声震法提高煤层气抽采率的机理及技术原理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
煤层气主要以吸附态赋存煤体中,其产出是一个复杂的解吸-扩散-渗流过程,为了高效的开发煤层气资源,人们采用了造穴,水力压裂,注气、松动爆破等激励技术开发煤层气,使之提高煤层气的抽采率。由于我国煤田地质条件复杂,煤层的透气性低,造成煤层气的抽采率低,总抽采量少,至今还没有形成商业性开发和利用。鉴于我国煤储层低渗透的特点,本文提出采用物理激励中超声波技术来促进煤层气的解吸、扩散和渗流,期望找到一条既具有机械碎裂作用又具有升高煤质点温度的声震法新技术。但在声场作用促进煤层气解吸、流动的发生机理方面还需要大量的室内实验研究,本文拟在这方面开展研究工作。研究内容共五章。
     第一章总论,论述了煤层气吸附和渗流特性的国内外研究现状,并拟定了研究的内容和研究方法。
     第二章实验研究了不同变质程度煤的孔隙特征和比表面积,不加声场和加声场条件下甲烷气的吸附、解吸特性,以及超声波促进甲烷气解吸、减少煤层气吸附量的作用机理。
     第三章从分析煤层气在煤层中单一孔隙扩散模型、双重扩散模型、等温吸附率模型入手,借助于双重扩散模型的建模思路,提出了描述煤层气解吸-扩散的简化双重扩散模型,并通过实验和模拟计算数据对比分析,得到实验煤样的大孔隙扩散系数和微孔隙扩散系数;并提出了描述煤层气脱附过程反映煤层气压力、煤层特性等因素的煤层气视扩散系数的概念。声场作用主要是将声场的声能转化为系统的热能,改善系统的热平衡和物质传递入手,推导出了声场作用下,煤层气在煤基质微孔中解吸-扩散的物质平衡方程和热平衡方程;建立了声场作用下,煤层气解吸-扩散的概念模型;并估算了声场作用下,煤层气在煤微孔中解吸-扩散引起的系统温度变化和视扩散系数、游离气动态百分数、吸附气动态百分数等参数的变化特征,以此解释声场促进煤层气在煤微孔中解吸-扩散的机理。
     第四章实验研究了在不加声场和加声场条件下煤样的渗透特性,实验得出:煤的渗透性与应力场、温度场、声场有关,在相同应力场、温度场条件下超声波能增加煤的渗透率。提出了声场作用下,反映煤层气在煤层裂缝割理宏观孔隙系统中煤层气流动的渗流压力场、温度场和应力场,以及物性参数为一体的多场动态流固耦合数学模型。并实现了以煤层瓦斯开采为初始和边界条件的数值解,有效地预测了超声作用,提高煤-气系统的温度,促进煤层瓦斯的解吸和流动,提高煤层的孔隙度,增大煤层瓦斯流动的渗透率,降低煤层骨架的应力;分析了声场的机械振动、热效应及煤体损伤的作用机理。
     第五章在第2~4章实验研究和理论分析基础上,鉴于声波能促进煤层气解吸和提高煤层渗透率,提出了在预抽煤层气中实施声震法技术来提高煤层渗透率的设想。
     第六章总结了本文的主要结论和创新点,并对需要进一步研究的问题提出了建议。
Because coalbed gas is mainly deposited connected pores as adsorbed gas, the producing process is a complicated procedure of desorption/diffusion/permeation. To enhance the efficiency of gas exploitation, a lot of driving technologies are applied, such as holing, fracturing, gas injecting, loosing which are successful in increasing the extraction of methane. However, commercial exploitation and utilization hasn’t by far formed due to the geographically complicated structure of coal field, low permeability of coal bed and low gas extraction which lead to low outputting. In terms of the character of poor permeability in coal bed, a physically driving Ultrasonic technology is brought up in the dissertation to stimulate desorption/diffusion/ permeation of coalbed gas. It is expected to develop a new sound vibrating method to form mechanical disintegration and increase the system temperature in coal particles. Whereas, as to the operating mechanics about sound field’s in stimulating gas desorption/diffusion/ permeation quite a lot expmerimental researches in lab are required. So this dissertation tends to explore a keen research on this. The thorough dissertation consists of six chapters.
     Chapter one presents literature review of the contemporary research at home and abroad on gas adsorption and permeability, and sets down researching contents and technological route.
     Chapter Two studies a variety of problems including pore characters of different metamorphic coals, specific surface area, characters of gas adsorption and desorption with and without Sound field, and operating mechanics about Sound field’s in stimulating gas desorption/diffusion/ permeation.
     Chapter three analyzes three diffusion models, such as unipore diffusion model, bidisperse diffusion model and isotherm and adsorption rate models. With the reference to the reasoning of bidisperse diffusion model, a simplifying bidisperse diffusion model is composed. What’s more, macropore and micropore diffusion coefficients are also got by comparing experimental data with simulating ones. And then, a new idea, apparent diffusion coefficient, was brought up in this dissertation. Using apparent diffusion coefficient represents the factors like gas pressure and characters of coal seam on adsorption/diffusion procedures. And then this chapter demonstrates how Ultrasonic energy is inverted into thermo power which changes heat balance of system and material transfer. Then material balance equation and heat equation of solid-gas system is deduced out under Ultrasonic sound effect. The deduction also sets up a conceptual model on gas desorption /diffusion as adsorbed gas in micropores of coal matrix under Sound field. It also estimates under Sound field operation the characteristic changes in temperature pattern and physical parameters caused during solid-gas desorption/diffusion as adsorbed gas in micropores of coal matrix under Sound field. (i.e. apparent diffusion coefficient, dynamic free gas fraction, and dynamic adsorbed gas fraction).
