多环芳烃的固液界面单层组装、光物理行为及其传感特性
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,通过小分子在基质表面的单层有序组装而设计、制备新型功能薄膜材料受到人们的广泛关注,而将小分子化学键合到基质表面则是单分子层组装的重要方法之一。基于此,本实验室提出了以固液界面单层组装多环芳烃的超分子相互作用为基础的传感薄膜材料设计新思想,在此思想指导下通过改变基质的种类,变换传感元素等手段,设计、制备得到了一系列新颖的对水综合品质、硝酸盐、硝基甲烷、醇/水混合体系组成等敏感的传感薄膜材料。
     本论文在对二氧化硅基质表面自组装单层膜(self-assembled monolayers,SAMs)和荧光传感薄膜综述基础上,结合本实验室已有的研究工作,利用玻璃为基质,通过变换传感元素,调节连接臂长度,改变连接臂的亚结构等设计制备了多种对水体中二元羧酸、有机铜盐、Cu~(2+)离子等敏感的传感薄膜材料。而且,所制备的多数传感材料具有选择性高、响应可逆、稳定性好、使用寿命长等优点,为后续器件化研究奠定了坚实的基础。具体来讲,主要完成了以下工作:
     (1)将分子识别的概念引入传感薄膜的设计、制备中,以芘为传感元素,通过含有二胺结构的柔性长臂将其通过SAMs固定于玻璃基质表面,分别得到了连接臂中包含有乙二胺或丙二胺结构单元的两种新型传感薄膜材料。在这种薄膜的设计中,有意地引入了能与羧羟基形成氢键的二胺结构,以期得到对二元羧酸具有良好传感性能的薄膜材料。通过多种技术对所得传感薄膜的组成和结构进行了表征,并结合静态荧光和分时荧光技术对固定化芘在干态和水相中的光物理行为作了深入的研究。结果表明,这两种薄膜表面的芘多数以基态二聚体的形式存在。传感实验表明,二元羧酸的加入均使得这两种传感薄膜的单体发射和激基缔合物发射同时增强,而一元羧酸的存在并不影响薄膜的荧光发射。产生这一结果的原因被归结于二元羧酸插入相邻连接臂之间,改变了芘在基片表面的空间分布,从而引起薄膜荧光发射效率的变化。实验还发现,二元羧酸加入后体系达到平衡的时间因二元羧酸链长的不同而不同。一般来讲,二元羧酸的链越长,加入后体系达到平衡的时间越长。连接臂中含有乙二胺和丙二胺结构单元的传感薄膜对二元羧酸响应的对比实验表明,含有丙二胺结构单元的传感薄膜对二元羧酸的响应时间明显缩短。
     (2)考虑到在上述两种传感薄膜的设计、制备中,连接臂结构的微小变化都
In recent years, monomolecular assemblies on solid surfaces have attracted growing attention due to their potential applications in creation of sensing films. Chemical immobilization of small molecules onto substrate surfaces is one of the important approaches to prepare monomolecular assemblies. Based upon this methodology, a new idea of designing sensing films based on the supramolecular interactions of polycyclic aromatics self-assembled on solid-liquid interfaces was proposed in our laboratory, and a series of novel sensing films, which are sensitive to the purity of water, the presence of nitrite in aqueous phase, nitromethane in methanol, ethanol or water, or the composition of the mixture of water and ethanol, were successfully created.
    On the bases of the above-mentioned research works and the reviews on self-assembled monolayers on silicon dioxide surfaces and fluorescence sensing films, several sensing films were designed and prepared by changing the sensing element, adjusting the length of spacers, and altering the sub-structures of spacers in this thesis, and these sensing films were proved to be sensitive to the presence of dicarboxylic acids, organic copper (II) salts, and copper (II) salts, respectively. Furthermore, their sensing ability, high sensitivity, ideal reversibility, and long lifetime make them worthwhile to be exploited further.
    First, the concept of molecular recognition was introduced into the design and preparation of sensing films, two novel photo-induced luminescence films have been prepared by immobilizing pyrene on glass plate surfaces via flexible long spacers, containing ethylenediamine or 1,3-dianinopropane and 3-glycidoxypropyltrimethoxy-silane. During the designing of the films, imino units were intentionally introduced into a spacer. Imino units were chosen due to their character to form hydrogen bond with carboxyhydroxy groups. It was expected that the specific interaction of the imino group with carboxyhydroxy group would result in insertion of dicarboxylic acids into
引文
[1] S. Onclin, B. J. Ravoo, D. N. Reinhoudt, Engineering silicon oxide surfaces using self-assembled monolayers, Angew. Chem. Int. Ed., 2005,44,6282-6304.
    [2] A. Ulman, An Introduction to Ultrathin Organic Films, Academic Press, New York, 1991.
    [3] A. Ulman, Formation and structure of self-assembled monolayers, Chem. Rev., 1996, 96, 1533-1554.
    
    [4] New Scientist, 1983, 98,20.
    [5] L. Netzer, J. Sagiv, A new approach to construction of artificial monolayer assemblies, J. Am. Chem. Soc, 1983, 105, 674-676.
    [6] W. C. Bigelow, D. L. Pickett, W. A. Zisman, Oleophobic monolayers: I. Films adsorbed from solution in non-polar liquids, J. Colloid Sci., 1946, 1, 513-538.
    [7] W. C. Bigelow, E. Glass, W. A. Zisman, Oleophobic monolayers: II. Temperature effects and energy of adsorption, J. Colloid Sci., 1947, 2, 563-591.
    [8] E. E. Polymeropoulos, J. Sagiv, Electrical conduction through adsorbed monolayers, J. Chem. Phys., 1978,69, 1836-1847.
    [9] J. Sagiv, Organized monolayers by adsorption. 1. Formation and structure of oleophobic mixed monolayers on solid surfaces. J. Am. Chem. Soc, 1980, 102, 92-98.
    [10] D. K. Schwartz, Mechanisms and kinetics of self-assembled monolayers formation, Annu. Rev. Phys. Chem., 2001, 52,107-137.
    
    [11] J. C. Love, L. A. Estroff, J. K. Kriebel, R. G. Nuzzo, G. M. Whitesides, Self-assembled monolayers of thiolates on metals as a form of nanotechnology, Chem. Rev., 2005, 105, 1103-1170.
    
    [12] F. Schreiber, Self-assembled monolayers: From 'simple' model systems to biofunctionalized interfaces, J. Phys.: Condens. Matter, 2004,16, R881-R900.
    [13] R. G. Nuzzo, D. Allara, Adsorption of bifunctional organic disulfides on gold surfaces, J. Am. Chem. Soc, 1983, 105,4481-4483.
    [14] S. Flink, F. C. J. M. van Veggel, D. N. Reinhoudt, Self-assembled monolayers on gold for applications in chemical sensing, Sensors Update, 2000, 8, 3-19.
    [15] L. Netzer, R. Iscovici, J. Sagiv, Adsorbed monolayers versus Langmuir-Blodgett monolayers —Why and how? I: From monolayer to multilayer, by adsorption, Thin Solid Films, 1983, 99, 235-241.
    [16] L. Netzer, R. Iscovici, J. Sagiv, Adsorbed monolayers versus Langmuir-Blodgett monolayers —Why and how? Ⅱ: Characterization of built-up films constructed by stepwise adsorption of individual monolayers, Thin Solid Films, 1983,100,67-76.
    [17] R. Maoz, J. Sagiv, On the formation and structure of self-assembling monolayers. I. A comparative ATR-wettability study of Langmuir-Blodgett and adsorbed films on flat substrates and glass microbeads, J. Colloid Interface Sci., 1984,100,465-496.
    [18] J. Gun, R. Iscovici, J. Sagiv, On the formation and structure of self-assembling monolayers: Ⅱ. A comparative study of Langmuir-Blodgett and adsorbed films using ellipsometry and IR reflection-absorption spectroscopy, J. Colloid Interface Sci., 1984, 101, 201-213.
    [19] J. Gun, J. Sagiv, On the formation and structure of self-assembling monolayers: Ⅲ. Time of formation, solvent retention, and release, J. Colloid Interface Sci., 1986, 112,457-472.
    [20] S. R. Cohen, R. Naaman, J. Sagiv, Thermally induced disorder in organized organic mono-layers on solid substrates, J. Phys. Chem., 1986,90, 3054-3056.
    [21] R. Maoz, J. Sagiv, Penetration-controlled reactions in organized monolayer assemblies. 1. Aqueous permanganate interaction with monolayer and multilayer films of long-chain surfactants, Langmuir, 1987, 3, 1034-1044.
    [22] R. Maoz, J. Sagiv, Penetration-controlled reactions in organized monolayer assemblies. 2. Aqueous permanganate interaction with self-assembling monolayers of long-chain surfactants, Langmuir, 1987, 3, 1045-1051.
    [23] L. T. Zhuravlev, Concentration of hydroxyl groups on the surface of amorphous silicas, Langmuir, 1987,3,316-318.
