苔藓组织硫含量和硫同位素指示江西省大气硫沉降规律及大气硫源
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着产业经济的发展,大气硫沉降带来了一系列的生态破坏和经济损失,引起人们的高度重视。为了探讨苔藓作为监测植物指示大气硫污染的可靠性,研究江西省大气硫沉降的空间分布以及追溯其大气硫源,本论文测定了江西省19个采样点的112个细叶小羽藓(H. microphyllum (Hedw.))组织硫含量和69个苔藓组织硫同位素值。对江西省苔藓组织硫含量和硫同位素值进行了空间分析,研究了苔藓组织硫含量与大气硫沉降量,苔藓组织硫含量与大气SO2浓度,苔藓组织硫含量与苔藓组织氮含量,苔藓苔藓组织硫同位素值与雨水硫同位素值以及苔藓组织硫同位素值(δ34S)与煤样硫同位素值(634S)的相关性,同时结合显著性差异分析,聚类分析等数理统计方法。探讨了江西省苔藓组织硫含量和硫同位素值的空间分布特征,山区和城市苔藓组织硫含量和硫同位素值的差异以及南昌市和江西省的大气硫源。研究结果表明:
     (1)通过对苔藓组织硫含量的分析发现,在大气硫浓度高的地区苔藓组织硫含量也高,说明苔藓植物可以作为监测植物指示大气硫污染。江西省苔藓组织硫含量表现出从西南往东北的递增规律,反映出了江西省大气硫湿沉降量的空间分布规律。对市区苔藓和郊区苔藓的硫含量进行t检验,其中南昌市和贵溪市市区苔藓组织硫含量和郊区苔藓组织硫含量有显著性差异(P<0.001),且市区苔藓组织硫含量明显高于郊区苔藓组织硫含量,说明这两个城市市区苔藓受到了点污染源的影响。
     (2)江西省苔藓组织S/N比变化范围为0.074-0.524,与中国南部城市苔藓组织S/N变化范围是0.11-0.19一致。但贵溪冶炼厂的苔藓组织的S/N为0.316±0.181(0.195-0.524)远高于中国南部城市苔藓组织的S/N值。用直线S/N=0.15把江西省采样点分为两组。在江西省,只有贵溪市贵溪冶炼厂周围的苔藓组织S/N>0.15(组Ⅰ),表明苔藓组织吸收了相对大量的大气硫(过量的硫)。而其它采样点苔藓组织S/N<0.15(组Ⅱ),说明其它采样点均是硫缺乏或者说是氮过量。南昌市雨水中SO42-/NH4+的变化范围是1.15-1.37,正好是南昌市苔藓组织S/N的变化范围(0.08-0.15)的14倍。表明雨水的SO42-/NH4+比值决定了苔藓组织的S/N比值。
     (3)结合有限的雨水硫同位素资料发现南昌大学前湖校区苔藓组织硫同位素值(0.55‰-0.56‰,平均值0.55+0.01‰)和雨水硫酸根硫同位素值(-3.55-3.91‰,平均值-0.33±1.78‰)相接近,说明苔藓组织硫同位素值能指示其长期吸收的硫来源。通过对南昌市市区,郊区,景区(梅岭),电厂周围苔藓组织以及煤的δ34S值进行单因素方差分析,发现南昌市市区和郊区受相同硫源的影响,而景区和电厂周围分别受不同大气硫源的共同影响,并且发现南昌市电厂燃煤不仅能影响南昌市大气硫沉降还能影响到郊区乃至于景区。
     (4)江西省苔藓硫同位素平均值为+4.71±3.25‰(-3.58-10.40‰)。其中以上饶苔藓组织硫同位素值最高9.60±0.50‰,丰城苔藓组织硫同位素最低-3.31±0.43‰,山区苔藓组织硫同位素值(6.23±2.14‰)高于市区苔藓组织硫同位素值(0.86±2.41‰),且存在显著性差异(p<0.001)。说明山区和城市受不同来源硫的影响。
     (5)本研究用聚类分析方法对江西省19个采样点苔藓组织634S值进行了分析,把江西省苔藓组织634S值分成了4组,分析发现每组苔藓组织有着特异性的硫含量和硫同位素值,说明每组受不同大气硫源的影响,同时还通过聚类分析还发现江西省不同城市中工业生产使用的煤的来源不同。
     (6)江西省苔藓组织硫同位素和苔藓组织硫含量1/S呈线性相关性y=0.76+1.21x(R2=0.16,p<0.001)。根据双硫源模型,结合聚类分析和江西省苔藓组织δ34S值的空间分布规律,表明江西省大气硫沉降可能受本地人为硫源(主要是煤燃烧)和外源重硫的共同影响。
With the industry economic development, atmospheric sulfur deposition caused a series of ecological damage and economic losses which have caused people's attention. In order to explore the reliability of moss used as biological indicator to monitor atmospheric sulfur pollution,the spatial distribution of atmospheric sulfur deposition of Jiangxi Province and trace atmospheric sulfur source. This paper packed 112 moss (H.microphyllum (Hedw.)) in 19 sampling sites of Jiangxi Province and determine tissue sulfur content and sulfur isotope values of moss.This paper used spatial analysis to analysis tissue sulfur content and sulfur isotope of moss in Jiangxi province and the relationship of tissues sulfur content of lichen and the amount of atmospheric sulfur deposition, tissue sulfur content of moss and concentrations of SO2 and atmospheric,tissue sulfur content and tissue nitrogen content, sulfur isotope values of rain and the moss tissue sulfur isotope and tissue sulfur isotope (δ34S) of moss and coal sulfur isotope(δ34S).Combined with the correlation significant difference analysis, cluster analysis,and other mathematical statistics,investigate spatial distribution of sulfur content of mosses and sulfur isotope in Jiangxi province,significant difference sulfur content and sulfur isotope of the mountain and urban lichen tissue and atmospheric sulfur source of Nanchang and Jiangxi Province. The results show:
     (1) Where atmospheric sulfur concentration is high, tissue sulfur content of moss is also high, indicating bryophyte plants can be used as bio-indicator to monitor atmospheric sulfur pollution. Tissue the sulfur content of moss in Jiangxi province increased from southwest to the northeast, reflecting the spatial distribution of atmospheric sulfur wet deposition in Jiangxi Province. Trough t-test, significant difference (P<0.001) between urban and suburban tissue sulfur content of moss in Guixi and Nanchang cities were found Tissue sulfur content of the urban moss moss tissue was significantly higher than that of suburban, indicated that the atmospheric sulfur source of this two cities were caused by point sources.