     Chapter Four, firstly, experiments coal’s permeating characters with and without the operation of Sound field. It is shown in experiments that permeability of coal is closely related to stress, temperature and Sound field: with the same stress and temperature field, ultrasonic will enhance coal permeability. Secondly, a coupling mathematical model including stress, temperature, pressure fields and interrelated physical parameters, such as porosity, bulk modulus, Poisson’s ratio, was deduced with single methane mass, heat and stress balance equations between as free gas in connected cleats and fractures and as adsorbed gas in coal matrix under Sound field. Some obvious outputs with Matlab simulating are presented: enhanced coalbed’s temperature, promoted methane desorption and diffusion, improved methane’s permeability, reduced the value of coalbed’s stress. Thirdly, its operating mechanics lies in ultrasonically mechanical vibrating effect, heating effect and vibrating damage to coal rocks.
     Based on the experimental research and analysis from Chapter Two to Four, referring to the fact that Ultrasonic wave can stimulate gas desorption and permeability, Chapter five tentatively brings about a plan to enhance gas permeability by applying sound vibrated within regionally pre-extracted coal gas.
     Chapter Six sums up the important conclusion and innovation, and then suggests some questions for further research.
引文
[1] 鲜学福. 我国煤层气开发基础研究方面的一些进展与展望[R]. 第七届全国渗流力学会报告,2004:1~20
    [2] 孙茂远. 我国煤层气开发的现状与远景[J]. 煤炭企业管理,2005(4): 1~2
    [3] 胡光龙. 杨思敬. 煤层气开发技术和前景[J]. 煤矿安全,2003(增):64~67
    [4] 杜云贵.地球物理场中煤层瓦斯吸附、渗流特性研究[D].重庆大学博士学位论文,1993
    [5] 徐龙君.突出区煤的超细结构、电性质、吸附特征及其应用的研究[D].重庆大学博士学位论文,1996
    [6] 徐龙君,鲜学福,李晓红.交变电场下白皎煤介电常数的实验研究[J].重庆大学学报,1998,21(3):6~10
    [7] 徐 龙 君 , 鲜 学 福 , 刘 成 伦 . 恒 电 场 作 用 下 煤 吸 附 甲 烷 特 征 的 研 究 [J]. 煤 炭 转化,1999,22(4):68~70
    [8] 王宏图 , 杜云贵 , 鲜学福 . 地电场对煤中瓦斯渗流特性的影响 [J]. 重庆大学学报,2000,23(增):22~24
    [9] 刘保县.延迟突出煤的物理力学特征和煤延迟突出机理研究[D].重庆大学博士学位论文,2000
    [10] 刘保县,鲜学福,徐龙君.地球物理场对煤吸附瓦斯特性的影响[J].重庆大学学报,2000,23(5):78~81
    [11] 易俊,姜永东,鲜学福. 在交变电场声场作用下煤解吸吸附瓦斯特性分析[J].中国矿业,2004,14(5):70~73
    [12] 周世宁,林柏泉.煤层瓦斯赋存与流动理论[M].煤炭工业出版社,1999:5~12
    [13] 中国煤田地质总局.中国煤层气资源[M]. 地质出版社,1998:91~119
    [14] 张建博,王红岩,赵庆波.中国煤层气地质[M].地质出版社,2000: 35~51
    [15] ходот в.в.煤与瓦斯突出[M]. 宋士钊译,中国煤炭出版社,1996: 19~30
    [16] Elliot M.A 煤利用化学[M].徐晓,吴奇虎,鲍汉深等译,化学工业出版社,1961: 142~155
    [17] Walker P.L Densities ,porosities and surface area of coal macerals as measured by their interaction with gases[J].vapours and liquids,Fule1998,67(10): 1615~1623
    [18] Gan H,Nandi S P,Walker P L.Nature of porosity in American coals[J]. Fule1972,51:272~277
    [19] 郝琦.煤的显微孔隙形态特征及其成因探讨[J],煤炭学报,1987(4):51~56
    [20] 张慧. 王晓刚. 煤的显微构造及其储集性能[J]. 煤田地质与勘探,1998(6): 33~35
    [21] 张素新. 肖红艳. 煤储层中微孔隙和微裂隙的扫描电镜研究[J]. 电子显微学报,2000,19(4):531~532
    [22] 徐 龙 君 , 张 代 钧 , 鲜 学 福 . 煤 微 孔 的 分 形 结 构 特 征 及 其 研 究 方 法 [J.] 煤 炭 转化,1995,18(2) :31~37
    [23] 徐龙君,张代钧,鲜学福.煤微孔表面的分形维数及其变化规律的研究[J].燃料化学学报,1996,24(1):81~86
    [24] 辜敏,陈昌国,鲜学福.非均匀多孔介质表面变压过程的分形特征研究[J]. 煤炭转化,2001,24(2):38~39