    [24] H. O. Finklea, L. R. Robinson, A. Blackburn, B. Richter, D. Allara, T. Bright, Formation of an organized monolayer by solution adsorption of octadecyltrichlorosilane on gold: Electrochemical properties and structural characterization, Langmuir, 1986,2,239-244.
    [25] D. L. Allara, A. N. Parikh, F. Rondelez, Evidence for a unique chain organization in long chain silane monolayers deposited on two widely different solid substrates, Langmuir, 1995, 11,2357-2360.
    [26] P. Silberzan, L. Leger, D. Ausserre, J. J. Benattar, Silanation of silica surfaces. A new method of constructing pure or mixed monolayers, Langmuir, 1991,7, 1647-1651.
    [27] C. P. Tripp, M. L. Hair, An infrared study of the reaction of octadecyltrichlorosilane with silica, Langmuir, 1992, 8, 1120-1126.
    [28] C. P. Tripp, M. L. Hair, Direct observation of the surface bonds between self-assembled monolayers of octadecyltrichlorosilane and silica surfaces: A low-frequency IR study at the
    ?solid/liquid interface, Langmuir, 1995,11, 1215-1219.
    [29] D. L. Angst, G. W. Simmons, Moisture absorption characteristics of organosiloxane self-assembled monolayers, Langmuir, 1991, 7,2236-2242.
    [30] J. D. Le Grange, J. L. Markham, C. R. Kurkjian, Effects of surface hydration on the deposition of silane monolayers on silica, Langmuir, 1993, 9, 1749-1753.
    [31] R. W. P. Fairbank, M. J. Wirth, Role of surface-adsorbed water in the horizontal polymerization of trichlorosilanes, J. Chromatogr. A, 1999, 830, 285-291.
    [32] R. Wang, S. L. Wunder, Effects of silanol density, distribution, and hydration state of fumed silica on the formation of self-assembled monolayers of n-octadecyltrichlorosilane, Langmuir, 2000, 16, 5008-5016.
    [33] R. R. Rye, G. C. Nelson, M. T. Dugger, Mechanistic aspects of alkylchlorosilane coupling reactions, Langmuir, 1997, 13, 2965-2972.
    [34] Y. Wang, M. Lieberman, Growth of ultrasmooth octadecyltrichlorosilane self-assembled monolayers on SiO_2, Langmuir, 2003, 19, 1159-1167.
    [35] M. E. McGovern, K. M. R. Kallury, M. Thompson, Role of solvent on the silanization of glass with octadecyltrichlorosilane, Langmuir, 1994, 10,3607-3614.
    [36] H. Brunner, T. Valiant, U. Mayer, H. Hoffmann, Formation of ultrathin films at the solid-liquid interface studied by in situ ellipsometry, J. Colloid Interface Sci., 1999, 212, 545-552.
    [37] K. Bierbaum, M. Grunze, A. A. Baski, L. F. Chi, W. Schrepp, H. Fuchs, Growth of self-assembled n-alkyltrichlorosilane films on Si (100) investigated by atomic force microscopy, Langmuir, 1995, 11,2143-2150.
    [38] S. R. Wasserman, G. M. Whitesides, I. M. Tidswell, B. M. Ocko, P. S. Pershan, J. D. Axe, The structure of self-assembled monolayers of alkylsiloxanes on silicon: a comparison of results from ellipsometry and low-angle X-ray reflectivity, J. Am. Chem. Soc, 1989, 111, 5852-5861.
    [39] I. M. Tidswell, B. M. Ocko, P. S. Pershan, S. R. Wasserman, G. M. Whitesides, J. D. Axe, X-ray specular reflection studies of silicon coated by organic monolayers (alkylsiloxanes), Phys. Rev. B, 1990, 41, 1111-1128.
    [40] T. Ohtake, N. Mino, K. Ogawa, Effect of hydrocarbon chain length on arrangement of chemically adsorbed monolayers, Langmuir, 1992, 8, 2081-2083.
    [41] K. Mathauer, C. W. Frank, Naphthalene chromophore tethered in the constrained environment of a self-assembled monolayer, Langmuir, 1993, 9, 3002-3008.
    [42] K. Mathauer, C. W. Frank, Binary self-assembled monolayers as prepared by successiveadsorption of alkyltrichlorosilanes, Langmuir, 1993, 9, 3446-3451.
    [43] R. Banga, J. Yarwood, A. M. Morgan, B. Evans, J. Kells, FTIR and AFM studies of the kinetics and self-assembly of alkyltrichlorosilanes and (perfluoroalkyl)trichlorosilanes onto glass and silicon, Langmuir, 1995, 11,4393-4399.
    [44] T. Valiant, H. Brunner, U. Mayer, H. Hoffmann, T. Leitner, R. Resch, G. Friedbacher, Formation of self-assembled octadecylsiloxane monolayers on mica and silicon surfaces studied by atomic force microscopy and infrared spectroscopy, J. Phys. Chem. B, 1998, 102, 7190-7197.
    [45] S. Gauthier, J. P. Aime, T. Bouhacina, A. J. Attias, B. Desbat, Study of grafted silane molecules on silica surface with an atomic force microscope, Langmuir, 1996,12, 5126-5137.
    [46] T. Leitner, G. Friedbacher, T. Valiant, H. Brunner, U. Mayer, H. Hoffmann, Investigations of the growth of self-assembled octadecylsiloxane monolayers with atomic force microscopy, Microchim. Acta, 2000, 133, 331-336.
    [47] Y. Liu, L. K. Wolf, M. C. Messmer, A study of alkyl chain conformational changes in self-assembled n-octadecyltrichlorosilane monolayers on fused silica surfaces, Langmuir, 2001,17,4329-4335.
    [48] W. Gao, L. Reven, Solid-state NMR studies of self-assembled monolayers, Langmuir, 1995, 11,1860-1863.
    [49] J. V. Davidovits, V. Pho, P. Silberzan, M. Goldmann, Temperature influence on the formation of silanized monolayers on silica: An atomic force microscopy study, Surf. Sci., 1996, 352-354, 369-373.
    [50] C. Carraro, O. W. Yauw, M. M. Sung, R. Maboudian, Observation of three growth mechanisms in self-assembled monolayers, J. Phys. Chem. B, 1998, 102,4441-4445.
    [51] M. M. Sung, C. Carraro, O. W. Yauw, Y. Kim, R. Maboudian, Reversible liquid-liquid transitions in the early stages of monolayer self-assembly, J. Phys. Chem. B, 2000, 104, 1556-1559.
    [52] A. Glaser, J. Foisner, G. Friedbacher, H. Hoffmann, Low-temperature investigation of the growth mechanism of alkylsiloxane self-assembled monolayers, Anal. Bioanal. Chem., 2004, 379,653-657.
    [53] T. Nakagawa, M. Soga, Contact angle and atomic force microscopy study of reactions of n-alkyltrichlorosilanes with muscovite micas exposed to water vapor plasmas with various power densities, Jpn. J. Appl. Phys., 1997,36,6915-6921.
    
    [54] 徐国华,H.Ko, OTS自组装单分子膜在玻璃表面形成过程的AFM研究,高等学校化学学报, 2000, 21, 1257-1260.
    [55] M. Reiniger, B. Basnar, G. Friedbacher, M. Schleberger, Atomic force microscopy of thin organic films on silicon in ultrahigh vacuum and under ambient conditions, Surf. Interface Anal., 2002, 33, 85-88.
    [56] T. Balgar, R. Bautista, N. Hartmann, E. Hasselbrink, An AFM study of the growth kinetics of the self-assembled octadecylsiloxane monolayer on oxidized silicon, Surf. Sci., 2003, 532-535, 963-969.
    [57] R. R. Rye, Transition temperatures for n-alkyltrichlorosilane monolayers, Langmuir, 1997, 13, 2588-2590.
    [58] R. Vaidya, R. J. Simonson, J. Cesarano III, D. Dimos, G. P. Lopez, Formation and stability of self-assembled monolayers on thin films of lead zirconate titanate (PZT), Langmuir, 1996, 12, 2830-2836.
    [59] M. Calistri-Yeh, E. J. Kramer, R. Sharma, W. Zhao, M. H. Rafailovich, J. Sokolov, J. D. Brock, Thermal stability of self-assembled monolayers from alkylchlorosilanes, Langmuir, 1996,12,2747-2755.
    [60] U. Srinivasan, M. R. Houston, R. T. Howe, R. Maboudian, Monolayers of fluorinated silanes as electron-beam resists, J. Microelectromech. Syst., 1998, 7, 252-260.
    [61] R. Wang, G. Baran, S. L. Wunder, Packing and thermal stability of polyoctadecylsiloxane compared with octadecylsilane monolayers, Langmuir, 2000, 16, 6298-6305.
    [62] R. Wang, S. L. Wunder, Thermal stability of octadecylsilane monolayers on silica: Curvature and free volume effects, J. Phys. Chem. B, 2001, 105, 173-181.
    
    [63] D. Devaprakasam, S. Sampath, S. K. Biswas, Thermal stability of perfluoroalkyl silane self- assembled on a polycrystalline aluminum surface, Langmuir, 2004, 20, 1329-1334.
