基于新型菱形放大机构的微位移工作台结构研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,随着科学技术的迅猛发展,人们的研究从宏观领域扩展到微观领域,尤其是在光学、生物工程和微电子技术等学科,被操作对象正不断地向微小化发展,因而对精密机械和仪器的小型化与精度要求越来越高,对高精度微位移操作系统的研制提出了迫切的要求。微位移技术在尖端工业生产和科学研究领域内占有极其重要的地位,受到了国内外的广泛重视和深入研究。现有微位移工作台均具有较高的工作精度,但它们的工作行程较小,应用受到一定限制。本文提出并设计了一种新型微位移工作台,以菱形放大机构对驱动元件的输出位移进行放大,增大微位移工作台的工作行程,使其应用范围更加广泛。
     本文所作的主要工作如下:
     (1)本文采用MTp型压电陶瓷驱动器作为驱动装置,并对其迟滞、非线性等特性进行了研究,根据实验数据计算出空载下其迟滞和非线性误差。同时,对传动机构采用的柔性铰链进行理论分析,得出其转动刚度计算公式,并应用有限元方法对公式计算进行验证。
     (2)因压电陶瓷驱动器输出位移较小,为了获得较大的输出位移,本文通过对比选型,提出了一种理论上放大12倍的菱形放大机构,并采用有限元静力学分析方法对其结构各参数进行优化。之后,对确定参数后的菱形放大机构运用有限元方法进行最大应力和模态分析,对其可行性和安全性做了进一步验证。
     (3)根据所采用的驱动装置、菱形放大机构以及导向机构等,最终确定了微位移工作台的总体结构,设计出一种基于新型菱形放大机构的微位移工作台。利用材料力学理论,获得工作台的危险截面处最大应力、刚度和固有频率等重要参数的计算公式,并通过已知的选用参数求值。然后采用有限元方法进行验证,确保工作台设计的合理性。
     (4)本文试制了微位移工作台系统并进行实验,将实验结果与理论计算结果进行比较,实验所获得的微位移工作台实际输出位移的放大倍数约为5.85倍,与设计的菱形放大机构理论值12倍有一定差距。最后对误差原因进行分析,并提出相应的改进方法来提高工作台的性能。
With the dramatic development of scientific technology in recent years, the research area of human being is expanded from macroscopic field to microcosmic field. Particularly in photology, bioengineering and microelectronic technology, the operation objects are becoming smaller and smaller, therefore requirements on miniaturization and precision of instruments are getting higher and higher, which leads urgent research on micromanipulation system with high positioning accuracy. Since the micro-displacement worktable plays an important role in modern advanced industrial production and scientific research area, it is attracting increasing interest and intensive study all over the world. Although the existing micro-displacement worktables can provide high precision, their travel ranges are small and application areas are limited. In order to overcome these disadvantages, a novel micro-displacement worktable is proposed in this paper, which utilizes the rhombic amplification mechanism to amplify the output displacement of the driving element.
     The main achievements in this thesis include the following aspects:
     (1) The MTp piezoelectric ceramic is adopted as the driving element in this paper. Its hysteresis and nonlinear characteristics are studied, and its hysteresis and nonlinear errors are calculated as well according to the experimental data. Meanwhile, the flexure hinge, which serves as the transmission structure, is analyzed theoretically to deduce the calculation formula of rotational stiffness. Afterwards, the finite element method is used to prove the correctness of this formula.
     (2) Since piezoelectric ceramic can only output small displacement, a rhombic amplification mechanism is proposed to enlarge the displacement. Its amplification factor is 12 in theory, and its parameters are optimized by static analysis of finite element method. With the selected parameters and finite element method, the maximum stress analysis and model analysis of this optimized rhombic amplification mechanism are carried out to verify its feasibility and security.
     (3) On the basis of driving element, rhombic amplification mechanism and guide mechanism, the general structure of the micro-displacement worktable is determined, and a micro-displacement worktable based on a novel rhombic amplification mechanism is designed. By utilizing theory of mechanics of materials, the formulas of maximum stress, stiffness and natural frequency of the dangerous section are obtained, and these values are calculated with selected parameters. The finite element method is employed to confirm the design rationality of this mechanism.
