长江上游森林水源涵养功能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
森林生态系统是分布最广,结构最复杂,类型最丰富的陆地生态系统。繁茂的林冠层、疏松的枯枝落叶层和深厚的土壤层,构成了森林生态系统截持和蓄储大气降水的良好环境,从而能够对大气降水进行重新分配和有效调节,发挥着其特有的水源涵养功能。随着森林资源的持续减少和森林生态系统的不断破坏,森林生态系统的多功能性的作用愈显重要,特别是1998年的洪水灾害发生以后,人们对长江上游森林生态系统水源涵养功能更是达到了前所未有的关注。
     本论文以长江上游地区为研究区域,根据其森林类型将研究区域分为21个评估单元,并建立评估单元指标体系。通过现有文献和野外取样、实验获取各森林类型林冠层系统、枯枝落叶层系统和土壤层系统的指标数据,建立长江上游森林水源涵养数据库。利用Arcgis等地理信息系统软件,以栅格(大小为500m×500m)为单位,研究一确定点(网格)上截流、保持和储存的水量,从而对整个长江上游森林各子生态系统水源涵养能力及综合水源涵养能力进行研究。结果表明:
     (1)森林生态系统综合水源涵养能力中土壤系统和枯落物系统涵养水源量占了绝大部分比例,土壤非毛管孔隙对森林水源涵养能力具有决定性作用。长江上游森林生态系统综合水源涵养总量为324.12×108t。在长江上游各种森林植被类型中,林冠层一次性降水最大截留量平均值为1.07mm,截留总量为3.97×108t,占综合水源涵养总量的1.22%;枯落物层降水最大截留平均值为2.00mm,涵养水源总量为7.55×108t,占综合水源涵养总量的2.33%;土壤层涵养水源能力平均值为80.38mm,涵养水源总量为312.62×108t,占综合水源涵养总量的96.45%。
     (2)综合涵养水源能力最强的森林植被类型是亚热带山地冷杉林146.60mm,其次是亚热带山地云杉林132.41mm,温带亚热带落叶阔叶杨桦林最小,为21.37mm。综合涵养水源总量最大的是常绿针叶灌丛78.35×108t,其次是常绿阔叶灌丛61.52×108t,亚热带山地落叶松最小,为0.28×108t。
     (3)森林植被涵养水源能力空间格局表现为岷江上游、横断山区、四川盆地北山地最强,四川西南部高原山区次之,嘉陵江、乌江相对较弱。
Forest ecosystem is a kind of terrestrial ecosystems which has the most wildly distribution, the most complex structure and the richest types. Composing of the flourish canopy layer, loose litter layer and thick soil layer, the forest ecosystem has an ideal capacity to hold and store atmospheric precipitation, and so that the atmospheric precipitation can be redistribute and regulated effectively by its specific water retention capacity. The effects of forest ecosystem’s multifunction become more and more important to us as the forest resources lasting reducing and being destroyed, especially after the flood disaster in 1998, the water retention function of forest ecosystems in the upper Yangtze River has been concerned unprecedented.
     We took the upper Yangtze River region as study areas, and divided them into 21 evaluating units according to their forest types, and built up the evaluating units’index system. Through literature survey and field sampling and experiment, we obtained the index data from the canopy, litter and soil layers of each forest type, and built up the upper Yangtze River forests’water retention database. By using GIS software such as Arcgis, we evaluated the intercepting, holding and storing water capacity of each certain grid (500m×500m), and then studied each water retention capacity of forest sub-ecosystem and the comprehensive water retention in the whole upper Yangtze River region. The results of study express:
     (1) Among comprehensive water retention capacity of forest ecosystem, water retentions in soil and litter layers account for the most proportion. Soil non-capillary porosity plays the key role in the determination of water retention capacity of ecosystem. The total comprehensive water retentions of forest ecosystems in the upper Yangtze River region are 324.12×108t. Of each forest vegetation type in the upper Yangtze River region, the canopy layer’s average one-off maximal precipitation interception is 1.07mm and the total interception is 3.97×108t, accounting for 1.22% of the total comprehensive water retentions; the litter layer’s average one-off maximal precipitation interception is 2.00mm and the total water retentions are 7.55×108t, accounting for 2.33%; the soil layer’s average water retention capacity is 80.38mm and the total water retentions are 312.62×108t, accounting for 96.45%.
     (2) Among all the forest vegetation types, the subtropical mountain fir forest has the maximal comprehensive water retention capacity which is 146.60mm, the second one is subtropical mountain spruce forest 132.41mm and the minimum is temperate-subtropical deciduous broad-leaved poplar-birch forest 21.37mm. According to the total comprehensive water retentions, the evergreen needle-leaved shrub land is the strongest one 78.35×108t, the second one is evergreen broad-leaved shrub land 61.52×108t and the last one is subtropical mountain deciduous pine forest 0.28×108t.
     (3) The spatial distribution expression for forest vegetation water retention capacity is: Mingjiang River, Hengduan mountainous, north mountainous of Sichuan Basin are strongest, next is plateau mountainous in Sichuan Southwest, and the Jialingjiang River, Wujiang River are comparatively weak.
引文
[1] 陈治谏.长江上游的战略地位与生态环境功能[J].山地学报2000,8(3):258-262.
    [2] Marsh G P .Men and Nature [M].New York:Charles Scribner 1864
    [3] 辛琨,肖笃宁.生态系统服务功能研究简述[J].中国人口、资源与环,2000,10(3):20-22.
    [4] Cordon Irene M.Nature function [M] .New York:Springer-verlag,,1992.