    [64] N. Tillman, A. Ulman, J. S. Schildkraut, T. L. Penner, Incorporation of phenoxy groups in self-assembled monolayers of trichlorosilane derivatives. Effects on film thickness, wettability, and molecular orientation, J. Am. Chem. Soc, 1988,110,6136-6144.
    [65] M. R. Linford, C. E. D. Chidsey, Alkyl monolayers covalently bonded to silicon surfaces, J. Am. Chem. Soc, 1993, 115,12631-12632.
    [66] S. R. Wasserman, Y. T. Tao, G. M. Whitesides, Structure and reactivity of alkylsiloxane monolayers formed by reaction of alkyltrichlorosilanes on silicon substrates, Langmuir, 1989, 5, 1074-1087.
    
    [67] V. I. Nefodov, X-ray Photoelectron Spectroscopy of Solid Surfaces, VSP, Utrecht, 1988.
    [68] J. C. Vickerman, Surface Analysis—The Principal Techniques, Wiley, Chichester, 1997.
    [69] B. Hagenhoff, A. Benninghoven, K. Stoppek-Langner, J. Grobe, Surface investigations of silylated substrates by TOF-SIMS, Adv. Mater., 1994, 6,142-144.
    [70] S. Flink, F. C. J. M. van Veggel, D. N. Reinhoudt, Sensor functionalities in self-assembled monolayers, Adv. Mater., 2000, 12, 1315-1328.
    [71] S. N. Magonov, M.-H. Whangbo, Surface Analysis with STM and AFM, VCH, Weinheim, 1996.
    [72] D. G. Kurth, T. Bein, Surface reactions on thin layers of silane coupling agents, Langmuir, 1993,9,2965-2973.
    [73] O. Gershevitz, C. N. Sukenik, In situ FTIR-ATR analysis and titration of carboxylic acid-terminated SAMs, J. Am. Chem. Soc, 2004, 126,482-483.
    [74] R. Maoz, H. Cohen, J. Sagiv, Specific nonthermal chemical structural transformation induced by microwaves in a single amphiphilic bilayer self-assembled on silicon, Langmuir, 1998, 14, 5988-5993.
    [75] Y. Wang, T. J. Su, R. Green, Y. Tang, D. Styrkas, T. N. Danks, R. Bolton, J. R. Lu, Covalent coupling of an phospholipid monolayer on the surface of ceramic materials, Chem. Commun., 2000, 587-588.
    [76] J. S. Park, G. S. Lee, Y.-J. Lee, Y. S. Park, K. B. Yoon, Organization of microcrystals on glass by adenine-thymine hydrogen bonding, J. Am. Chem. Soc, 2002,124, 13366-13367.
    [77] M. K. Chaudhury, G. M. Whitesides, Correlation between surface free energy and surface constitution, Science, 1992,255, 1230-1232.
    [78] N. Balachander, C. N. Sukenik, Monolayer transformation by nucleophilic substitution: Applications to the creation of new monolayer assemblies, Langmuir, 1990,6, 1621-1627.
    [79] Y. W. Lee, J. Reed-Mundell, J. E. Zull, C. N. Sukenik, Electrophilic siloxane-based self-assembled monolayers for thiol-mediated anchoring of peptides and proteins, Langmuir, 1993, 9,3009-3014.
    [80] K. Ogawa, N. Mino, H. Tamura, M. Hatada, Polymerization of a chemical adsorbed monolayer of an acetylene derivative, Langmuir, 1990,6,1807-1809.
    [81] L. A. Wenzler, G. L. Moyes, G. N. Raikar, R. L. Hansen, J. M. Harris, T. P. Beebe, L. L. Wood, S. S. Saavedra, Measurements of single-molecule bond-rupture forces between self-assembled monolayers of organosilanes with the atomic force microscope, Langmuir, 1997, 13,3761-3768.
    [82] J. A. Chupa, S. Xu, R. F. Fischetti, R. M. Strongin, J. P. McCauley, A. B. Smith Jr., J. K. Blasie III, L. J. Peticolas, J. C. Bean, A monolayer of C_(60) tethered to the surface of aninorganic substrate: Assembly and structure, J. Am. Chem. Soc, 1993, 115, 4383-4384.
    [83] M. V. Baker, J. D. Watling, Functionalization of alkylsiloxane monolayers via free-radical bromination, Langmuir, 1997, 13, 2027-2032.
    [84] M.-T. Lee, G. S. Ferguson, Stepwise synthesis of a well-defined silicon (oxide)/polyimide interface, Langmuir, 2001, 17, 762-767.
    [85] V. V. Tsukruk, L. M. Lander, W. J. Brittain, Atomic force microscopy of C_(60) tethered to a self-assembled monolayer, Langmuir, 1994, 10,996-999.
    [86] G. E. Fryxell, P. C. Rieke, L. L. Wood, M. H. Engelhard, R. E. Williford, G. L. Graff, A. A. Campbell, R. J. Wiacek, L. Lee, A. Halverson, Nucleophilic displacements in mixed self- assembled monolayers, Langmuir, 1996, 12, 5064-5075.
    [87] T. Valiant, J. Kattner, H. Brunner, U. Mayer, H. Hoffmann, Investigation of the formation and structure of self-assembled alkylsiloxane monolayers on silicon using in situ attenuated total reflection infrared spectroscopy, Langmuir, 1999, 15, 5339-5346.
    [88] S. Onclin, A. Mulder, J. Huskens, B. J. Ravoo, D. N. Reinhoudt, Molecular printboards: Monolayers of β-cyclodextrins on silicon oxide surfaces, Langmuir, 2004, 20, 5460-5466.
    [89] K. Bierbaum, M. Kinzler, Ch. Woell, M. Grunze, G. Haehner, S. Heid, F. Effenberger, A near edge X-ray absorption fine structure spectroscopy and X-ray photoelectron spectroscopy study of the film properties of self-assembled monolayers of organosilanes on oxidized Si (100), Langmuir, 1995, 11,512-518.
    [90] S. P. Zhdanov, L. S. Kosheleva, T. I. Titova, IR study of hydroxylated silica, Langmuir, 1987, 3, 960-967.
    [91] K. Chen, W. B. Caldwell, C. A. Mirkin, Fullerene self-assembly onto (MeO)_3Si(CH_2)-3NH_2- modified oxide surfaces, J. Am. Chem. Soc, 1993, 115, 1193-1194.
    [92] D. Q. Li, B. I. Swanson, Surface acoustic wave thin-film chemical microsensors based on covalently bound C_(60) derivatives: A molecular self-assembly approach, Langmuir, 1993, 9, 3341-3344.
    
    [93] P. A. Heiney, K. Gruneberg, J. Fang, C. Dulcey, R. Shashidhar, Structure and growth of chromophore-functionalized (3-aminopropyl)triethoxysilane self-assembled on silicon, Langmuir, 2000, 16, 2651-2657.
    [94] J. Fang, M.-S. Chen, R. Shashidhar, Structural changes in self-assembled monolayers induced by photodimerization: A scanning force microscopy investigation, Langmuir, 2001, 17, 1549- 1551.
    [95] S. Flink, F. C. J. M. van Veggel, D. N. Reinhoudt, Functionalization of self-assembled mono-layers on glass and oxidized silicon wafers by surface reactions, J. Phys. Org. Chem., 2001, 14, 407-415.
    [96] A. V. Krasnoslobodtsev, S. N. Smirnov, Effect of water on silanization of silica by trime- thoxysilanes, Langmuir, 2002, 18, 3181-3184.
    [97] Z. Zhang, R. Hu, Z. Liu, Formation of a porphyrin monolayer film by axial ligation of protoporphyrin IX zinc to an amino-terminated silanized glass surface, Langmuir, 2000, 16, 1158-1162.
    [98] R. Rosario, D. Gust, M. Hayes, F. Jahnke, J. Springer, A. A. Garcia, Photon-modulated wettability changes on spiropyran-coated surfaces, Langmuir, 2002, 18, 8062-8069.
    [99] B. C. Bunker, B. I. Kim, J. E. Houston, R. Rosario, A. A. Garcia, M. Hayes, D. Gust, S. T. Picraux, Direct observation of photo switching in tethered spiropyrans using the interfacial force microscope, Nano Lett., 2003,3, 1723-1727.
    
    [100] M. Hu, S. Noda, T. Okubo, Y. Yamaguchi, H. Komiyama, Structure and morphology of self- assembled 3-mercaptopropyltrimethoxysilane layers on silicon oxide, Appl. Surf. Sci., 2001, 181,307-316.
    [101] E. Cano-Serrano, J. M. Campos-Martin, J. L. G. Fierro, Sulfonic acid-functionalized silica through quantitative oxidation of thiol groups, Chem. Commun., 2003, 246-247.
    [102] J.-Y. Tseng, M.-H. Lin, L.-K. Chau, Preparation of colloidal gold multilayers with 3-(mercap- topropyl)-trimethoxysilane as a linker molecule, Colloids Surf. A, 2001, 182,239-245.