     (4) The micro-displacement worktable is trial-produced and the relevant experimental test is carried out, which indicates that the actual amplification factor of this rhombic amplification mechanism is 5.85, lower than theoretical value of 12. In the end, the causes of error are analyzed, and corresponding approaches to improve the performances of micro-displacement worktable are put forward.
引文
[1]Deyuan Zhang, Chienliu Chang, Takahito Ono, et al. A piezodriven XY-microstage for multiprobe nanorecording[J]. Sensors and Actuators A:Physical,2003,108(1-3): 230-233.
    [2]Renyi Yang, Musa Jouaneh, Rudolph Schweizer. Design and characterization of a low-profile micropositioning stage [J]. Precision Engineering,1996,18(1):20-29.
    [3]荣烈润.微位移机构综述[J].机电一体化,2005,(2):6-11.
    [4]谢卫东.精密微位移工作台系统综述.自动化与仪器仪表,1991,1:8-9.
    [5]陶惠峰.超精密微位移系统研究[D].杭州:浙江大学,2003.
    [6]王永.大负荷压电微位移技术及其在标准力源上的应用研究[D].吉林:吉林大学,2007.
    [7]程常运.一种摩擦轮驱动微位移工作平台的研究[D].上海:东华大学,2006.
    [8]邓俊广.基于压电陶瓷驱动器的精密定位平台控制系统研究[D].汕头:汕头大学,2006.
    [9]丁文明.压电陶瓷执行器的驱动技术研究[D].重庆:重庆大学,2007.
    [10]张斌.压电双晶片型微位移放大机构研究[D].焦作:河南理工大学,2010.
    [11]谢祖强.微位移机电系统机械结构的设计与分析计算[D].合肥:合肥工业大学,2007.
    [12]熊本炎.高精度微定位器结构与控制研究.西安:西北工业大学,2005.
    [13]刘宏忠,丁玉成,李涤尘,等.多维微驱动器纳米定位系统的研究[J].信息与控制,2002,31(5):446-450.
    [14]Yi-Cheng Hsu, Ying-Chien Tsai, Yeh-Lin Ho, et al. A novel fiber alignment shift measurement and correction technique in laser-welded laser module packaging [J]. Journal of Lightwave Technology,2005,23(2):486-494.
    [15]刘天军,侯丽雅,章维一.细胞操作用锻针器的设计[J].机械设计,2004,21(4):14-15.
    [16]马建旭,王立鼎,吴一辉.微电子机械系统在生物医学领域中的应用[J].光学精密工程,1996,4(1):1-6.
    [17]纪华伟.压电陶瓷驱动的微位移工作台建模与控制技术研究[D].杭州:浙江大学,2006.
    [18]桑武斌.二维超精工件台及其控制系统的研究[D].杭州:浙江大学,2008.
    [19]付春楠.基于压电驱动的摩擦式微位移工作台的研究[D].大连:大连理工大学,2010.
    [20]杨宜民.新驱动及其应用[M].北京:机械工业出版社,1997.
    [21]杨兴.磁场与位移感知型超磁致伸缩微位移执行器及其相关技术研究[D].大连:大连理工大学,2001.
    [22]魏强.纳米定位微位移工作台的控制技术研究[D].济南:山东大学,2006.
    [23]周晓峰.基于PZT微定位系统控制研究[D].杭州:浙江大学,2004.
    [24]黄金永.空间用精密微位移平台的研究[D].杭州:浙江大学,2010.
    [25]曾彬.摩擦驱动微位移试验平台的设计和研究[D].上海:东华大学,2007.
    [26]刘登云,杨志刚,程光明,等.微位移机构的现状及趋势[J].机械设计与制造,2007,(1):156-158
    [27]李圣怡,黄长征,王贵林.微位移机构研究[J].航空精密制造技术,2000,36(4):5-9.
    [28]曲炳郡,李路明,张玉玲,等.形状记忆合金薄膜微驱动器过程准可控研究[J].大连理工大学学报,2001,41(1):64-66.
    [29]雷勇,陈本永,杨元兆,等.纳米级微动工作台的研究现状及发展趋势[J].浙江理工大学学报,2006,23(1):72-75.
    [30]Fu J., Young R. D., Vorburger T. V. Long-range scanning for scanning tunneling microscopy[J]. Review of Scientific Instruments,1992,63(4):2200-2205.