    [25] 王荣杰,陈义胜, 徐龙君.用气体吸附法研究为的分形维数[J].包头钢铁学院学报,1997,16(3): 188~192
    [26] 王明寿,汤达桢,张沿虎。煤储层孔隙研究现状及其意义[J].2004,1(2):9~11
    [27] 赵爱红,廖毅,唐修义.煤的孔隙结构分形定量研究[J]煤炭学报,1998,23(4):439~442
    [28] 孙波,张兴华. 煤的分形孔隙结构特征的研究[J]. 煤矿安全,1999(1):38~40
    [29] Mandelbrot.B.B.The factals geometry of nature[M].San Francisco,1983
    [30] 黄景城.煤层甲烷开采概述[A].煤层气译文集[C].郑州:河南科技出版社,1990:2~14
    [31] 蔡炳心.基础物理化学[M].北京:科学出版社,2001:510~518
    [32] 陈昌国.煤的物理化学结构和吸附机理的研究[D].重庆大学博士论文,1995
    [33] Moffat D H,Weale K F. Sorption by coal of methane at high pressure[J].Fuel,1955(34):417~428
    [34] Yang R T,Saunders J T. Adsorption of gases on coals and heat-treated coals at elevated temperature and pressure [J]. Fuel,1985(34): 314~327
    [35] Gregg S J,Sing K S. Adsorption surface area and Porosity[M]. London Academic press,1982
    [36] 陈宗淇,王光信,徐桂英.胶体与界面化学[M]. 北京:高等教育出版社,2001: 42~84
    [37] 鲜学福. 间接法预测煤层气含量参数讨论[R].第八届全国渗流力学会报告,2005:1~20
    [38] 郭树才.煤化工工艺学[M].北京:化学工业出版社,1991:385~395
    [39] 张晓东,秦勇,桑树勋.煤储层吸附特征研究现状及展望[J].中国煤田地质,2005,17(2):17~22
    [40] 刘常洪,杨思敬.关于煤甲烷吸附体系吸附规律的研究[J].煤矿安全,1992(4):1~5
    [41] 陈昌国,鲜晓红,张代钧.微孔填充理论研究无烟煤和炭对甲烷的吸附特性[J].重庆大学学报,1998,21(2):75~79
    [42] 艾鲁尼 A T.煤矿瓦斯动力现象的预测和预防[M].唐修义等译,北京.煤炭工业出版社,1992: 62~69
    [43] 重庆大学矿山工程物理研究所.地电场对煤层中瓦斯渗流影响的研究[R].重庆.重庆大学矿山工程物理研究所,1993
    [44] 陈萍,唐修义.低温氮吸附法与煤中微孔隙特征的研究[J].煤炭学报,2001,26(5):552~556
    [45] Stach E.Mackowsky M ~ TH.Teichmuller M et al.Stach’s textbook of coal petrology .Berlin~Stuttgart :Gebruder Borntraeger ,1982
    [46] Ettinger I,Zimjakov B,Yanovskaya.Natural factors influencing coal sorption properties~petrography and the sorption properties of coals[J].Fule 1966,45:243~259
    [47] 吴俊.中国煤成烃基本理论与实践[M].北京:煤炭工业出版社,1994:121~128
    [48] 张 群 , 杨 锡 禄 . 平 衡 水 分 条 件 下 煤 对 甲 烷 的 等 温 吸 附 特 性 研 究 [J]. 煤 炭 学报,1999,24(6)566~570
    [49] Crosdale P J,Beamish B B,Valix M.Coalbed methane sorption reated to coal composition[J] .Int J Coal Geol,1998,35:147~158
    [50] Yee D, Seidle J P, Hanson W B.Gas sorption on coal and measurement of gas content. In: Law B E, Rice D D (eds). Hydrocarbon from Coal. AAPG Studies in Geology, 1993,9:203~218
    [51] Levy J H, Day S J, Killingley J S. Methane capacities of Bowen Basin coals related to coal properties[J]. Fuel, 1997,74:1~7
    [52] Gan H, Nandi S P, Walker P L R. Nature of the porosity in American coals[J]. Fuel, 1972, 5:272~277
    [53] Lamberson M N, Bustin R M. Coalbed methane characteristics of Gate Formation coals, Northeastern British Columbia: effect of maceral composition. AAPG, 1993, 77(12): 2062~2076
    [54] [54] Levine J R, Johnson P W, Beamish B B. High pressure microgravimetry provides a viable alterative to volumetric method in gas sorption studies on coal. Proc 1993 Int CBM Sym, 187~195, Univ Alab Tuscaloosa, Alabama, USA
    [55] Unsworth J F, Fowler C S, Jones L F. Moister in coal: 2 Maceral effect on pore structure. Fuel, 1989,69:18~26
    [56] Crosdale P J, Beamish B B, Valix M. Coalbed methane sorption related to coal composition. Int J Coal Geol, 1998, 35: 147~158