    [103] Z.-C. Liu, Q.-G He, P.-F. Xiao, B. Liang, J.-X. Tan, N.-Y. He, Z.-H. Lu, Self-assembly monolayer of mercaptopropyltrimethoxysilane for electroless deposition of Ag, Mater. Chem. Phys., 2003, 82,301-305.
    [104] I. Luzinov, D. Julthongpiput, A. Liebmann-Vinson, T. Cregger, M. D. Foster, V. V. Tsukruk, Epoxy-terminated self-assembled monolayers: Molecular glues for polymer layers, Langmuir, 2000,16,504-516.
    [105] A. Kulak, Y.-J. Lee, Y. S. Park, K. B. Yoon, Orientation-controlled monolayer assembly of zeolite crystals on glass and mica by covalent linkage of surface-bound epoxide and amine groups, Angew. Chem. Int. Ed., 2000,39,950-953.
    
    [106] S. Busse, M. DePaoli, G. Wenz, S. Mittler, An integrated optical Mach-Zehnder interfero meter functionalized by β-cyclodextrin to monitor binding reactions, Sens. Actuators B, 2001, 80,116-124.
    [107] O. Prucker, J. Ruhe, Synthesis of poly(styrene) monolayers attached to high surface area silica gels through self-assembled monolayers of azo initiators, Macromolecules, 1998,31, 592-601.
    [108] D.-H. Jung, I. J. Park, Y. K. Choi, S.-B. Lee, H. S. Park, J. Ruhe, Perfluorinated polymer monolayers on porous silica for materials with super liquid repellent properties, Langmuir, 2002,18,6133-6139.
    [109] B. Zhao, W. J. Brittain, Synthesis of tethered polystyrene-block-poly(methyl methacrylate) monolayer on a silicate substrate by sequential carbocationic polymerization and atom transfer radical polymerization, J. Am. Chem. Soc., 1999, 121, 3557-3558.
    [110] M. Husseman, E. E. Malmstrom, M. McNamara, M. Mate, D. Mecerreyes, D. G. Benoit, J. L. Hedrick, P. Mansky, E. Huang, T. P. Russell, C. J. Hawker, Controlled synthesis of polymer brushes by "living" free radical polymerization techniques, Macromolecules, 1999, 32, 1424-1431.
    [111] X. Huang, M. J. Wirth, Surface initiation of living radical polymerization for growth of tethered chains of low polydispersity, Macromolecules, 1999, 32, 1694-1696.
    [112] K. Matyjaszewski, P. J. Miller, N. Shukla, B. Immaraporn, A. Gelman, B. B. Luokala, T. M. Siclovan, G. Kickelbick, T. Valiant, H. Hoffmann, T. Pakula, Polymers at interfaces: Using atom transfer radical polymerization in the controlled growth of homopolymers and block copolymers from silicon surfaces in the absence of untethered sacrificial initiator, Macromolecules, 1999, 32, 8716-8724.
    [113] N. Tillman, A. Ulman, T. L. Penner, Formation of multilayers by self-assembly, Langmuir, 1989,5,101-111.
    [114] R. J. Collins, I. T. Bae, D. A. Scherson, C. N. Sukenik, Photocontrolled formation of hydroxyl-bearing monolayers and multilayers, Langmuir, 1996,12, 5509-5511.
    [115] S. Kato, C. Pac, Fabrication of multilayer assemblies based on a boronate-terminated self-assembled monolayer, Langmuir, 1998, 14, 2372-2377.
    [116] R. Maoz, J. Sagiv, D. Degenhardt, H. Mohwald, P. Quint, Hydrogen-bonded multilayers of self-assembling silanes: Structure elucidation by combined Fourier transform infra-red spectroscopy and X-ray scattering techniques, Supramol. Sci., 1995, 2,9-24.
    [117] R. Maoz, S. Matlis, E. DiMasi, B. M. Ocko, J. Sagiv, Self-replicating amphiphilic monolayers, Nature, 1996,384, 150-153.
    [118] R. Maoz, J. Sagiv, Targeted self-replication of silane multilayers, Adv. Mater., 1998, 10, 580-584.
    [119] H. Lee, L. J. Kepley, H. G. Hong, T. E. Mallouk, Inorganic analogs of Langmuir-Blodgett films: Adsorption of ordered zirconium 1,10-decanebisphosphonate multilayers on silicon surfaces, J. Am. Chem. Soc, 1988, 110,618-620.
    [120] H. Lee, L. J. Kepley, H. G. Hong, S. Akhter, T. E. Mallouk, Adsorption of ordered zirconium phosphonate multilayer films on silicon and gold surfaces, J. Phys. Chem., 1988, 92, 2597-2601.
    [121] D. Q. Li, M. A. Ratner, T. J. Marks, C. H. Zhang, J. Yang, G. K. Wong, Chromophoric self-assembled multilayers. Organic superlattice approaches to thin-film nonlinear optical materials, J. Am. Chem. Soc, 1990, 112,7389-7390.
    [122] A. K. Kakkar, F. Kubota, D. S. Allan, S. Yitzchaik, S. B. Roscoe, T. J. Marks, W. Lin, G. K. Wong, Chromophoric self-assembled nonlinear optical multilayer materials. Synthesis, properties, and structural interconversions of assemblies with rodlike alkynyl chromophores, Langmuir, 1993, 9, 388-390.
    [123] S. Yitzchaik, S. B. Roscoe, A. K. Kakkar, D. S. Allan, T. J. Marks, Z. Xu, T. Zhang, W. Lin, G. K. Wong, Chromophoric self-assembled NLO multilayer materials: real time observation of monolayer growth and microstructural evolution by in situ second harmonic generation techniques, J. Phys. Chem., 1993,97,6958-6960.
    [124] S. B. Roscoe, S. Yitzchaik, A. K. Kakkar, T. J. Marks, W. Lin, G. K. Wong, Ion exchange processes and environmental effects in chromophoric self-assembled superlattices. Manipulation of microstructure and large enhancements in nonlinear optical response, Langmuir, 1994, 10, 1337-1339.
    [125] S. Yitzchaik, T. J. Marks, Chromophoric self-assembled superlattices, Acc. Chem. Res., 1996, 29, 197-202.
    [126] S. B. Roscoe, A. K. Kakkar, T. J. Marks, A. Malik, M. K. Durbin, W. Lin, G. K. Wong, P. Dutta, Self-assembled chromophoric NLO-active monolayers. X-ray reflectivity and second-harmonic generation as complementary probes of building block-film microstructure relationships, Langmuir, 1996, 12,4218-4223.
    [127] M. E. van der Boom, G. Evmenenko, C. Yu, P. Dutta, T. J. Marks, Interrupted-growth studies of the self-assembly of intrinsically acentric siloxane-derived monolayers, Langmuir, 2003, 19, 10531-10537.
    [128] D. S. Ginger, H. Zhang, C. A. Mirkin, The evolution of dip-pen nanolithography, Angew. Chem. Int. Ed., 2003,43, 30-45.
    [129] A. Y. Fadeev, T. J. McCarthy, Binary monolayer mixtures: Modification of nanopores in silicon-supported tris(trimethylsiloxy)silyl monolayers, Langmuir, 1999, 15,7238-7243.
    [130] F. Fan, C. Maldarelli, A. Couzis, Fabrication of surfaces with nanoislands of chemical functionality by the phase separation of self-assembling monolayers on silicon, Langmuir,2003, 19, 3254-3265.
    [131] K. R. Finnie, R. G. Nuzzo, The phase behavior of multicomponent self-assembled monolayers directs the nanoscale texturing of Si (100) by wet etching, Langmuir, 2001, 17, 1250-1254.
    [132] J. P. Lee, Y. J. Jang, M. M. Sung, Atomic layer deposition of TiO_2 thin films on mixed self- assembled monolayers studied as a function of surface free energy, Adv. Funct. Mater., 2003, 13, 873-876.
    [133] N. Kumar, C. Maldarelli, C. Steiner, A. Couzis, Formation of nanometer domains of one chemical functionality in a continuous matrix of a second chemical functionality by sequential adsorption of silane self-assembled monolayers, Langmuir, 2001, 17, 7789-7797.
    [134] J. Buseman-Williams, J. C. Berg, Formation and characterization of patterned heterogeneous silane films, Langmuir, 2004, 20, 2026-2029.
    [135] Z. Xiao, C. Cai, A. Mayeux, A. Milenkovic, The first organosiloxane thin films derived from SiCl_3-terminated dendrons. Thickness-dependent nano- and mesoscopic structures of the films deposited on mica by spin-coating, Langmuir, 2002, 18, 7728-7739.
    [136] C. M. Yam, A. Mayeux, A. Milenkovic, C. Cai, Wettabilities of organosiloxane thin films derived from SiCl3-terminated carbosilane dendrons on mica, Langmuir, 2002, 18, 10274- 10278.
    [137] B. J. Hong, J. Y. Shim, S. J. Oh, J. W. Park, Self-assembly of a dendron through multiple ionic interaction to give mesospacing between reactive amine groups on the surface, Langmuir, 2003, 19, 2357-2365.