     (2) Tissue S/N ratio of moss varied from 0.074 to 0.524 in Jiangxi Province fall into the range of tissue S/N of moss in China's southern cities,which is 0.11 0.19.However, S/N of moss around Guixi Smelter was 0.316±0.181 (0.195-0.524) which is much significant higher than S/N of moss in China's southern cities. Sampling points of Jiangxi Province is divided into two groups by Linear S/N=0.15. In Jiangxi Province, only the S/N of moss tissue in Guixi City> 0.15 (groupⅠ), show that the moss tissue absorbs relatively large amount of atmospheric sulfur (excess of sulfur). The other group moss tissue S/N<0.15 (groupⅡ), indicating other samples are the lack of sulfur or nitrogen excess.SO42-/NH4+ of Nanchang in rain vary from 1.15 to 1.37, exactly S/N of moss tissues in Nanchang city in the range of 0.08 and 0.15,which is 14 times lower than the ratio of SO42-/NH4+ in rainfall,showing that the ratio of SO42-/NH4+ in rainfall determines S/N ratio of tissues of mosses.
     (3) With limited water sulfur isotope data,we can found tissues sulfur isotope of moss in Qianhu Lake is 0.55‰-0.5'6‰(average 0.55±0.01‰) and sulfate sulfur isotope of rainfall is-3.55-3.91‰(average-0.33±1.78‰) which is close in Nanchang, indicating the value of lichen tissue sulfur isotopes can indicate the sulfur source of its long-term absorption. ANOVA analysis showed that urban and suburban Nanchang subject to the same source of sulfur, while the Meling and power plant were effected by different atmospheric sulfur sources combined, and found that Sulphid from the coal-fired power plant in Nanchang not only can affect atmospheric sulfur deposition in urban but also can affect the suburbs and even in the scenic area.
     (4) The average sulfur isotope moss is+4.71±3.25‰(-3.58-10.40‰) Jiangxi Province. Among them, tissues sulfur isotope of moss in Shangrao is the highest(9.60±0.50‰), the lowest is tissue sulfur isotope of moss in Fengcheng (-3.31±0.43‰). Mountain tissue sulfur isotope of moss (6.23±2.14‰) is higher than urban tissue sulfur isotope (0.86±2.41‰), and significant difference exist(p <0.001) indicating the mountains area and cities are affected by different sources of sulfur.
     (5) This study used cluster analysis to analysis 112 samples of Jiangxi province.δ34S value of the moss tissues. Analysis showed that each group has a specific lichen tissue sulfur content and sulfur isotope values, indicating each subject to different sources of atmospheric sulfur impact. At the same time through the cluster analysis We can also found that industrial production in Jiangxi Province in different cities use different sources of coal.
     (6) Tissue sulfur isotope and sulfur content (1/S) of moss showed a linear correlation y= 0.76+1.21 x (R2= 0.16, p<0.001) in Jiangxi province. According to two-sulfur source model and the result of the clustering analysis and spatial distribution ofδ34S values of moss in Jiangxi Province may be affected by a combined atmospheric sulfur source in Jiangxi Province, which is locals sulfur sources (mainly caused by coal burning) and exogenous sulfur source.
引文
[1]刘学炎.生长条件对苔藓硫含量和硫同位素组成指示大气硫沉降的影响[J].环境科学研究,2008,21,5,145-149.
    [2]马德科兹洛夫基.植物对空气污染的反应[M].刘富林译.北京:科学出版社,1984.
    [3]Thode H G. Sulphur isotopes in nature and the environment:an overview. Stable Isotopes:Natural and Anthropogenic Sulphur in the Environment, SCOPE 43[M], Krouse H R and Grinenko V A. John Wiley & Sons, Inc., New York,1991,1-26.