    [57] Cecil C B,Stanton R W,Neuzil S G et al. Palaeoclimate controls on Late Palaeozoic sedimentation and peat formation in Central Appalachian Basins(USA). Int J Goal Geol,1985,5:195~230
    [58] Stach E, Mackowsky M~TH,Teichmuller M et al.Stach’s texbook of coal petrology. Berlin~Stuttgart :Gebruder Borntraeger,1982
    [59] Meissner F F, Cretaceius and lower Tertiary coals as sources for gas accumulations in the Rocky Mountain area. In: Woodwork J, Meissner F F, Clayton J L, Source of the RockyMountain Region ,1984 Guidebook,104~433,Rocky Mount Assoc Geol,1984
    [60] Choate R,MacCord J P, Rightime R T. Assessment of natural natural gas form coalbeds by geological characterization and production evaluation In:Rice D.Oil and Assessment. AAPG Studies in Geology,1986,21:223~245
    [61] Ayers W B,Kelso B S.Knowledge of methane potential for coalbed resource grows,but need more study.Oil&Gas j,1989,87:66~67
    [62] [Gan H Nandi S P,Waller P L R. Nature of the Porosity in American coals[J]. Fuel,1972(5):272~277
    [63] Lamberson M N,Bustin R m. Coalbed methane characteristics of Gate Formation coals[J], Northeastern British Columbia: effect of maseral composition AAPG,1993,77(12):2062~2076
    [64] Jouber J I Grein C T, Bienstock D. Sorption of methane in moist coal [J]. Fuel,1973,52(3):181~185
    [65] Jouber J I Grein C T, Bienstock D. Effect of moisture on the methane capacity of American coals Fuel,1974,53:186~191
    [66] Krooss B M,Bergen F,Gensterblum Y et al. High~pressure methane and dioxide adsorption on dry and moisture~equilibrated pennsylvanian coals Geol,2002,51:69~92
    [67] [Yee D,Seidle J P,Hanson W B. Gas sorption on coal and measurement of gas content[J].In:Law B E,Rice D D .Hydrocarbon form Coal .AAPG Studies in Geology,1993(9):203~218
    [68] Laxminarayana C,Crosdale P J.Role of coal type and rank on methane sorption chanacteristics of Bowen Basin,Australia ,coals.Int J Coal,1999,40:309~325
    [69] 崔永君,张群,张泓等.不同煤级煤对 CH4、N2 和 CO2 单组分气体的吸附[J].天然气工业,2005,25(1):61~65
    [70] 张晓东,秦勇,桑树勋.煤储层吸附特征研究现状及展望[J].中国煤田地质,2005,17(2):16~20
    [71] Greaves K H,Owen L B, et al Multi~component gas adsorption desorption behavior of coal[J]. Proceedings of the International Coalbed Methane Symposium,1993
    [72] 陈昌国,鲜晓红,张代钧. 温度对煤和炭吸附甲烷的影响[J].煤炭转化,1995,18(3):88~92
    [73] 何学秋.交变电磁场对煤吸附瓦斯的影响[J].煤炭学报,1996,21(1):63~67
    [74] 艾鲁尼.A.T.预测和控制煤矿瓦斯泄出量的物理化学原理[M].第二十一届国际采矿安全会议论文集,1986
    [75] 塔拉索夫.B.T.关于突出危险性的标准[M].煤与瓦斯突出预测资料汇编.重庆:煤炭工业部重庆研究所编,1987
    [76] 孙培德,鲜学福. 煤层瓦斯渗流力学的研究进展[J].焦作工学院学报,2001,20(3):161~167
    [77] 孙 培 德 , 鲜 学 福 , 茹 宝 麒 . 煤 层 瓦 斯 渗 流 力 学 研 究 现 状 和 展 望 [J]. 煤 炭 工 程师,1996(3):23~29
    [78] 郭勇义.煤层瓦斯一维流场流动规律的完全解[J].中国矿业学院学报,1984,2(2):19~28
    [79] 谭学术.矿井煤层真实瓦斯渗流方程的研究[J].重庆建筑工程学院学报,1986(,1):106~112
    [80] 余楚新,鲜学福.煤层瓦斯流动理论及渗流控制方程的研究[J].重庆大学学报,1989,12(5):1~9
    [81] 孙培德.煤层瓦斯动力学的基本模型[J].西安矿业学报学院学报,1989,9(2):7~13
    [82] Sun Peide.Coal gas dynamics and its applications[J].Scientia Geologica Sinica,1994,3(l):66~72
    [83] 李英俊.煤层瓦斯压力分布的研究[J].煤矿安全,1980,(5):32~36
    [84] 周世宁.电子计算机在研究煤层瓦斯流动理论中的应用[J].煤炭学报,1983,8(2):36~41