    [138] J. P. Lee, M. M. Sung, A new patterning method using photocatalytic lithography and selective atomic layer deposition, J. Am. Chem. Soc, 2004, 126,28-29.
    [139] C. S. Dulcey, J. H. Georger Jr, V. Krauthamer, D. A. Stenger, T. L. Fare, J. M. Calvert, Deep UV photochemistry of chemisorbed monolayers: patterned coplanar molecular assemblies, Science, 1991,252,551-554.
    [140] D. A. Stenger, J. H. Georger, C. S. Dulcey, J. J. Hickman, A. S. Rudolph, T. B. Nielsen, S. M. McCort, J. M. Calvert, Coplanar molecular assemblies of amino- and perfluorinated alkyl- silanes: Characterization and geometric definition of mammalian cell adhesion and growth, J. Am. Chem. Soc, 1992, 114, 8435-8442.
    
    [141] U. Jonas, A. del Campo, C. Kruger, G. Glasser, D. Boos, Supramolecular chemistry and self- assembly special feature: Colloidal assemblies on patterned silane layers, Proc. Natl. Acad. Sci. USA, 2002, 99, 5034-5039.
    [142] M. Nakagawa, K. Ichimura, Photopatterning of self-assembled monolayers to generate anilinemoieties, Colloids Surf. A, 2002, 204, 1-7.
    [143] M. C. Pirrung, Spatially addressable combinatorial libraries, Chem. Rev., 1997,97,473-488.
    [144] S. L. Brandow, M.-S. Chen, R. Aggarwal, C. S. Dulcey, J. M. Calvert, W. J. Dressick, Fabrication of patterned amine reactivity templates using 4-chloromethylphenylsiloxane self- assembled monolayer films, Langmuir, 1999, 15, 5429-5432.
    [145] H. Sugimura, K. Ushiyama, A. Hozumi, O. Takai, Micropatterning of alkyl- and fluoroalkyl- silane self-assembled monolayers using vacuum ultraviolet light, Langmuir, 2000,16, 885-888.
    [146] H. Sugimura, T. Hanji, O. Takai, T. Masuda, H. Misawa, Photolithography based on organo- silane self-assembled monolayer resist, Electrochim. Acta, 2001, 47, 103-107.
    [147] B. Zhao, J. S. Moore, D. J. Beebe, Surface-directed liquid flow inside microchannels, Science, 2001,291,1023-1026.
    [148] B. Zhao, J. S. Moore, D. J. Beebe, Principles of surface-directed liquid flow in microfiuidic channels, Anal. Chem., 2002, 74,4259-4268.
    [149] B. Zhao, N. O. L. Viernes, J. S. Moore, D. J. Beebe, Control and applications of immiscible liquids in microchannels, J. Am. Chem. Soc, 2002,124, 5284-5285.
    [150] M. J. Lercel, G. F. Redinbo, F. D. Pardo, M. Rooks, R. C. Tiberio, P. Simpson, H. G. Craighead, C. W. Sheen, A. N. Parikh, D. L. Allara, Electron beam lithography with monolayers of alkylthiols and alkylsiloxanes, J. Vac. Sci. Technol. B, 1994, 12, 3663-3667.
    [151] P. M. St. John, H. G. Craighead, Monolayers of fiuorinated silanes as electron-beam resists, J. Vac. Sci. Technol. B, 1996,14, 69-74.
    [152] M. J. Lercel, H. G. Craighead, A. N. Parikh, K. Seshadri, D. L. Allara, Sub-10 nm lithography with self-assembled monolayers, Appl. Phys. Lett., 1996, 68,1504-1506.
    [153] C. R. K. Marrian, F. K. Perkins, S. L. Brandow, T. S. Koloski, E. A. Dobisz, J. M. Calvert, Low voltage electron beam lithography in self-assembled ultrathin films with the scanning tunneling microscope, Appl. Phys. Lett., 1994, 64, 390-392.
    [154] T. Sato, D. G. Hasko, H. Ahmed, Nanoscale colloidal particles: Monolayer organization and patterning, J. Vac. Sci. Technol. B, 1997,15,45-48.
    [155] K. H. Choi, J. P. Bourgoin, S. Auvray, D. Esteve, G. S. Duesberg, S. Roth, M. Burghard, Controlled deposition of carbon nanotubes on a patterned substrate, Surf. Sci., 2000, 462, 195-202.
    [156] R. Krupke, S. Malik, H. B. Weber, O. Hampe, M. M. Kappes, H. von Lohneysen, Patterning and visualizing self-assembled monolayers with low-energy electrons, Nano Lett., 2002, 2, 1161-1164.
    [157] C. K. Harnett, K. M. Satyalakshmi, H. G. Craighead, Low-energy electron-beam patterning of amine-functionalized self-assembled monolayers, Appl. Phys. Lett., 2000, 76, 2466-2468.
    [158] Y. J. Jung, Y.-H. La, H. J. Kim, T.-H. Kang, K. Ihm, K.-J. Kim, B. Kim, J. W. Park, Pattern formation through selective chemical transformation of imine group of self-assembled monolayer by low-energy electron beam, Langmuir, 2003, 19, 4512-4518.
    
    [159] I. S. Maeng, J. W. Park, Patterning on self-assembled monolayers by low-energy electron- beam irradiation and its vertical amplification with atom transfer radical polymerization, Langmuir, 2003, 19, 4519-4522.
    [160] X. Wang, W. Hu, R. Ramasubramaniam, G. H. Bernstein, G. Snider, M. Lieberman, Formation, characterization, and sub-50-nm patterning of organosilane monolayers with embedded disulfide bonds: An engineered self-assembled monolayer resist for electron-beam lithography, Langmuir, 2003, 19, 9748-9758.
    [161] A. Pallandre, K. Glinel, A. M. Jonas, B. Nysten, Binary nanopatterned surfaces prepared from silane monolayers, Nano Lett., 2004,4, 365-371.
    [162] R. L. Kubena, R. J. Joyce, J. W. Ward, H. L. Garvin, F. P. Stratton, R. G. Brault, Dot lithography for zero-dimensional quantum wells using focused ion beams, J. Vac. Sci. Technol. B, 1988, 6, 353-356.
    [163] P. C. Rieke, B. J. Tarasevich, L. L. Wood, M. H. Engelhard, D. R. Baer, G. E. Fryxell, C. M. John, D. A. Laken, M. C. Jaehnig, Spatially resolved mineral deposition on patterned self-assembled monolayers, Langmuir, 1994, 10, 619-622.
    [164] E. T. Ada, L. Hanley, S. Etchin, J. Melngailis, W. J. Dressick, M.-S. Chen, J. M. Calvert, Ion beam modification and patterning of organosilane self-assembled monolayers, J. Vac. Sci. Technol. B, 1995, 13, 2189-2196.
    [165] T. Schenkel, M. Schneider, M. Hattass, M. W. Newman, A. V. Barnes, A. V. Hamza, D. H. Schneider, R. L. Cicero, C. E. D. Chidsey, Electronic desorption of alkyl monolayers from silicon by very highly charged ions, J. Vac. Sci. Technol. B, 1998, 16, 3298-3300.
    [166] R. Younkin, K. K. Berggren, K. S. Johnson, M. Prentiss, D. C. Ralph, G. M. Whitesides, Nanostructure fabrication in silicon using cesium to pattern a self-assembled monolayer, Appl. Phys. Lett., 1997, 71, 1261-1263.
    [167] W. J. Dressick, C. S. Dulcey, S. L. Brandow, H. Witschi, P. F. Neeley, Proximity X-ray lithography of siloxane and polymer films containing benzyl chloride functional groups, J. Vac. Sci. Technol. A, 1999, 17, 1432-1440.
    [168] Y.-H. La, H. J. Kim, I. S. Maeng, Y. J. Jung, J. W. Park, K.-J. Kim, T.-H. Kang, B. Kim,Selective cleavage of nitro groups in nitro-substituted aromatic monolayers by synchrotron soft X-rays: Effect of molecular structure on cleavage rates, Langmuir, 2002, 18,2430-2433.
    [169] Y.-H. La, Y. J. Jung, H. J. Kim, T.-H. Kang, K. Ihm, K.-J. Kim, B. Kim, J. W. Park, Sub-100-nm pattern formation through selective chemical transformation of self-assembled monolayers by soft X-ray irradiation, Langmuir, 2003, 19, 4390-4395.
    [170] X. M. Yang, R. D. Peters, T. K. Kim, P. F. Nealey, S. L. Brandow, M.-S. Chen, L. M. Shirey, W. J. Dressick, Proximity X-ray lithography using self-assembled alkylsiloxane films: Resolution and pattern transfer, Langmuir, 2001, 17, 228-233.
    [171] S. O. Kim, H. H. Solak, M. P. Stoykovich, N. J. Ferrier, J. J. de Pablo, P. F. Nealey, Epitaxial self-assembly of block copolymers on lithographically defined nanopatterned substrates, Nature, 2003,424,411-414.
    
    [172] Y. Xia, G. M. Whitesides, Soft lithography, Angew. Chem. Int. Ed., 1998, 37, 550-575.