    [4]Hua-Yun Xiao. Identifying the change in atmospheric sulfur sources in China using isotopic ratios in mosses[J]. Journal of geophysical research.,2009,114:D16304
    [5]何纪力,龙刚,黄云.江西省酸雨时空分布规律研究[M].中国环境科学出版社,2007:175-176.
    [6]林碧娜.南昌市酸性降水的污染特征研究[D].南昌大学,2008.
    [7]Cappellato R, Peter N E. Dry deposition and candy leaching rates in deciduous and coniferous forests of Georgia Piedmont:An assessment of regression model [J]. Journal of Hydrology,1995,169:131-150.
    [8]Henning R, Frank D, Michael S. The Global Distribution of Acidifying Wet Deposition[J]. Environmental Science and Technology,2002,36(20):4382-4388.
    [9]李宗恺.空气污染气象学原理及应用[M].北京:气象出版社,1985,88-90.
    [10]Seinfeld, J. H., Pandis, S. N., Atmospheric chemistry and physics:from air pollution to climate change. John Wiley & Sons, Inc., New York,1998
    [11]Singh, H. B., Composition, chemistry, and climate of the atmosphere. John Wiley & Sons, Inc., New York,1995.
    [12]张军林,申进玲,李晓玲,等.我国酸雨的危害及控制现状[J].农业资源与环境,2006,10:47-49.
    [13]张晓勇,王振红.当前酸雨形势和治理对策[J].环境科学于管理.2007,32(8):85-107.
    [14]吴劲兵,汪家权,孙世群.酸沉降农业经济损失估算[J].合肥工业大学学报(自然科学版),2002,25(1):100-104.
    [15]樊后保.酸雨与森林衰退关系研究综述[J].福建林学院学报,2003,23(1):88-92.
    [16]王代长,蒋新,卞永荣.模拟酸雨对不同土层酸度和淋失规律的影响[J].环境科学,2003,24(2):30-34.
    [17]鲁敏,李英杰,鲁金鹏.绿化树种对大气污染物吸收净化能力的研究[J].城市环境与城市生态,2002,15(2):7-9.
    [18]Berner E K, Berner R A. Global Environment. Water, Air, and Geochemical Cycles. Prentice-Hall, Upper Saddle River, NJ.1996.
    [19]Newman L, Krouse H R, Grinenko V A. Sulphur isotope variations in the atmosphere. In: Krouse, H. R., Grinenko, V. A. (Eds.), Stable Isotopes-Natural and Anthropogenic Sulphur in the Environment-SCOPE 43. Wiley, Chichester,1991. pp.133-176 (Chap.5).
    [20]Galloway J N, Cowling E B. The effects of precipitation on aquatic and terrestrial ecosystems-a proposed precipitation network [J]. Air Pollut. Control Assoc,1978, 28:229-235.
    [21]Bricker 0 P, Rice K C, Acid rain[J]. Annual Review of Earth and Planetary Sciences,1993, 21:151-174.
    [22]国家环境保护总局,2008中国环境状况公报.2010.
    [23]王文兴.中国酸雨成因研究[M].中国环境科学,1994,14(5):323-329.
    [24]黄美元,沈志来,刘帅仁等.中国西南典型地区酸雨形成过程研究[J].大气科学,1995,19(3):359-366.
    [25]丁国安,徐晓斌,房秀梅等.中国酸雨现状及发展趋势[J].科学通报,1997,42(2):169-173.
    [26]王文兴,丁国安.中国降水酸度和离子浓度的时空分布[J].环境科学研究,1997,10(2):1-6.
    [27]刘炳江,郝吉明,贺克斌等.中国酸雨和二氧化硫污染控制区区划及实施政策研究[J].中国环境科学,1998,18(1):1-7.
    [28]World Bank. Clear Water, Blue Skies:China's Environment in a New Century [M]. The World Bank. Washington DC,1997.
    [29]Ding T, Valkiers S, Kipphardt H, et al. Calibrated sulfur isotope abundance ratios of three IAEA sulfur isotope reference materials and V-CDT with an reassessment of atomic weight of sulfur[J]. Geochimica et Cosmochimica Acta,2001,65:2433-2437.
    [30]Thode H G, MacNamara J, Collins C B. Natural variations in the isotopic content of sulphur and their significance. Can. J. Res.,1949,27:361-373.
    [31]Trofimov A. Isotopic composition of sulphur in meteorites and in terrestrial objects. Dokl. Akad. Nauk. SSSR,1949,66,181-184.
    [32]Rees C E, Jenkins W J, Monster J. The sulphur isotopic composition of ocean water sulphate[J]. Geochimica et Cosmochimica Acta,1978,42:377-381.
    [33]Ohizumi T, Fukuzaki N, Kusakabe M. Sulfur isotopic view on the sources of sulfur in atmospheric fallout along the coast of the sea of Japan[J]. Atmospheric environment,1997, 31:1339-1348.
    [34]Novak M, Jackova I, Prechova E. Temporal trends in the isotope signature of air-borne sulfur in Central Europe[J]. Environmental Science & Technology,2001,35:255-260.
    [35]Chukhrov F V, Yermilova L P, Churikov V., Sulfur isotope phytogeochemistry. Geokhimiya, 1978,7,1015-1031.