    [31]Shinno, Hidenori, Hashizume. Nanometer positioning of a linear motor-driven ultraprecision aerostatic table system with electrorheological fluid dampers [J]. CIRP Annals-Manufacutring Technology,1999,48(1):289-292.
    [32]C. L. Chao, J. Neou. Model reference adaptive control of air-lubricated capstan drive for precision positioning [J]. Precision Engineering,2000,24(4):285-290.
    [33]Kim Dongmin, Kang Dongwoo, Shim Jongyeop, et al. Optimal design of a flexure hinge-based XYZ atomic force microscopy scanner for minimizing Abbe errors[J]. Review of Scientific Instruments,2005,76(7):073706.
    [34]马立,荣伟彬,孙立宁.三维纳米级微动工作台的设计与分析[J].光学精密工程,2006,14(6):1017-1024.
    [35]Wang Jian, M. Oren. On the accuracy of a Stewart platform-Part Ⅰ:The effect of manufacturing tolerances[C]. International Conference on Robotics and Automation, Atlanta, GA, USA,1993.
    [36]Masory O., Wang J., Zhuang H. On the accuracy of a Stewart platform. Ⅱ. Kinematic calibration and compensation[C]. International Conference on Robotics and Automation, Atlanta, GA, USA,1993.
    [37]Peng Gao, Shan-Min Swei. Six-degree-of-freedom micro-manipulator based on piezoelectric translators[J]. Nanotechnology,1999,10(4):447-452.
    [38]清华大学.一种6自由度微动工作台:中国,200710118130.5[P].2007,06,19.
    [39]张福学.现代压电学(上册)[M].北京:科学出版社,2001.
    [40]郝虎在,田玉明,黄平编.电子陶瓷材料物理[M].北京:中国铁道出版社,2002.
    [41]郭俊臣.位移放大型压电叠堆泵的试验研究[D].长春:吉林大学,2006.
    [42]曲远方.功能陶瓷及应用[M].化学工业出版社,2003.
    [43]李远,秦自楷,周志刚.压电材料与铁电材料的测量[M].北京:科学出版社,1984
    [44]魏双会.压电陶瓷发电特性及其应用研究[D].大连:大连理工大学,2005.
    [45]Tokin Corporation. Multilayer Piezoelectric Actuator. Japan:2001
    [46]张福学,王丽坤.现代压电学[M].北京:科学出版社.2001.
    [47]崔玉国,孙宝元,董维杰,等.压电陶瓷执行器迟滞与非线性成因分析[J].光学精密工程,2003,11(3):270-275.
    [48]程光明,沈传亮,杨志刚.压电驱动型电液伺服阀前置级驱动器实验研究[J].西安交通大学学报,2004,1:43-46.
    [49]Paros J M, Weisboro L. How to design flexure hinges[J]. Machine Design,1965(27): 151-157.
    [50]吴鹰飞,周兆英.柔性铰链的设计计算[J].工程力学,2000(2):5-8.
    [51]张建雄,孙宝元.基于柔性铰链结构的二维微动工作台的设计分析[J].压电与声光,2006,5(28):624-626.
    [52]W. A. Nash著,赵志岗译.材料力学[M].北京:科学出版社,2002.
    [53](德)H. Murrenhoff,吴根茂译.液压控制技术发展趋势[J].工程设计,1997,3:20-29.
    [54]Jason E. Lindler, Eric H. Anderson. Piezoelectric Direct Drive Servovalve[C]. Industrial and Commercial Applications of Smart Structures Technologies,2002.
    [55]成大先.机械设计手册:第五卷(第5版)[M].北京:化学工艺出版社,2008.
    [56]吴立军,高舢,程亮Pro/E Wildfire 4.0三维造型技术教程[M].北京:清华大学出版社,2010.
    [57]王金龙,王清明,王伟章ANSYS 12.0有限元分析与范例解析[M].北京:机械工业出版社,2010.
    [58]傅志方.振动模态分析与参数辨识[M].北京:机械工业出版社,1990.
    [59]J. M. PAROS and L. WEISBORD. How to design flexure hinges[J]. Machine Design, 1965, (12):151-156.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700