    [173] Y. Xia, J. A. Rogers, K. E. Paul, G. M. Whitesides, Unconventional methods for fabricating and patterning nanostructures, Chem. Rev., 1999,99,1823-1848.
    [174] Y. Xia, M. Mrksich, E. Kim, G. M. Whitesides, Microcontact printing of octadecylsiloxane on the surface of silicon dioxide and its application in microfabrication, J. Am. Chem. Soc, 1995, 117,9576-9577.
    [175] P. M. St. John, H. G. Craighead, Microcontact printing and pattern transfer using trichloro- silanes on oxide substrates, Appl. Phys. Lett., 1996,68,1022-1024.
    [176] D. Wang, S. G. Thomas, K. L. Wang, Y. Xia, G. M. Whitesides, Nanometer scale patterning and pattern transfer on amorphous Si, crystalline Si, and SiO_2 surfaces using self-assembled monolayers, Appl. Phys. Lett., 1997,70, 1593-1595.
    [177] P. C. Hidber, W. Helbig, E. Kim, G. M. Whitesides, Microcontact printing of palladium colloids: Micron-scale patterning by electroless deposition of copper, Langmuir, 1996, 12,1375-1380.
    [178] T. Auletta, B. Dordi, A. Mulder, A. Sartori, S. Onclin, C. M. Bruinink, M. Peter, C. A. Nijhuis, H. Beijleveld, H. Schonherr, G. J. Vancso, A. Casnati, R. Ungaro, B. J. Ravoo, J. Huskens, D. N. Reinhoudt, Writing patterns of molecules on molecular printboards, Angew. Chem. Int. Ed., 2004, 43, 369-373.
    [179] A. Mulder, S. Onclin, M. Peter, J. P. Hoogenboom, H. Beijleveld, J. ter Maat, M. F. Garcia- Parajo, B. J. Ravoo, J. Huskens, N. F. van Hulst, D. N. Reinhoudt, Molecular printboards on silicon oxide: Lithographic patterning of cyclodextrin monolayers with multivalent, fluores-cent guest molecules, Small, 2005, 1,242-253.
    [180] V. Mahalingam, S. Onclin, M. Peter, B. J. Ravoo, J. Huskens, D. N. Reinhoudt, Directed self-assembly of functionalized silica nanoparticles on molecular printboards through multivalent supramolecular interactions, Langmuir, 2004, 20, 11756-11762.
    [181] Y.-L. Loo, R. L. Willett, K. W. Baldwin, J. A. Rogers, Interfacial chemistries for nanoscale transfer printing, J. Am. Chem. Soc, 2002, 124, 7654-7655.
    [182] S. Y. Chou, P. R. Krauss, P. J. Renstrom, Imprint lithography with 25-nanometer resolution, Science, 1996,272, 85-87.
    [183] R. D. Piner, J. Zhu, F. Xu, S. Hong, C. A. Mirkin. "Dip-pen" nanolithography, Science, 1999, 283, 661-663.
    [184] J.-H. Lim, D. S. Ginger, K.-B. Lee, J. Heo, J.-M. Nam, C. A. Mirkin, Direct-write dip-pen nanolithography of proteins on modified silicon oxide surfaces, Angew. Chem. Int. Ed., 2003, 42,2309-2312.
    [185] A. Ivanisevic, C. A. Mirkin, "Dip-pen" nanolithography on semiconductor surfaces, J. Am. Chem. Soc, 2001, 123, 7887-7889.
    [186] D. J. Pena, M. P. Raphael, J. M. Byers, "Dip-pen" nanolithography in registry with photolithography for biosensor development, Langmuir, 2003, 19, 9028-9032.
    [187] H. Jung, R. Kulkarni, C. P. Collier, Dip-pen nanolithography of reactive alkoxysilanes on glass, J. Am. Chem. Soc, 2003, 125, 12096-12097.
    [188] L. M. Demers, D. S. Ginger, S.-J. Park, Z. Li, S.-W. Chung, C. A. Mirkin, Direct patterning of modified oligonucleotides on metals and insulators by dip-pen nanolithography, Science, 2002, 296, 1836-1838.
    [189] H. Jung, C. K. Dalai, S. Kuntz, R. Shah, C. P. Collier, Surfactant activated dip-pen nanolithography, Nano Lett., 2004, 4, 2171-2177.
    [190] R. Maoz, E. Frydman, S. R. Cohen, J. Sagiv, Constructive nanolithography: Site-defined silver self-assembly on nanoelectrochemically patterned monolayer templates, Adv. Mater., 2000, 12, 424-429.
    [191] R. Maoz, S. R. Cohen, J. Sagiv, Nanoelectrochemical patterning of monolayer surfaces: Toward spatially defined self-assembly of nanostructures, Adv. Mater., 1999, 11, 55-61.
    [192] R. Maoz, E. Frydman, S. R. Cohen, J. Sagiv, "Constructive nanolithography": Inert mono-layers as patternable templates for in-situ nanofabrication of metal-semiconductor-organic surface structures - A generic approach, Adv. Mater., 2000, 12, 725-731.
    [193] S. Liu, R. Maoz, G. Schmid, J. Sagiv, Template guided self-assembly of [Au_(55)] clusters on nanolithographically defined monolayer patterns, Nano Lett., 2002, 2, 1055-1060.
    [194] S. Hoeppener, R. Maoz, S. R. Cohen, L. F. Chi, H. Fuchs, J. Sagiv, Metal nanoparticles, nanowires, and contact electrodes self-assembled on patterned monolayer templates - A bottom-up chemical approach, Adv. Mater., 2002,14,1036-1041.
    [195] S. Liu, R. Maoz, J. Sagiv, Planned nanostructures of colloidal gold via self-assembly on hierarchically assembled organic bilayer template patterns with in-situ generated terminal amino functionality, Nano Lett., 2004,4, 845-851.
    [196] S. Hoeppener, R. Maoz, J. Sagiv, Constructive microlithography: Electrochemical printing of monolayer template patterns extends constructive nanolithography to the micrometer- millimeter dimension range, Nano Lett., 2003, 3, 761-767.
    [197] A. P. de Silva, H. Q. N. Gunaratne, T. Gunnlaugsson, A. J. M. Huxley, C. P. McCoy, J. T. Rademacher, T. E. Rice, Signaling recognition events with fluorescence sensors and switches, Chem. Rev., 1997,97,1515-1566.
    [198] R. A. Bissell, A. P. de Silva, H. Q. N. Gunaratne, P. L. M. Lynch, G. E. M. Maguire, K. P. A. S. Sandanayake, Molecular fluorescent signaling with 'fluor-spacer-receptor' systems: Approaches to sensing and switching devices via supramolecular photophysics, Chem. Soc. Rev., 1992,21,187-195.
    [199] J. R. Lakowicz (ed.), Topics in Fluorescence Spectroscopy, Volume 4: Probe Design and Chemical Sensing, Kluwer Academic Publishers, New York, 2002.
    [200] H. Kuhn, V. V. Demidov, J. M. Coull, M. J. Fiandaca, B. D. Gildea, M. D. Frank-Kamenetskii, Hybridization of DNA and PNA molecular beacons to single-stranded and double-stranded DNA targets, J. Am. Chem. Soc, 2002, 124, 1097-1103.
    [201] S. Arimori, M. L. Bell, C. S. Oh, T. D. James, A modular fluorescence intramolecular energy transfer saccharide sensor, Org. Lett., 2002,4,4249-4251.
    [202] K. S. Jeong, T. Tjivikua, A. Muehldorf, G. Deslongchamps, M. Famulok, J. Rebek Jr, Convergent functional groups. X. Molecular recognition of neutral substrates, J. Am. Chem. Soc, 1991,113,201-209.
    
    [203] 宁光辉,吕九如,房喻,胡道道, 介质极性敏感膜的制备和性能研究,高等学校化学学报, 2000,21, 1196-1199.
    [204] D. Patra, A. K. Mishra, Fluorescence quenching of benzo[k]fluoranthene in poly(vinyl alcohol) film: A possible optical sensor for nitro aromatic compounds, Sens. Actuators B, 2001, 80, 278-282.
    [205] V. Misra, H. Mishra, H. C. Joshi, T. C. Pant, An optical pH sensor based on excitation energy transfer in Nafion~(?) film, Sen. Actuators B, 2002, 82, 133-141.
    [206] G. Ozturk, S. Alp, K. Ertekin, Fluorescence emission studies of 4-(2-furylmethylene)-2-phenyl-5-oxazolone embedded in polymer thin film and detection of Fe~(3+) ion, Dyes and Pigments, 2006, DOI: 10.1016/j .dyepig.2005.08.012.
    [207] P. Bosch, A. Fernandez, E. F. Salvador, T. Corrales, F. Catalina, C. Peinado, Polyurethane-acrylate based films as humidity sensors, Polymer, 2005, 46, 12200-12209.
    [208] Y. Kostov, Z. Gryczynski, G. Rao, Polarization oxygen sensor: A template for a class of fluorescence-based sensors, Anal. Chem., 2002, 74, 2167-2171.