    [36]Calhoun J, Bates T, Charlson R. Sulphur isotope measurement of submicrometer sulphate aerosol particles over the Pacific Ocean[J]. Geophysical Research Letters,1991,18: 1877-1880.
    [37]Wagenbach D. Coastal Antarctica:Atmospheric chemical composition and atmospheric transport, in Chemical Exchange Between the Atmosphere and Polar Snow[M]. edited by E. W. Wolff and R. C. Bales, NATO ASI Ser,1996,143:173-200.
    [38]Nriagu M J 0, Coker R D. Isotopic composition of sulfur in precipitation within the Great Lakes Basin[J]. Tellus 1978,30:365-375.
    [39]Chukhrov F V, Ermilova L P, Churikov V S. The isotopic composition of plant sulfur[J]. Org. Geochem.,1980,2:69-75.
    [40]张鸿斌,胡霭琴.华南地区酸沉降的硫同位素组成及其环境意义[J].中国环境科学2002,22(2):165-169
    [41]Kathryn A J, Huiming B. Multiple oxygen and sulfur isotope compositions of atmospheric sulfate in Baton Rouge, LA, USA[J]. Atmospheric Environment,2006,40:4528-4537.
    [42]Nriagu J O, Holdway D A, Coker R D. Biogenic sulfur and the acidity of rainfall in remote areas of Canada[J]. Science,1987,237:1189-1192.
    [43]Alisa M, John T, Turk, et al. Use of stable sulfur isotopes to identify sources of sulfate in Rocky Mountain snowpacks[J]. Atmospheric Environment,2001,35:3303-3313.
    [44]Cortecci G, Longinelli A. Isotopic composition of sulfate in rain water, Pisa, Italy[J]. Earth Planet. Sci. Letters,,1970,8:36-40.
    [45]Lesile H J, Langer H. Geochemical Table[M]. Lu Huanzhuang, Xu Zhong lun(Translate). Beijing:China Sciences and Technology Press,1985.283.
    [46]Krouse H R, Grinenko V A. Nature and anthropogenic sulphur in the environment[C]. New York John Wiley & Sons Press,1988.368.
    [47]Hoefs, J, Stable Isotope Geochemistry[M], Springer-Verlag, New York,1997.
    [48]Neilson, H, Sulphur isotopes[M]. In:Jager, E., Hunziher, J. C. (Eds) Lectures in Isotope Geology, Springer-Verlag, Berlin,1979:283-312.
    [49]吴玉环,高谦,程国栋.苔藓植物对全球变化的响应及其生物指示意义[J].应用生态学报,2002,13(7):895-900
    [50]吴鹏程.苔藓植物生物学[M].北京:科学出版社,1998.
    [51]Pott U, Turpin D H. Changes in atmospheric trace element deposition in the Fraser Valley, B. C., Canada from 1960 to 1993 measured by moss monitoring with Isotheeium stolonifernm[J]. Can JBot.1996,74:1345-2353.
    [52]单运峰.酸雨,大气污染与植物[M].北京:中国环境科学出版社,1994:1,14,98:153-155
    [53]Li Y H. physiological ecology of bryophytes lit:Wu p-Ced. Beyological Biology. introduction and Diverse Branehes Beijing:Sciences.1998:131-147(inChinese).
    [54]Rincon E. Gime J P. Ananalysis of seasonal patterns of bryophyte growth in a natural[J]Ecol,1989,77(1):447-455.
    [55]邵晶,张朝晖,等.苔藓对大气沉降重金属元素富集作用的研究[J].核化学与放射化学,2002,24(1):6-10
    [56]王勋陵.植物监测大气污染物[M].兰州:甘肃科学技术出版社,1987.
    [57]吴虹玥,包维楷,王安.苔藓植物的化学元素含量及其特点[J].生态学杂志,2005,24(1):58-64
    [58]吴鹏程,罗健馨.苔藓植物与大气污染[J].环境科学,1979,03:68-72
    [59]Berg T, Steinnes E. Use of mosses(Hylocomium splendens and Pleurozium schreberi)as biomonitors of heavy metal deposition:from relative to absolute deposition values[J]. Environ. Pollut,1997,98(1):61-71
    [60]Oechel W C, Sveinbjornsson B. Primary poduction processes in Arctic bryophytes at Barrow, Alaska[M]. In:Tieszen L L (ed). Vegetation and production ecology of an Alaskan arctic tundra. Springer-Verlag, Heidelberg, Germany,1978:269-298.
    [61]Skre O, Oechel W C. Moss production in a black spruce Picea mariana forest with permafrost near fairbanks, Alaska, as compared with two permafrost-free stands[J]. Holarctic Ecology,1979,2(4):249-254.
    [62]Odukoya O O, Arowolo T A, Bamgbose O. Pb, Zn and Cu levels in tree barks as indicator of atmospheric pollution[J]. Environmental International,2000,26:11-16
    [63]Ruhling A, Tyler G. Sorption and retention of heavy metals in the woodland moss Hylocomium splendens (Hedw.) Br. et Sch. Oikos,1970,21(1):92-97.
    [64]Case J. W, Krouse H R. Variations in sulphur content and stable sulphur isotope composition of vegetation near a SO2 source at Fox Creek, Alberta, Canada[J]. Oecologia (Berl),1980,44,248-257
    [65]Grodzinska K, Szarek-Lukaszewska G. Response of mosses to the heavy metal deposition in Poland an overview[J]. Environmental pollution,2001, (114):443-451.