    [5] 董全.生态功益:自然生态过程对人类的贡献[J].应用生态学报,19991,10(2):233-240
    [6] 陈高,代力民,范竹华,等.森林生态系统健康及其评估监测[J].应用生态学报,2002,13(5):605-610
    [7] 张志强,徐中民,王建,等.黑河流域生态系统服务的价值[J],冰川冻土,2001,23(4):360,367
    [8] 张志强,徐中民,程国栋.生态系统服务与自然资本价值评估[J]2001,21(11):1918-1926
    [9] 孙刚,盛连喜,周道玮.生态系统服务及其保护策略[J].应用生态学报,1999,10(3):365-368
    [10] 周亚萍,安树青.生态质量与生态系统服务功能[J].生态科学,2001,20(1):85-90
    [11] 阎水玉,王样荣.生态系统服务研究进展[J].生态学杂志,2002,21(5):61-68
    [12] 郭中伟,甘雅玲.关于生态系统服务功能的几个科学问题[J].生物多样性,2003,11(1):63-69
    [13] 李建勇,陈桂珠.生态系统服务功能体系框架整合的探讨[J].生态科学,2004,23(2):179-183
    [14] 王伟,陆健健.生态系统服务与生态系统管理研究[J].生态经济,2005(9):35-37
    [15] Daily G(ed). Nature’s Services:Societal Dependence on Natural Ecosystems . Washington, DC:Island Press,1997
    [16].李金昌.价值核算是环境核算的关键[J].中国人口、资源与环境,20O2,12(3):11-17
    [17].蒋延玲,周广胜.中国主要森林生态系统公益的研究[J] 植物生态学报,1999,23(5):426-432
    [18] 慕长龙 ,龚固堂.长江中上游防护林体系综合效益的计量与评价[J].四川林业科技,2001,22(1):15-23.
    [19] 郭立群,王庆华,周洪昌,等.滇中高原区主要森林类型水源涵养功能系统分析与评价[J]云南林业科技,1999,(1):32-40.
    [20] 李昌哲.森林植被的水文效应[j].生态学杂志,1986,5(5):17-21,
    [21] 邓坤枚,石培礼,谢高地.长江上游森林生态系统水源涵养量与价值的研究[J].资源科学,2002,24(6):68-73.
    [22] 孔繁智,宋波,裴铁璠.林冠截留与大气降水关系的数学模[J].应用生态学报,1990,1(3):201-208.
    [23] 刘文耀,刘伦辉,郑征.滇中不同群落结构云南松林的水文作用[J].北京林业大学学报,1992,14(2):38-45.
    [24] 张万儒,许本彤,杨承栋.山地森林上壤枯枝落叶层结构和功能的研究[J]。土壤学报,1990,27(2):121-131.
    [25] 刘世荣,温光远,王兵,等。中国森林生态系统水文生态功能规律[M].北京:中国林业出版社,,1996.
    [26] 温光远,刘世荣.我国森林生态系统类型降水截留规律的数最分析[J].林业科学,1995,31(4):289-298.
    [27]裴铁番,郑远长.林冠分配降雨过程模拟与模型Ⅰ·常雨强下穿透降雨、树干径流和林冠截留模型[J].林业科学,1996,32(1):1一10.
    [28]刘家冈.林冠对降雨的截留过程[J].北京林业大学学报,1987,9(2):140-144.
    [29]刘曙光,郑长远.树冠截留模型[J].西北林学院学报,199 0, 5( 3):50一56.
    [30]郑远长,裴铁番.林冠分配降雨过程模拟与模型U·模型扩展与数据确定[J].林业科学,1996,32(2):97一102. [31」崔启武,边履刚,史继德,等.林冠对降水的截留作用[J].林业 科学,1980,16(1):40-47
    [32] 赵鸿雁,吴钦孝,从怀军.黄土高原人工油松林枯枝落叶截留动态研究[J].自然资源学报,2001,16(4):381-385.
    [33] 蒋有绪,川西亚高山冷杉林枯枝落叶层的群落学作用[J]。植物生态学与地植物学丛刊,1981,5(2):89-98
    [34] 雪华.川米亚罗地区高山冷杉林水文作用的研究[J].林业科学1987,23(3):253-265.
    [35] 礼隆.川西亚高山暗针叶林森林涵养水源性能的研究[A].林业部科技司.中国森林生态系统定位研究[C].哈尔滨:东北林业出版社,1994.410-412.]
    [36] 文耀.荆贵芬,和爱军.滇中常绿阔叶林及云南松林凋落物和死地被物中的养分动态[J].植物学报,1990,32(8):637-646 .
    [37] 刘世荣,孙鹏森,王金锡,等.长江上游森林植被水文功能研究[J],自然资源学报,2001,16(5):451-456.
    [38] 代玉波.长江上游天然林资源经营状况及对策[J].林业资源管理,1999,(3):10-13.
    [39] 石培礼,吴波,程根伟,罗辑。长江上游地区主要森林植被类型蓄水能力初步研究[J],自然资源学报,2004,(5)
    [40] Costanze R. Ecosystem and Economic system health and social decision making.In :Rapport D J,Calow P,Gauder C.Evaluating Monitoring the Health of large-scale Ecosystem.New York:springer-verlag,1995:
    [41] Costanze R.Toward an operational definition of health .In :Costanza R,Noron b, Haskell B.Ecosystem Health-New Goals for Environment Management [M].washington DC:Island press,1992;
    [42] 饶良懿.三峡库区理水调洪型防护林空间配置与优化技术研究[D].北京;北京林业大学,2003.3-5
    [43] 欧阳志云,王效科,苗鸿.中国陆地生态系统服务功能及其生态经济价值的初步研究[J].生态学报,1999,19(5):607-13

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700