    [138] Tom Barnaby. .NET分布式编程[M].北京:清华大学出版社, 2004.
    [139] Matthew MacDonald. .NET分布式应用程序[M].北京:清华大学出版社, 2005.
    [140] Walker S P. Developments in time domain integral equation modeling at imperial college[J]. IEEE Trans Antennas and Propagation Magazine, 1997,39(1):7~19.
    [141] Walker S P, Leung C Y. Parallel computation of integral equation method for three dimensional transient wave propagation[J]. Commun. Numer. Methods Eng., 1995,11:515~524.
    [142] Walker S P, Leung C Y. Parallel computation of time domain integral equation analysis of electromagnetic scattering and rcs[J]. IEEE Trans. Antennas and Propagation, 1997,45:614~619.
    [143] Dodson S J, Walker S P, Bluck M J. Parallelisation issues for high speed time domain integral equation analysis[J]. Parallel Computing, 1999,25:925~942.
    [144] Yilmaz A E, Jin J M, Michielssen E. A parallel FFT accelerated transient field ciruit simulator[J]. IEEE Trans. Microwave Theory Tech., 2005,53(9):2851~2865.
    [145] Aygün K, Lu M, Liu N, Yilmaz A E, Michielssen E. A parallel PWTD accelerated time marching scheme for analysis of EMC/EMI problems. 2003:863~866
    [146] Liu N, Lu M, Shanker B, Michielssen E. The parallel plane wave time domain algorithm accelerated marching on in time solvers for large scale electromagnetic scattering problems[J]. 2004:4212~4215.
    [147]林昌禄,天线工程手册[M],北京:电子工业出版社, 2002.
    [148] Sarkar T K, Koh J. Generation of Wideband Electromagnetic Response through a Laguerre Expansion Using Early Time and Low Frequency Data [A]. In: IEEE MTT-S Digest [C]: 2002. 1989~1992.
    [149] Sarkar T K, Koh J. Generation of a Wide-Band Electromagnetic Response through a Laguerre Expansion Using Early-Time and Low-Frequency Data [J]. IEEE Transactions on Microwave Theory and Techniques, 2002, 50 (5): 1408~1416.
    [150] Chung Y-S, Sarkar T K, Llorento-Romano S. Finite Element Time Domain Method Using Laguerre Polynomials[A]. In: IEEE MTT-S Digest [C]: 2003. 981~984.
    [151] Jung B H, Chung Y-S, Sarkar T K. Time-Domain EFIE, MFIE, and CFIE Formulations Using Laguerre Polynomials as Temporal Basis Functions for the Analysis of Transient Scattering from Arbitrary Shaped Conducting Structures [J]. Progress In Electromagnetics Research, 2003,39:1~45.
    [152] Jung B H, Chung Y-S, Yuan M. Analysis of Transient Scattering from Conductors Using Laguerre Polynomials as Temporal Basis Functions [J]. Applied Computational Electromagnetics Society Journal, 2004,19(2):84~92.
    [153] Chung Y-S, Sarkar T K, Jung B H, et al. Solution of Time Domain Electric Field Integral Equation Using the Laguerre Polynomials [J]. IEEE Transactions on Antennas and Propagation, 2004,52 (9):2319~2328.
    [154] Ji Z, Sarkar T K, Jung B H. A Stable Solution of Time Domain Electric Field Integral Equation for Thin Wire Antennas Using the Laguerre Polynomials[J]. IEEE Transactions on Antennas and Propagation, 2004,52 (10):2641~2649.
    [155] Yuan M, Sarkar T K, Jung B H, et al. Use of Discrete Laguerre Sequences to Extrapolate Wide-Band Response from Early-Time and Low-Frequency Data [J]. IEEE Transactions on Microwave Theory and Techniques, 2004,52(7):1740~1750.
    [156] Restle P J, Ruehli A E, Walker S G, Papadopoulos G. Full-Wave PEECTime-Domain Method for The Modeling of on-Chip Interconnects [J]. IEEE Trans. Computer-Aided Design Integr. Circuits Syst., 2001,20(7):877~886.
    [157] Cai W, Yu T J, Wang H. High-Order Mixed RWG Basis Functions for Electromagnetic Applications [J]. IEEE Transactions on Antennas and Propagation, 2001, 49(7):1295~1303.
    [158] Peterson A F, Kempel L C. Solution of the MFIE Using Curl-Conforming Basis Functions [J]. IEEE, 2002:70~73.
    [159] Ergul O, Gurel L. Improving the Accuracy of the MFIE with the Choice of Basis Functions[A]. In: IEEE [C]: 2004. 3389~3392.
    [160] Jung B H, Sarkar T K. Transient Scattering from Three-Dimensional Conducting Bodied by Using Magnetic Field Integral Field Integral Equation [J]. Journal of Electromagnetic Waves and Application, 2002,16 (1):111~128.
    [161] Ergul O, Gurel L. Investigation of the Inaccuracy of the MFIE Discretized with the RWG Basis Functions[A]. In: IEEE [C]: 2004,3393~3396.
    [162] Hodges R E, Rahmat-Samii Y. The Evaluation of MFIE Integrals with the Use of Vector Triangle Basis Functions[J]. Microwave and Optical Technology Letters, 1997,14 (1): 9~14.
    [163] Cai W, Yu Y, Yuan X C. Singularity Treatment and High-Order RWG Basis Functions for Integral Equations of Electromagnetic Scattering [J]. International Journal for Numerical Methods in Engineering, 2002,53:31~47.
    [164] Yl?-Oijala P, Taskinen M. Calculation of CFIE Impedance Matrix Elements with RWG and n×RWG Functions [J]. IEEE Transactions on Antennas and Propagation, 2003,51:1183~1846.
    [165] Davies P J. Numerical Stability and Convergence of Approximations of Retarded Potential Integeral Equations [J]. SIAM J. Numer. Anal., 1994,31:856~875.
    [166] Davies P J. A Stability Analysis of a Time Marching Scheme for the General Surface Eletric Field Integral Equation [J]. Applied Numerical Mathematics, 1998,27: 33~57.
    [167] Rynne B P, Smith P D. Stability of Time Marching Algorithms for the Electric Field Integral Equation[J]. J. Electromagn. Waves Appl., 1990, 4:1181~1205.
    [168] Rynne B P. Time Domain Scattering from Arbitray Surfaces Using the Electric Field Integral Equation [J]. J. of Electromagn. Waves and Appl, 1991,5: 93~ 112.
    [169] Sadigh A, Arvas E. Treating the Instabilities in Marching-on-in-Time Method from a Different Perspective [J].IEEE Trans. Antennas Propagat., 1993,41(12): 1695~1702.
    [170] Vechinski D A, Rao S M. A Stable Procedure to Calculate the Transient Scattering by Conducting Surfaces of Arbitrary Shape[J]. IEEE Trans. Antennas Propagat., 1992, 40(6):661~665.
    [171] Woo A C, H. Wang T G, Schuh M J, Sanders M L. Benchmark Radar Targets for the Validation of Computational Electromagnetics Programs[J]. IEEE Antennas and Propagation Magazine, 1993,35(1):84~89.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700