    [85] 屠锡根,马丕梁.阳泉低透性煤层瓦斯抽放参数计算[J].第22届国际采矿安全会议论文集.北京:煤炭工业出版社 1987
    [86] C.Yu and X.xian.Analyses of gas seepage low In coal beds with finite element method.Symposium of 7th international conference of FEM in Flow problems,Huntsvill,USA,1989
    [87] C . Yu and X . xian . Aboundary element method for inhomogeneous medium problems,Proceeding:2nd world congs. On computational Mechanics, Stuttgart ,FRG,190
    [88] 周世宁.用电子计算机对两种测定煤层透气系数方法的检测[J].中国矿业学院学报.1984,2(3 ):46~51
    [89] 魏晓林等.有钻孔煤层瓦斯流动方程及其应用[J].煤炭学报,1988,13(l):70~76
    [90] 蒋承林.煤层透气系统测定方法的研究[J].中国矿业学院学报,1984,2(2)
    [91] 白其峥.钻孔瓦斯的压力分析问题[J].山西矿业学院学报,1983,2(l):23~27
    [92] 周晓军.煤层钻孔周围瓦斯流动规律及应力、应变的研究. 重庆大学硕士学位论文,1994
    [93] 孙培德.计算煤层透气系数的新方法[J].阜新矿业学院学报,1989 年 8(4):33~39
    [94] 孙培德.试论煤层抽放瓦斯钻孔的合理布置[J].阜新矿业学院学报,1989 年 8(3):44~50
    [95] 郭勇义,吴世跃. 煤粒瓦斯扩散及扩散系数测定方法的研究[J]. 山西矿业学院学报,1998,15(l):15~20
    [96] 吴世跃,郭勇义.煤粒瓦斯扩散及扩散系数测定方法的研究[J].太原理工大学学报,1998,29(2):138~142
    [97] 孙培德.煤层瓦斯流场流动规律的研究[J].煤炭学报 ,1987,12(4):74~82
    [98] 吴世跃,郭勇义.煤层气运移特征的研究[J].煤炭学报,1999,24(1):65~69
    [99] 杨力生.我国煤矿开展瓦斯地质研究现状与展望[J].瓦斯地质,1985,(1):1~10
    [100] 薛定谔,王鸿勋等译.多孔介质中的渗流物理[M].北京:石油工业出版社,1982
    [101] Bear,J. 李竞生,陈崇希高译.多孔介质流体动力学[M].北京:中国建筑工业出版社,1983
    [102] 彼特罗祥著.宋世钊译. 煤矿沼气涌出[M].北京:煤炭工业出版社,1983
    [103] 抚顺煤研所编.日本北海道大学木通口澄志教授部分论文及报告汇编[R],1984
    [104] 罗新荣.煤层斯运移物理模型与理论分析[M].中国矿业大学学报,1991,20(3):36~42
    [105] Somerton W.H . et al .Effect of stress on permeability of coal .Int .J.Rock Mech .Min.Sci.&Genomech .Abstr .1975,12(2):151~158
    [106] Harpalain,S.Gas flow through stressed carboniferous strata .Univ. of Nottingham, Ph.D.thesis, 1979
    [107] Gawuba J.Flow of Methane in the stressed carboniferous strata. Univ. of Nottingham ,Ph.D.thesis,1979
    [108] Khodot,V.V. Role of Methane in the stress state of a coal seam .Fizikotehkhnicheskie Problemy Razraotki poleznykh iskopaemykh .1980(5)
    [109] 梁冰,章梦涛等.可压缩瓦斯气体在煤层中渗流规划的数值模拟[J].中国北方岩石力学与工能应用学术会议论文集 北京:科学出版社,1991
    [110] 赵阳升,白其峥.煤层瓦斯流动的固结数学模型[J].山西矿院学报,1990,8(l):26~33
    [111] 赵阳升.煤体一瓦斯耦合理论及其应用[D].上海:同济大学博士学位论文,1992
    [112] 赵阳升.煤体—瓦斯耦合数学模型及数值解法[J].岩石力学与工程学报,1994,13 (3):229~239
    [113] 林柏全,周世宁.含瓦斯煤体变形规律的实验研究[J].中国矿院学报,1986,15(3):67~72
    [114] 林柏全,周世宁. 煤样瓦斯渗透率的实验研究[J].中国矿业院学报,1988,17(2):87~93
    [115] 姚宇平,周世宁. 含瓦斯煤的力学性质[J]. 中国矿业院学报,1988,17(2):87~93
    [116] 何学秋,周世宁.煤和瓦斯突出机理的流变假说.中国矿业大学学报,1990,19(2):1~9
    [117] 许江,鲜学福.含瓦斯煤的力学特性的实验分析.重庆大学学报,1993,16(5):26~32
    [118] 余楚新.煤层中瓦斯富集、运移的基础与川研究[D].重庆大学博士学位论文,1993
    [119] 程瑞端.煤层瓦斯涌出规律及其深部开采预测的研究[D]. 重庆大学博士学位论文,1995
    [120] 张广洋.煤结构与煤的瓦斯吸附、渗流特性研究[D]. 重庆大学博士学位论文,1995
    [121] 屠锡根.试论上保护层开采的有效性[J].煤炭学报,1965,2(3):20~26
    [122] 马大勋.关于上保护层的实验研究与探讨[J].煤炭学报,1986(3):34~38
    [123] 潭学术,肖勤学,吴泽源.上解放层解放范围的力学分析[J].煤炭学报,1988,13(2):25~31
    [124] 孙培德.煤层气越流的固气耦合理论及其计算机模拟研究[D]. 重庆大学博士学位论文,1998
    [125] 梁运培.邻近层卸压瓦斯越流规律的研究[J].矿业安全与环保,2000,27(1):32~37
    [126] Haenel, M. W., Recent progress in coal structure research[J], Fuel, 1992,71 (11):1211~1223.
    [127] Given, P. H., The distribution of hydrogen in coals and its relation to coal structure[J], Fuel, 1960,39(2):147.