    [209] S.-K. Lee, I. Okura, Photostable optical oxygen sensing material: Platinum tetrakis(penta- fluorophenyl)porphyrin immobilized in polystyrene, Anal. Commun., 1997, 34, 185-188.
    [210] S. Draxler, M. E. Lippitsch, Lifetime-based sensing: Influence of the microenvironment, Anal. Chem., 1996, 68, 753-757.
    [211] Y. Amao, K. Asai, T. Miyashita, I. Okura, Novel optical oxygen sensing material: platinum porphyrin-fluoropolymer film, Polym. Adv. Technol., 2000, 11,705-709.
    [212] Y. Amao, K. Asai, I. Okura, A novel optical oxygen sensing system based on triplet-triplet reflectance of fullerene C_(60)-polystyrene film by time-resolved spectroscopy using diffuse reflectance laser flash photolysis, Analyst, 2000, 125, 523-526.
    [213] M. Florescu, A. Katerkamp, Optimisation of a polymer membrane used in optical oxygen sensing, Sen. Actuators B, 2004, 97, 39-44.
    [214] M. H. Schoenfisch, H. Zhang, M. C. Frost, M. E. Meyerhoff, Nitric oxide-releasing fluorescence-based oxygen sensing polymeric films, Anal. Chem., 2002, 74, 5937-5941.
    [215] M. P. Xavier, D. Garcia-Fresnadillo, M. C. Moreno-Bondi, G. Orellana, Oxygen sensing in nonaqueous media using porous glass with covalently bound luminescent Ru (Ⅱ) complexes, Anal. Chem., 1998, 70, 5184-5189.
    [216] M. A. Macedo, M. A. Aegerter, Sol-gel electrochromic device, J. Sol-gel Sci. Tech., 1994, 2, 667-671.
    [217] 余火根,余家国,郭瑞,赵修建,溶胶.凝胶薄膜的制备和应用,材料导报,2003,17(6),31-33.
    [218] 陈曦,钟振明,李真,李伟,庄峙厦,王小如,基于荧光猝灭的磷酸盐光化学溶胶-凝胶传感膜,分析测试学报,2002,21(1),11-14.
    [219] 陈曦,李真,蒋亚琪,钟振明,王小如,K.Wong,钌(Ⅱ)配合物有机改性溶胶-凝胶氧传感膜荧光行为的研究,光谱学与光谱分析,2002,22,796-799.
    [220] C. McDonagh, B. D. MacCraith, A. K. McEvoy, Tailoring of sol-gel films for optical sensing of oxygen in gas and aqueous phase, Anal. Chem., 1998, 70, 45-50.[221] P. A. S. Jorge, P. Caldas, C. C. Rosa, A. G. Oliva, J. L. Santos, Optical fiber probes for fluorescence based oxygen sensing, Sens. Actuators B, 2004, 103,290-299.
    [222] M. Ahmad, N. Mohammad, J. Abdullah, Sensing material for oxygen gas prepared by doping sol-gel film with tris (2,2-bipyridyl)dichlororuthenium complex, J. Non-Cryst. Solids, 2001, 290, 86-91.
    [223] 朱辉,马於光,樊玉国,沈家骢,含长链不饱和酯基的三官能度溶胶-凝胶薄膜制备及发光氧气传感的研究,高等学校化学学报,2002,23,682-684.
    [224] R. A. Dunbar, J. D. Jordan, E V. Bright, Development of chemical sensing platforms based on sol-gel-derived thin films: Origin of film age vs performance trade-offs, Anal. Chem., 1996, 68, 604-610.
    [225] L. Zheng, W. R. Reid, J. D. Brennan, Measurement of fluorescence from tryptophan to probe the environment and reaction kinetics within protein-doped sol-gel-derived glass monoliths, Anal. Chem., 1997, 69, 3940-3949.
    [226] Y. Fu, M. M. Collinson, D. A. Higgins, Single-molecule spectroscopy studies of microenvironmental acidity in silicate thin films, J. Am. Chem. Soc., 2004, 126, 13838-13844.
    [227] A. K. Williams, J. T. Hupp, Sol-gel-encapsulated alcohol dehydrogenase as a versatile, environmentally stabilized sensor for alcohols and aldehydes, J. Am. Chem. Soc., 1998, 120, 4366-4371.
    [228] S. Fireman-Shoresh, I. Popov, D. Avnir, S. Marx, Enantioselective, chirally templated sol-gel thin films, J. Am. Chem, Soc., 2005, 127, 2650-2655.
    [229] Y. Shi, C. J. Seliskar, Optically transparent polyelectrolyte-silica composite materials: Preparation, characterization, and application in optical chemical sensing, Chem. Mater., 1997, 9, 821-829.
    [230] A. L. Graham, C. A. Carlson, P. L. Edmiston, Development and characterization of molecularly imprinted sol-gel materials for the selective detection of DDT, Anal. Chem., 2002, 74, 458-467.
    [231] G. Decher, Fuzzy nanoassemblies: Toward layered polymeric multicomposites, Science, 1997, 277, 1232-1237.
    [232] G. Decher, J. B. Schenoff (Eds.), Multilayer Thin Films: Sequential Assembly of Nanocomposite Materials, Wiely-VCH Verlay GmbH & Co. KGaA, Weinheim, 2002.
    [233] S.-H. Lee, J. Kumar, S. K. Tripathy, Thin film optical sensors employing polyelectrolyte assembly, Langmuir, 2000, 16, 10482-10489.
    [234] C. A. Constantine, S. V. Mello, A. Dupont, X. Cao, D. Santos Jr., O. N. Oliveira Jr., F. T.??Strixino, E. C. Pereira, T.-C. Cheng, J. J. Defrank, R. M. Leblanc, Layer-by-layer self- assembled chitosan/poly(thiophene-3-acetic acid) and organophosphorus hydrolase multi- layers, J. Am. Chem. Soc., 2003, 125, 1805-1809.
    [235] J.-F. Baussard, J.-L. Habib-Jiwan, A. Laschewsky, Enhanced forster resonance energy transfer in electrostatically self-assembled multilayer films made from new fluorescently labeled polycations, Langmuir, 2003, 19, 7963-7969.
    [236] Y. Yang, X. Yang, Y.-L. Liu, Z.-M. Liu, H.-F. Yang, G.-L. Shen, R.-Q. Yu, Optical sensor for lithocholic acid based on multilayered assemblies from polyelectrolyte and cyclodextrin, J. Photochem. Photobiol. A, 2005, 171,137-144.
    [237] Y. Zheng, J. Orbulescu, X. Ji, F. M. Andreopoulos, S. M. Pham, R. M. Leblanc, Development of fluorescent film sensors for the detection of divalent copper, J. Am. Chem. Soc., 2003, 125, 2680-2686.
    [238] S. V. Mello, M. Mabrouki, X. Cao, R. M. Leblanc, T.-C. Cheng, J. J. DeFrank, Langmuir and Langmuir-Blodgett films of organophosphorus acid anhydrolase, Biomacromolecules, 2003, 4, 968-973.
    [239] 王姗,房喻,张颖,王明珍,胡道道,廖奕坤,壳聚糖-CdS复合膜制备及其对吡啶的传感特性,物理化学学报,2003,19(6),514-518.
    [240] G. De Luca, G. Pollicino, A. Romeo, L. M. Scolaro, Sensing behavior of tetrakis(4-sulfona- tophenyl)porphyrin thin films, Chem. Mater., 2006, 18, 2005-2007.
    [241] T. E. Brook, R. Narayanaswamy, Polymeric films in optical gas sensors, Sens. Actuators B, 1998, 51, 77-83.
    [242] Y. Fang, G. Ning, D. Hu, J. Lu, Synthesis and solvent-sensitive fluorescence properties of a novel surface-functionalized chitosan film: Potential materials for reversible information storage, J. Photochem. Photobiol. A, 2000, 135, 141-145.
    [243] H. Wang, Y. Fang, L. Ding, L. Gao, D. Hu, Preparation and nitromethane sensing properties of chitosan thin films containing pyrene and β-cyclodextrin units, Thin Solid Films, 2003, 440, 255-260.
    [244] L. Ding, Y. Fang, L. Jiang, L. Gao, X. Yin, Twisted intra-molecular electron transfer phenomenon of dansyl immobilized on chitosan film and its sensing property to the composition of ethanol-water mixtures, Thin Solid Films, 2005, 478, 318-325.
    [245] Y. Zhang, K. M. Gattas-Asfura, C. Li, F. M. Andreoponlos, S. M. Pham, R. M. Leblanc, Design of a membrane fluorescent sensor based on photo-cross-linked PEG hydrogel, J. Phys. Chem. B, 2003, 107, 483-488.[246] S. Tsuneda, T. Endo, K. Saito, K. Sugita, K. Horie, T. Yamashita, T. Sugo, Fluorescence study on the conformational change of an amino group-containing polymer chain grafted onto a polyethylene microfiltration membrane, Macromolecules, 1998,31, 366-370.
    [247] J. T. Suri, D. B. Cordes, F. E. Cappuccio, R. A. Wessling, B. Singaram, Continuous glucose sensing with a fluorescent thin-film hydrogel, Angew. Chem. Int. Ed., 2003, 42, 5857-5859.