    [66]Toda H. Mapping of atmospheric pollution in Tokyo based upon epiphytic bryophytes[J]. Jap. J. Ecol.,1972,22(3):125-133.
    [67]谢维,曹同,韩桂春,等.苔藓植物对抚顺地区大气污染的指示作用研究[J].生态学杂志,1999,18(3):1-5.
    [68]金岚.环境生态学[M].北京:高等教育出版社,1992:1-264.
    [69]Vingiani S, Adamo P, Giordano S. Sulphur, nitrogen and carbon content of Sphagnum capillifolium and Pseudevernia furfuracea exposed in bags in the Naples urban area[J]. Environmental Pollution,2004,129:145-158.
    [70]Krouse, H. R., Stewart, J. W. B., Grinenko, V. A.,1991. Pedosphere and Biosphere. In: Krouse, H. R., Grinenko, V. A. (Eds.), Stable Isotopes:Natural and Anthropogenic Sulphur in the Environment. John Wiley, New York, pp.267-306.
    [71]Richardson D. H. S. Pollution Monitoring with Lichens[M]. Richmond Publishing.1992.
    [72]Conti, M. E. and G. Cecchetti. Biological monitoring:lichens as bioindicators of air pollution assessment-review[J]. Environmental Pollution.114,2001:471-492.
    [73]Richardson, D. H. S., Puckett,K. J.,1973. Sulphur dioxide and photosynthesis in lichens[M]. In:Ferry, B. W., Baddeley, M. S., Hawksworth, D. L. (Eds.), Air Pollution and Lichens. The Athlone Press, London,283-298.
    [74]Baddeley, M. S., Ferry, B. W., Finegan, E. J., Sulphur dioxide and respiration in lichens[M]. In:Ferry, B. W., Baddeley, M. S., Hawksworth, D. L. (Eds.), Air Pollution and Lichens. Athlone Press. London,1973:213-229.
    [75]Puckett, K. J., Tomassini, F. D., Nieboer, E., Richardson, D. H. S., Potassium efflux by lichen thalli following exposure to aqueous sulphur dioxide[J]. New Phytologist,79, 1977:135-145.
    [76]Pearson, L. C., Henriksson, E. Air pollution damage to cell membranes in lichens[M].11. Laboratory experiments. Bryologist 4,1981:515-520.
    [77]Pearson, L. C., Rodgers, G. A. Air pollution damage to cell membranes in lichens. Ⅲ[M]. Field experiments. Phyton. (Austria) 22,1982:329-337.
    [78]Fields, R. D., St Clair, L. L. A comparison of methods for evaluating SO2 impact on selected lichen species:Parmelia chlorochroa, Collema polycarpon and Lecanora muras i[M]. Bryologist 87,1984:297-301.
    [79]Levin, A. G., Pignata, M. L. Ramalina ecklonii (Spreng.) Mey. and Flot. as bioindicator of atmospheric pollution in Argentina. Canadian[M]. Journal of Botany 73(8),1995:1196-1202.
    [80]Gonzalez C M, Casanova S S, Pignata M L. Biomonitoring of air pollutants from traffic and industries employing Ramalina ecklonii (Spreng.) Mey. and Flot. in Co'rdoba, Argentina[J]. Environmental. Pollution 91 (3),1996:269-277
    [81]Carreras H. A, Gudin~ o, G L, Pignata M L. Comparative biomonitoring of atmospheric quality in five zones of Co' rdoba city (Argentina) employing the transplanted lichen Usnea sp[J]. Environmental Pollution 103,1998:317-325.
    [82]Carreras H A, Pignata M L. Biomonitoring of heavy metals and air quality in Co'rdoba City, Argentina, using transplanted lichens[J]. Environmental Pollution 117,2002:77-87.
    [83]Protoschill-Krebs G & Kesselmeier J. Enzymatic pathways for the metabolization of cabonyl sulphide (COS) by higher plants[J]. Botanica Acta 105:(1992) 206-212
    [84]Gries C, Nash T H, Kesselmeier J. Exchange of reduced sulphur gases between lichens and the atmosphere[J]. Biogeochemistry,26,1994:25-39.
    [85]Perry, K. E. Water, Air[J]. Soil Pollut.,1983,19,341-349.
    [86]Nriagu J O, Glooschenko W A.). Isotopic composition of sulfur in mosses across Canada[J]. Environmental Science and Technology,26,1992:85-89.
    [87]Hua-Yun Xiao. Sulphur isotopic ratio in mosses indicating atmospheric sulphur sources in southern Chinese mountainous areas[J]. geophysical research letters,35, L19807, doi:10. 1029/2008GL034255,2008
    [88]Pakarinen, P. Ann[Z]. Bot. Fenn.1981,18,275-279.
    [89]Malmer, N. OI/KOS[Z],1988,53,105-120.
    [90]Zakshek, E. M.; Puckett, K. J. Water. Air[J]. Soil Pollut.,1986,30,161-169.