    [128] Shinn, J. H., From coal to single-stage and two-stage products: A reactive model of coal structure[J], Fuel, 1984,63(9):1187-1196.
    [129] Marzec, A., Macromolecular and molecular model of coal structure[J], Fuel Process Technol,1986,14:39-46.
    [130] Jones J M,Pourkashanian M,Rena C D. Modelling the relationship of coal structure to char porosity[J],Fuel,1999,78(11):1737-1744
    [131] Lucht, L. M., Larson, J. M., Macromolecular structure of coals: 9. Molecular structure and glass transition temperature[J], Energy & Fuels, 1987,1:56~58.
    [132] International Union of Pure and Applied Chemistry(IUPAC), Manuals of symbols and terminology for physico chemical quantities and units[M], Butterworth, Londan, U.K., 1972.
    [133] Tsiao, C. and Botto, R. E., 129Xe NMR investigation of coal micropores[J], 1991 5 (1) 87-92
    [134] Radovic L R, Menon V C, Leony, et al., On the porous structure of coals: Evidence for an interconnected but constricted micropore system and implications for coalbed methane recovery [J]. Adsorption, 1997, 3(3): 221-232
    [135] Hayashi, J., Norinaga, K., Kudo, N., and Chiba, T., Estimation of size and shape of pores in moist coal utilizing sorbed water as a molecular probe[J], Energy & Fuels, 2001,15(4):903-909.
    [136] Choi, J., Do, D. D., and Do, H. D., Surface diffusion of adsorbed molecules in porous media: Monolayer, multilayer, and capillary condensation regimes[J], Ind. Eng. Chem. Res.,2001, 40(19) 4005-4031
    [137] Takanohashi, T., Nakamura K., Computer Simulation of Methanol Swelling of Coal Molecules[J], Energy & Fuels 1999, 13(4):922~926;
    [138] 袁易全.近代超声原理及应用[M].南京大学出版社,1996
    [139] 《超声波探伤》编组.超声波探伤[M].电力工业出版社,1980
    [140] 赵福兴.控制爆破工程学[M].西安交通大学出版社,1988:58~60
    [141] Crosdale, P.J.;Beamish B.B.;Valix M., Coalbed methane sorption related to coalcomposition [J], International Journal of Coal Geology, 1998,35(1-4):147~158.
    [142] [142]Green,T.K., Selby, T.D., Pyridine sorption Isotherms of argonne premium coals: dual-mode sorption and coal microporosity[J]. Energy Fuels,1994,8(1):213-218.
    [143] Shimizu, K., Takanohashi, S. and Iino M., Sorption behaviors of various organic vapors to Argonne Premium coal samples[J] ,Energy & Fuels 1998, 12(5), 891~896.
    [144] Takanohashi, T., Nakamura K. Computer Simulation of Solvent Swelling of Coal Molecules: Effect of Different Solvents[J], Energy & Fuels 2000, 14(2): 393-399.
    [145] Takanohashi, T., Nakamura K. Computer Simulation of Methanol Swelling of Coal Molecules[J], Energy & Fuels 1999, 13, 922~926;
    [146] Milewska~Duda,J., Mathematical Modeling of the Sorption Process in Porous Elastic Materials[J], Langmuir 1993,9, 3558~3566;
    [147] Milewska~Duda,J., The coal-sorbate system in the light of the theory of polymer solutions[J], Fuel, 1993,72(3), March 419;
    [148] Milewska ~ Duda , J., A Model for Multilayer Adsorption of Small Molecules in Microporous Materials[J], Langmuir 2000, 16, 7294~7303;
    [149] Milewska~Duda,J., Absorption and Adsorption of Methane and Carbon Dioxide in Hard Coal and Active Carbon[J], Langmuir 2000, 16, 5458~5466;
    [150] Milewska~Duda,J., A New State Equation for Sorptives in Near~Critical and Overcritical Temperature Regions[J], Langmuir 2000, 16, 6601~6612;
    [151] Milewska~Duda,J., Handling of a Non~BET Adsorption with the LBET Model[J], Langmuir 2001, 17, 4548~4555;
    [152] Sevenster.P.G. Diffusion of Gases through Coal[J].Fuel 1959,38:403~418.
    [153] Olague, N.E., Smith, D.M., Diffusion of gases in American coals[J], Fuel, 1989,68: 1381~1387.
    [154] Beamish, B.B., Gamson, P.D., Laboratory studies: sorption behaviour and microstructure of Bowen Basin coals[R]. In: Oldroyd, G.C. Ed.., Final Report ERDC Project 1464,1993.
    [155] Nandi, S.P. and Walker, P. L., Activated Diffusion of Methane in Coal[J], Fuel, 1970, 49: 309~323.
    [156] Ruckenstein, E., Vaidyanathan, A.S., Youngquist, G.R., Sorption by solids with bidisperse pore structures[J]. Chem. Eng. Sci. 1971,26: 1305~1318.
    [157] Smith D M, Williams F L.Diffusional effects in the recovery of methane from coalbeds[J]. Soc. Pet. Eng. J., 1984. 529~535;
    [158] Crosdale,P.J.,Beamish,B.B.,Valix,M., Coalbed methane sorption related to coal composition[J] . International Journal of Coal Geology, 1998, 35(1-4): 147-158
    [159] Clarkson, C. R., Bustin R. M., The effect of pore structure and gas pressure upon the transport properties of coal: A laboratory and modeling study. 2. Adsorption rate modeling[J], Fuel, 1999, 78(11) :1345~1362;
    [160] Karacan, C. O., An effective method for resolving spatial distribution of adsorption kinetics in heterogeneous porous media:application for carbon dioxide sequestration in coal[J], Chemical Engineering Science, 2003,58:4681~4693.
    [161] Shi, J-Q., Durucan, S, A bidisperse pore diffusion model for methane displacement desorption in. coal by CO2 injection[J], Fuel, 2003,82:1219~1229.
    [162] Thimons, E.D., Kissell, F.N., Diffusion of methane through coal[J]. Fuel, 1973, 52: 274~280.
    [163] Nandi, S P, Walker, P L, The Diffusion of Nitrogen and Carbon Dioxide from Coals of Various Ranks[J], Fuel, 1964, 43:385~393.
    [164] Smith, D.M., Williams, F.L. Diffusion models for gas production from coal-Determination of diffusion parameters[J], Fuel, 1984,63:256~261.
    [165] Bhatia, S. K., Modeling the pore structure of coal[J] AIChE,1987,33:1707~1718.
    [166] Law, D. H.-S., van der Meer, L. G. H., Gunter, W. D., Numerical Simulator Comparison Study for Enhanced Coalbed Methane Recovery Processes, Part I: Pure Carbon Dioxide Injection[M], SPE 75669, prepared for presentation that the SPE Gas Technology Symposium, Alberta, Canada, April 30 – May 2, 2002.
    [167] Busch A., Gensterblum Y., Krooss, B. M., Littke R., Methane and carbon dioxide adsorption–diffusion experiments on coal: upscaling and modeling[J], International Journal of Coal Geology, 2004,60 (2-4):151~168;
    [168] Gray, P.G, Do, D. D, A Graphical Method for Determining Pore and Surface Diffusivities in Adsorption Systems[J] Ind. Eng. Chem. Res., 1992,31:1176~1182;
    [169] Higham.D.J.,Matlab Guide[M],Society for Industrial and Applied Mathematics, Philadelphia, 2000.
    [170] 张志涌等编著,精通 Matlab 5.3[M], 北京航空航天大学出版社,2000.8,
    [171] Yi, J., Akkutlu, I.Y. and Deutsch C.V., “Gas Adsorption/Diffusion in Bidisperse Coal Particles: Investigation for an Effective Diffusion Coefficient in Coalbeds,” CIPC06-111 paper in review, J. of Canadian Pet. Tech. 2006.
    [172] Schueller B S,Yang R T.Ultrasound enhanced adsorption and desorption of phenol on activated carbon and polymeric resin[J].Industrial and Engineering Chemistry Reserch,2001, 40(22):4 912-4 918.
    [173] Yang, R. T. Gas Separation by Adsorption Processes[M]; Butterworth: Boston, 1987;Chapter 4.
    [174] Sawyer W K, Paul G W. Development and application of a 3D coalbed simulator[C]. SPE Paper No. CIM/SPE 90- 119, presented at the International Technical Meeting of CIM Petroleum Society and SPE, Calgary, June 10- 13, 1990:1-9.
    [175] Sethuraman, A. R., Gas and vapor induced coal swelling[J], American Chemical Society, 1987,. 32:259~264.
    [176] Breitbach M, Bathen D, Schmidt- Traub H. Effect of ultrasound on adsorption and desorption processes[J]. Industrial & Engineering Chemistry Research, 2003, 42 (22): 5635~5646.
    [177] DO. D. D., A model for surface diffusion of Ethane and Propane in activated carbon[J],Chemical Engineering Science, 1996,51(17):4145-4158.
    [178] DO. D. D., Wang. K., A new model for the description of adsorption of kinetics in heteogeneous activated carbon[J], Carbon, 1998, 36(10):1539–1554.
    [179] Barbosamota.J.R, Saatdjian. D, and Tondeur. D., A Simulation Model of a High-Capacity Methane Adsorptive Storage System[J], Adsorption, 1995,1:1~27.
    [180] Briggs.H., Sinha. R. P., Expansion and contraction of coal caused respectively by the sorption and discharge of gas[C], Proceedings of the Royal Society of Edinburgh, 1933, 53: 48~53.
    [181] Moffat. D H.,Weale. K. E., Sorption by coal of methane at high Pressures[J], Fuel, 1955, 34:. 449~462.
    [182] Gunter. J., Investigation of the relationship between coal and the gas contained in it, Revue de Industrie Minerale[J], 1968, 47 (10): 693~708 (French). SMRE Translation No. 5134.
    [183] Czaplinski, A.,Holda, S., Simultaneous testing of kinetics of expansion and sorption in coal of carbon dioxide[J], Archivwum Gornickwa, 1982, 16: 227~231.
    [184] Lama R D,Bodziony J. Management of outburst in underground coal mines[J]. Int. J. Coal Geology,1998,35(1):83-115
    [185] Ettinger, I, L., Swelling stress in the gas-coal system as an energy source in the development of gas outbursts[J], Soviet mining science, 1977,15 (5):494~501.