    [91]Garty J., Kardish N., Hagemeyer J., Ronen R. Correlation between concentration of adenosine triphasphate, chlorophyll degradation and the amounts of air born heavy metals and sulphur transplanted lichen[J]. Arch. Environ. Contam. Toxicol,17,1988:601-611
    [92]瞿丽雅,林齐维,李梅,等.苔藓植物含硫量与大气S02间对应关系的应用研究[J].贵州师范大学学报:自然科学版,1994,12(1):45-48.
    [93]Xiao, H. Y., L. Q. Liu, Sources of nitrogen and sulfur in wet deposition at Guiyang, southwest China[J]. Atmos. Environ,2002,36:5121-5130.
    [94]Liu, X. Y., H. Y. Xiao, et al. Assessment of atmospheric sulfur with the epilithic moss Haplocladium microphyllum:evidences from tissue sulfur and delta34S analysis[J]. Environ Pollut,2009,157(7):2066-2071.
    [95]Nriagu, J. O., R. D. Coker, et al. Origin of sulphur in Canadian arctic haze from isotope measurements[J]. Nature,1991,349:142-145.
    [96]Krouse, H. R. Sulphur isotope abundance elucidate uptake of atmospheric sulphur emissions by vegetation[J]. Nature,1977,265:45-46.
    [97]Winner, W. E., J. D. Bewley, et al. Stable sulfur isotope analysis of SO2 pollution impact on vegetation[J]. Oecologia,1978,36:351-361.
    [98]Wadleigh, M. Lichens and atmospheric sulphur:what stable isotopes reveal[J]. Environmental Pollution,2003,126:345-351.
    [99]Lindberg S E, Lovett G. M, Richter D D, Johnson D W. Atmospheric deposition and canopy interactions of major ions in a forest[J]. Science,1986,231:141-145.
    [100]Hietz P, Wanek W, Wania R, Nadkarni N M.15N natural abundance in a montane cloud forest canopy as an indicator of nitrogen cycling and epiphyte nutrition[J]. Oecologia,2002, 131:350-355.
    [101]Wania R, Hietz P, Wanek W. Natural 15N abundance of epiphytes depends on the position within the forest canopy:source signals and isotope fractionation[J]. Plant Cell and Environment,2002,25:581-589.
    [102]Heaton T H E, Collett G M. The analysis of 15N/14N ratios in natural samples, with emphasis on nitrate and ammonium in precipitation. CSIR (Counc. Sci. Ind. Res.), Pretoria, Research Report, No.624,1985, pp.22.
    [103]Filoso S, Williams M R, Melack J M. Composition and deposition of throughfall in a flooded forest archipelago (Negro River, Brazil)[J]. Biogeochemistry,1999,45:169-195.
    [104]Krouse Legge. Sulphur gas emissions in the boreal forest:The West Whitecourt case study v. stable sulphur isotopes[J]. Water, Air, and Soil Pollution,1984,22:321-347
    [105]Cowling E. B, Acid precipitation in historical perspective[J]. Environmental Science & Technology,1982,16(2):110-123
    [106]叶小峰,王自发.东亚地区降水离子成份时空分布及其特征分析[J].气候与环境研究,2005,10(1):115-123.
    [107]雷恒池,吴玉霞,肖辉等.不同天气系下我国云雨水化学特征的研究[J].高原气象,2001,20(1):127-131.
    [108]Xiao H Y, C G Tang, et al. Tissue S/N ratios and stable isotopes (delta(34)S and delta(15)N) of epilithic mosses (Haplocladium microphyllum) for showing air pollution in urban cities in Southern China[J]. Environ Pollut,158(5):1726-1732.
    [109]江西省各区市环境统计报表.http://www. jxepb. gov. cn.
    [110]Balasubramanian R, Victor T, Chun N. Chemica and statistical analysis of precipitation on Singapore[J]. Water Air and Soil Pollution,2001,130:45-456.
    [111]张龚.湖南省城市城市大气湿沉降化学与典型污染物特征研究[D].长沙:湖南大学,2004.
    [112]李祚泳.我国部分城市降水中离子浓度与pH值的关系研究[J].环境科学学报,1999,19(3):303-306
    [113]Migliavacca D, Teixeira E C, W iegand F et al. Atmospheric Precipitation and Chemical Composition of an Urban Site, Guaiba Hydrographic Basin, Brazil[J]. Atmospheric Environment,2005,39:1829-1844.
    [114]Ito M, Mitchell M, Driscoll C T. Spatial patterns of precipitation quantity and chemistry and air temperature in the Adirondack region of New York[J]. Atmospheric Environment,2002, 36:1051-1062.
    [115]Okuda T, Iwase T, Uedaa H, et al. Long-term trend of chemical constituents in precipitation in Tokyo metropolitan area, Japan, from 1990 to 2002[J]. Science of the Total Environment, 2005,339:127-141.
    [116]Topcu S, Incecik S, Atimtay A. Chemical composition of rainwater at EMEP station in Ankara, Turkey[J]. Atmospheric Research,2002,65:77-92.
    [117]Lee B K, Hong H S, Lee D S. Chemical composition of precipitation and wet deposition of major ions on the Korean peninsula[J]. Atmospheric Environment,2000,34:563-575.
    [118]Hu G P, Balasubramanian R, Wu C D. Chemical characterization of rainwater at Singapore[J]. Chemosphere,2003,51:747-755.