    [186] Mahajan, O. P., Coal porosity[M], in Coal structure, Meyers. R. A. (Ed.) Academic press, New York, NY, USA, 1982:51~86.
    [187] Reucroft, P.J.and Patel, K. B., Surface area and swell ability of coal[J], Fuel, 1983,62: 279~284.
    [188] Reucroft, P. J. and Patel, K. B., Gas-induced swelling in coal[J]l. Fuel, 1986, 65:816~820.
    [189] Gray. I., Reservoir engineering in coal seams: part l:The physical process of gas storage andmovement in coal seams[J]. SPE Reservoir Engineering, 1987,2:28~34.
    [190] Stefanska, C. G., Influence of carbon dioxide and methane on changes of Sorption and dilatometric properties of bituminous coals[J], Archiwum Gornictwa, 1990,35:105~ 113.
    [191] Harpalani, S., Permeability changes resulting from gas desorption[M], Quarterly Review of Methane from coal seams technology,1989: 58~61.
    [192] Milewska-Duda. J, Cegarska-Stefanska.G, Duda, J., A comparison of theoretical and empirical expansion of coals In the high-pressure sorption of methane,Fuel, 1994, 73: 971~974.
    [193] Seidle, J. P. and Huitt. L. G., Experimental measurement of coal matrix shrinkage due to gas desorption and implications for cleat permeability increases[C], Paper SPE 30010, Proceedings of the international meeting on petroleum engineering, Beijing, China, 1995:575~582.
    [194] Levine J R. Model study of the influence of matrix shrinkage on absolute permeability of coal bed reservoirs[J]. Geological Society Publication, 1996, (199): 197-212.
    [195] Harpalani, S., and Chen, G., Effects of gas production on porosity and permeability of coal, Symposium on coalbed methane research and development in Australia[M], Beamish, B. B. and Gamson P. D. (eds.), James cook University of North Queensland, Townsville, Australia,1992,: 67~79.
    [196] George,J.D.St.,Barakat,M.A., The change in effective stress associated with shrinkage from gas desorption in coal[J], International Journal of Coal Geology, 2001, 45 (2):105~113.
    [197] Chikatamarala, L., Xiaojun, C. and Bustin. R. M., Implications of volumetric swelling/ shrinkage of coal in sequestration of acid gases, international coal bed methane symposium, 2004, paper No.435, Tuscaloosa, Alabama USA.
    [198] 姜德义,有效应力对煤层气渗透率影响的研究[J],重庆大学学报,1997.5(20):22-25
    [199] 孙培德,三轴压力作用下煤渗透率变化规律实验[J],重庆大学学报(自然科学版)2000.10(23)增刊;
    [200] Klinkenberg L J. The permeability of porous media to liquid sand gases [J]. API Drilling and Production Practice, 1941, (2): 200 - 213.
    [201] 傅雪海,煤基质收缩对渗透率影响的实验研究[J],中国矿业大学学报,2002.2(31),129-137
    [202] Sawyer W K,Paul G W,Schraufnagle R A.Development and application of 3D coalbed simulator[C].Paper CIM/SPE,1990:90-119
    [203] Shi,J.Q.,Durucan,S. A model for changes in coalbed permeability during primary and enhanced methane recovery[J]. SPE Reservoir Evaluation &Engineering.August,2005,291-299..
    [204] Harpalani, S., and Schraufnagel, R.A. Influence of Matrix Shrinkage and Compressibility on Gas Production from Coalbed Methane Reservoirs[J]. paper SPE 20729 presented at the SPE Annual Technical Conf. and Exhibition, New Orleans, 23-26 September 2006.
    [205] Seidle, J.P., Jeansonne, M.W. and Erickson, D.J. Application of Matchstick Geometry to Stress-Dependent Permeability in Coals[J]. paper SPE 24361 presented at the SPE Rocky Mountain Regional Meeting, Casper, Wyoming, 18-21 May, 1992.
    [206] Palmer I. and Mansoori, J. How Permeability Depends on Stress and Pore Pressure in Coalbeds[J]. SPEREE, 539-544, December 1998.
    [207] Cui X. and Bustin, R.M.Volumetric Strain Associated with Methane Desorption and its Impact on Coalbed Gas Production from Deep Coal Seams[J]. AAPG Bulletin, 2005, 89(9), 1181-1202.
    [208] Mavor, M...J. and Gunter, W.D. Secondary Porosity and Permeability of Coal vs. Composition and Pressure[J]. SPEREE, 1998,12, 539-544.
    [209] 王家胜,董文中,超声波在煤粉中的衰减特性的仿真[J].锅炉技术 . 2005,36(1):49-52;
    [210] 穆林,范惠珍,宁显宗,黄土层内的声波传播衰减[J] 运用声学 1994,14(1),19-22;
    [211] 杜功焕,朱哲民等,声学基础[M].,南京:南京大学出版社,2006,453-527
    [212] 鲜学福. 我国煤层气开采利用现状及其产业化展望[J].重庆大学学报,2000,23(增): 1~5
    [213] 易俊,鲜学福,姜永东等. 煤储层瓦斯激励开采技术及其适应性[J].中国矿业 2005,14(12): 26~29

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700