    [119]Baez A, Belmont R, Garcia R, et al. Chemical composition of rainwater collected at a southwest site of Mexico City, Mexico[J]. Atmospheric Environment,2007,86:61-75.
    [120]Tu J, Wang H, Zhang Z, et al. Trends in chemical composition of precipitation in Nanjing, China, during 1992-2003[J].Atmospheric Research,2005,73:283-298.
    [121]Wenche A, Shao M, Lei J, et al. Air concentrations and wet deposition of major inorganic ions at five non-urban sites in China,2001-2003[J]. Atmospheric Environment,2007, 41:1706-1716.
    [122]张苗云,王世杰,洪冰,等.大气降水化学的统计学分析—以浙江省金华市为例[J].环境化学,2007,26(5):699-703.
    [123]杨复沫,贺克斌,雷雨.2001-2003年间北京大气降水的化学特征[J].中国环境科学2004,24(5):538-541.
    [124]牛或文,何凌燕,胡敏.深圳大气降水的化学组成特征[J].环境科2008,29(4):1014-1019.
    [125]Li C L, Kang S C, Zhang Q G, et al. Major ionic composition of precipitation in the Nam Co region, Central Tibetan Plateau[J]. Atmospheric Research,2007,85:351-360.
    [126]马慧芬.煤中全硫的测定方法——论艾氏卡法和库仑法.山西冶金,2005,03:46-47.
    [127]江西省统计局.江西统计年鉴.北京:中国统计出版社,2005,173
    [128]Malcolm, D. C. and M. F. Garforth. The sulphur:nitrogen ratio of conifer foliage in relation to atmospheric pollution with sulphur dioxide[J]. Plant and Soil,1977,47:89-102.
    [129]Dijkshoorn W, A. L. Van Wijk. The sulphur requirements of plants as evidenced by the sulphur-nitrogen ratio in the organic matter[J]. a review of published date. Plant and Soil, 1967,26:129-157.
    [130]Stewart B A and Porter L k. Ntrigen-sulfur relationships in wheat (Triticum aestivum L.), corn(Zea mays), and beans(Phaseolus vulgaris)[J]. Agronomy Journal,1969,61:267-271.
    [131]乐淑葵.南昌市雨水和湖水硫同位素特征的研究[J].地球与环境,2007,35(4):297-302
    [132]Yanagisawa F, Sakai H. Thermal decomposition of barium sulfate-vanadium pentaoxide-silica glass mixtures for preparation of sulfur dioxide in sulfur isotope ratio measurements[J]. Analytical Chemistry,1983,55:985-987.
    [133]Bottrell, S. Sulphur isotopic investigation of a polluted raised bog and the uptake of pollutant sulphur by Sphagnum. Environmental Pollution,1998,101:201-207.
    [134]Mektiyeva V L, Gavrilov E Y., Pankina R. G,. Sulphur isotopic composition in land plants[J]. Geochemistry International,1976,13:85-88.
    [135]Trust B. A, Fry B. Stable sulphur isotopes in plants:a review[J]. Plant, Cell and Environment 1992,15,1105-1110.
    [136]Bragazza L, Limpens, J, Gerdol R, Grosvernier P., Ha'jek M, Ha'jek T., Hajkova P., Hansen I, Iacumin, P., Kutnar, L., Rydin, H., Tahvanainen, T.. Nitrogen concentration and d15N signature of ombrotrophic Sphagnum mosses at different N deposition levels in Europe[J]. Global Change Biology,2005,11:106-114.
    [137]Krouse HR. Sulphur isotopes in our environment. In:Fritz P & Fontes JCh (Eds) Handbook of Environmental Isotope Geochemistry (pp 435-471). Elsevier, The Netherlands 1980.
    [138]Hong Y. T., Zhang H. B., Sulfur isotope characteristic of coal in China and isotopic fractionation during coal burning[J]. Science in China (B),1992,00B (8),868-873 (in Chinese).
    [139]Zhang M. Y., Environmental chemistry of acid deposition and sources attribution using sulfur isotopic compositions-A case study in the central region of Zhejiang Province (in Chinese)[D], IGCAS, Guiyang, China. (2006)
    [140]张丽芬,张树明,潘家永.酸雨的硫源及其硫同位素示踪综述[J].地球与环境,2006,34(1):65-69
    [141]储雪蕾.北京地区地表水的硫同位素组成与环境地球化学[J].第四纪研究,2000,20(1):87-97
    [142]Brimblecombe, P., C. Hammer, et al. Human influence on the sulfur cycle[J]. Evolution of the Global Biogeochemical Sulphur Cycle,1989,3977-121.
    [143]Botkin D. B., E. A. Keller Earth as a Living Planet. Wiley, USA[J]. Environmental Science, 2005.
    [144]Heuer K, K. A. Tonnessen, et al. Comparison of precipitation chemistry in the central Rocky Mountains, Colorado, USA[J]. Atmospheric Environment,2000,34:1713-1722.
    [145]Prietzel J B. Mayer. Cumulative impact of 40 years of industrial sulfur emissions on a forest soil in west-central Alberta (Canada)[J]. Environmental Pollution,2004,132:129-144.
    [146]Puig R, A. Avila. Sulphur isotopes as tracers of the influence of a coal-fired power plant on a Scots pine forest in Catalonia (NE Spain)[J]. Atmospheric Environment,2008, 42:733-745.
    [147]Novak M., J. W. Kirchner. Sulfur isotope dynamics in two Central European watersheds affected by high atmospheric deposition of Sox[J]. Geochimica et Cosmochimica Acta, 2000,64:367-383.
    [148]Legge A. H, S. V. Krupa. Effects of sulphur dioxide[M]. In:Bell, J. N. B., Treshow, M. (Eds.). Air Pollution and Plant Life. John Wiley and Sons, Ltd., England,2002,135-162.
    [149]Swanepoel, J. W., G. H. J. Kruger. Effects of sulphur dioxide on photosynthesis in the succulent Augea capensis Thunb[J]. Journal of Arid Environment,2007,70:208-221.
    [150]Barrelet T., A. Ulrich. Assessing the suitability of Norway spruce wood as an environmental archive for sulphur[J]. Environmental Pollution,2008,156:1007-1014.
    [151]Alewell, C.M. Novak. Spotting zones of dissimilatory sulfate reduction in a forested catchment:the 34S-35S approach[J].. Environmental Pollution,2001,112:369-377.
    [152]Adamo, P., R. Bargagli, Natural and pre-treatments induced variability in the chemical composition and morphology of lichens and mosses selected for active monitoring of airborne elements[J]. Environmental Pollution,2008,152:11-19.
    [153]Zhao, F. J., J. S. Knights. Stable sulfur isotope ratio indicates long-term changes in sulfur deposition in the broadbalk experiment since 1845[J]. Journal of Environmental Quality, 2003,32:33-39.
    [154]Mukai, H., Tanaka,A., Fujii, T., Zeng, Y., Hong, Y., Tang, J., Guo, S., Xue, H., Sun, Z., Zhou, J., Xue, D., Zhao, J., Zhai, G., Gu, J., Zhai, P., Regional characteristics of sulfur and lead isotope ratios in the atmosphere at several Chinese urban sites[J]. Environmental Science and Technology,2001,35,1064-1071.
    [155]Maruyama, T., Ohizumi, T., Taneoka, Y., Minami, N., Fukuzaki, N., Mukai, H., Murano, K., Kusakabe, M., Sulphur isotope ratios of coals and oils used in China and Japan[J]. The Chemistry Society of Japan,2000,1,45-51 (in Japanese).
    [156]Zheng, B., Gao, R.X.,. Characteristics of carbon and sulfur isotopes in crude oil and oil-source correlation in the Tarim Basin[J]. Petroleum Geology and Experiment,2006, 28(3),281-285 (in Chinese).
    [157]Ennis, L., Isotopic Composition of Bunker C Fuels from Major Anthropogenic Sulphur Sources in Newfoundland. BSc (Hon) Thesis, Memorial University of Newfoundland.1999.
    [158]Forrest, J., Newman,. Oxidation of sulphur dioxide in the Sudbury smelter plume[J]. Atmospheric Environment 119771,517-520.
    [159]Galloway, N. J., Z. D Acid rain:China, United States, and remote area. Science,1987,236: 1559-1562.
    [160]Pruett, L. E., Kreutz, K. J., Wadleigh, M., Aizen, V., Assessment of sulfate sources in high-elevation Asian precipitation using stable sulfur isotopes[J]. Environmental Science and Technology,2004,38,4728-4733.
    [161]Alewell, C. M. JMitchell. Assessing the otigin of sulfate deposition at the Hubbard Brook Experimental Forest[J]. J. Environ,2000,29:759-767.
    [162]Wang, M. R.Chemistry of acid deposition on the mountains in South China during spring(in Chinese) [J].Acta Sci. Circumstantiae,1992,36:5121-5130.
    [163]Wang, B. A., Y. H. Zhang. The composition of chemical compisition between precipitation and cloud water at Lushan in spring(in Chinese) [J], Environ. Chem,1996,15:260-265.
    [164]Shen, P., Y. C. Xu. Sulphur isotopic composition of hydogen sulphides in nature gases and the sedimentary geochemical factes(in chinese) [J]. Acta Sedimentol,1997,15,216-219.
    [165]Wadleigh, M. A. D. M. Blake. Tracing sources of atmospheric sulphur using epiphytic lichens[J]. Environ. Pollut,1999,106:265-271.
    [166]Mast, M. A., J. T. Turk, et al. Use of stable sulfur isotopes to identify sources of sulfate in Rockey Mountain snowpacks[J]. Atmospheric Environment,2001,35:3303-3313.
    [167]洪业汤,张鸿斌,朱咏煊,等.中国大气降水的硫同位素组成特征[J].自然科学进展-国家重点实验室通讯,1994,4(6):741-745
    [168]Krouse, H. R., Case, J. W., Sulphur isotope ratios in water, air and vegetation near Teepee Creek gas plant, Alberta[J]. Water, Air and Soil Pollution,1981,15,11±28.
    [169]Takala, K., Olkkonen, H., Krouse, H. R., Sulphur isotope composition of epiphytic and terricolous lichens and pine bark in Fin-land[J]. Environmental Pollution,1991,69,337± 348.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700