    [248] N. J. van der Veen, E. Rozniecka, L. A. Woldering, M. Chudy, J. Huskens, F. C. J. M. van Veggel, D. N. Reinhoudt, Highly selective optical-sensing membranes, containing calix[4] arene chromoionophores, for Pb~(2+) ions, Chem. Eur. J., 2001, 7,4878-4886.
    [249] Q. Zhou, T. M. Swager, Method for enhancing the sensitivity of fluorescent chemosensors: Energy migration in conjugated polymers, J. Am. Chem. Soc, 1995,117,7017-7018.
    [250] B. S. Harrison, M. B. Ramey, J. R. Reynolds, K. S. Schanze, Amplified fluorescence quenching in a poly(p-phenylene)-based cationic polyelectrolyte, J. Am. Chem. Soc, 2000, 122, 8561-8562.
    [251] B. Jiang, Y. Zhang, S. Sahay, S. Chatterjee, W. E. Jones Jr., Conjugated polymers containing pendant terpyridine receptors: highly efficient sensory materials for transition-metal ions, SPIE Proceedings, 1999, 3856,212-223.
    [252] T. M. Swager, The molecular wire approach to sensory signal amplification, Acc. Chem. Res., 1998,31,201-207.
    [253] C. Fan, K. W. Plaxco, A. J. Heeger, High-efficiency fluorescence quenching of conjugated polymers by proteins, J. Am. Chem. Soc, 2002, 124, 5642-5643.
    [254] D. T. McQuade, A. E. Pullen, T. M. Swager, Conjugated polymer-based chemical sensors, Chem. Rev., 2000,100,2537-2574.
    [255] H. Sohn, M. J. Sailor, D. Magde, W. C. Trogler, Detection of nitroaromatic explosives based on photoluminescent polymers containing metalloles, J. Am. Chem. Soc, 2003, 125, 3821- 3830.
    [256] J.-S. Yang, T. M. Swager, Porous shape persistent fluorescent polymer films: an approach toTNT sensory materials, J. Am. Chem. Soc, 1998, 120, 5321-5322.
    [257] J.-S. Yang, T. M. Swager, Fluorescent porous polymer films as TNT chemosensors: Electronicand structural effects, J. Am. Chem. Soc, 1998, 120,11864-11873.
    [258] Y. Kim, Z. Zhu, T. M. Swager, Hyperconjugative and inductive perturbations in poly(p- phenylene vinylenes), J. Am. Chem. Soc, 2004, 126, 452-453.
    [259] A. Rose, Z. Zhu, C. F. Madigan, T. M. Swager, V. Bulovic, Sensitivity gains in chemosensing by lasing action in organic polymers, Nature, 2005, 434, 876-879.
    [260] E. E. Nesterov, Z. Zhu, T. M. Swager, Conjugation enhancement of intramolecular exciton migration in poly(p-phenylene ethynylene)s, J. Am. Chem, Soc., 2005, 127, 10083-10088.
    [261] D. Zhao, T. M. Swager, Sensory responses in solution vs solid state: A fluorescence quenching study of poly(iptycenebutadiynylene)s, Macromolecules, 2005, 38, 9377-9384.
    [262] Y. Kim, J. E. Whitten, T. M. Swager, High ionization potential conjugated polymers, J. Am. Chem. Soc., 2005, 127, 12122-12130.
    [263] P. H. Kwan, M. J. MacLachlan, T. M. Swager, Rotaxanated conjugated sensory polymers, J. Am. Chem. Soc., 2004, 126, 8638-8639.
    [264] Y. Liu, R. C. Mills, J. M. Boncella, K. S. Schanze, Fluorescent polyacetylene thin film sensor for nitroaromatics, Langmuir, 2001, 17, 7452-7455.
    [265] H. Wang, T. Lin, F. Bai, A. Kaynak, Fluorescence quenching behaviour of hyperbranched polymer to the nitro-compounds, Proceedings of the NATO Advanced Study Institute on Nanoengineered Nanofibrous Materials, pp. 459-468, Kluwer Academic Publishers, Dordrecht, The Netherlands, 2004.
    [266] C.-P. Chang, C.-Y. Chao, J. H. Huang, A.-K. Li, C.-S. Hsu, M.-S. Lin, B. R. Hsieh, A.-C. Su, Fluorescent conjugated polymer films as TNT chemosensors, Synth. Met., 2004, 144, 297-301.
    [267] A. Saxena, M. Fujiki, R. Rai, G. Kwak, Fluoroalkylated polysilane film as a chemosensor for explosive nitroaromatic compounds, Chem. Mater., 2005, 17, 2181-2185.
    [268] H. Tong, L. Wang, X. Jing, F. Wang, Highly selective fluorescent chemosensor for silver (I) ion based on amplified fluorescence quenching of conjugated polyquinoline, Macromolecules, 2002, 35, 7169-7171.
    [269] H. Tong, L. Wang, X. Jing, F. Wang, "Turn-on" conjugated polymer fluorescent chemosensor for fluoride ion, Macromolecules, 2003, 36, 2584-2586.
    [270] B. Wang, M. R. Wasielewski, Design and synthesis of metal ion-recognition-induced conjugated polymers: An approach to metal ion sensory materials, J. Am. Chem. Soc., 1997, 119, 12-21.
    [271] M. Zhang, P. Lu, Y. Ma, J. Shen, Metal ionochromic effects of conjugated polymers: Effects of the rigidity of molecular recognition sites on metal ion sensing, J. Phys. Chem. B, 2003, 107, 6535-6538.
    [272] 田雷蕾,张明,路萍,张武,杨兵,马於光,金属离子对共轭聚合物固体薄膜的荧光猝灭效应,科学通报,2003,48,2439-2441.
    [273] 黄红梅,王柯敏,肖毅,翟秋阁,安德烈,黄杉生,李杜,基于分子导线效应的聚苯乙炔.吡啶荧光共轭聚合物传感信号放大研究,科学通报,2003,48,1158-1162.[274] C, Fan, K, W. Plaxco, A. J. Heeger, Biosensors based on binding-modulated donor-acceptor distances, Trends in Biotechnol., 2005,23,186-192.
    [275] D. H. Waldeck, A. P. Alivisato, C. B. Harris, Nonradiative damping of molecular electronic excited states by metal surfaces, Surf. Sci., 1985, 158,103-125.
    [276] K. W. Kittredge, M. A. Fox, J. K. Whitesell, Effect of alkyl chain length on the fluorescence of 9-alkylfluorenyl thiols as self-assembled monolayers on gold, J. Phys. Chem. B, 2001, 105, 10594-10599.
    [277] M. A. Fox, Fundamentals in the design of molecular electronic devices: Long-range charge carrier transport and electronic coupling, Acc. Chem. Res., 1999,32,201-207.
    [278] K. Motesharei, D. C. Myles, Molecular recognition on functionalized self-assembled mono-layers of alkanethiols on gold, J. Am. Chem. Soc, 1998,120,7328-7336.
    [279] K. Motesharei, D. C. Myles, Molecular recognition in membrane mimics: A fluorescence probe, J. Am. Chem. Soc, 1994,116,7413-7414.
    [280] T. R. E. Simpson, D. J. Revell, M. J. Cook, D. A. Russell, Evanescent wave excited fluorescence from self-assembled phthalocyanine monolayers, Langmuir, 1997, 13,460-464.
    [281] X. Fang, X. Liu, S. Schuster, W. Tan, Designing a novel molecular beacon for surface-immobilized DNA hybridization studies, J. Am. Chem. Soc, 1999,121, 2921-2922.
    [282] H. Du, M. D. Disney, B. L. Miller, T. D. Krauss, Hybridization-based unquenching of DNA hairpins on Au surfaces: Prototypical "molecular beacon" biosensors, J. Am. Chem. Soc, 2003, 125, 4012-4013.
    [283] V. H. Perez-Luna, S. Yang, E. M. Rabinovich, T. Buranda, L. A. Sklar, P. D. Hampton, G. P. Lopez, Fluorescence biosensing strategy based on energy transfer between fluorescently labeled receptors and a metallic surface, Biosens. Bioelectron., 2002, 17, 71-78.
    [284] S. S. Mark, N. Sandhyarani, C. Zhu, C. Campagnolo, C. A. Batt, Dendrimer-functionalized self-assembled monolayers as a surface plasmon resonance sensor surface, Langmuir, 2004, 20,6808-6817.
    [285] J. R. Lakowicz, Radiative decay engineering: Biophysical and biomedical applications. Anal. Biochem., 2001,298, 1-24.
    [286] J. R. Lakowicz, Y. Shen, S. D'Auria, J. Malicka, J. Fang, Z. Gryczynski, I. Gryczynski, Radiative decay engineering 2: Effects of silver island films on fluorescence intensity, lifetimes, and resonance energy transfer, Anal. Biochem., 2002, 301, 261-277.
    [287] J. R. Lakowicz, Radiative decay engineering 3: Surface plasmon-coupled directional emission, Anal. Biochem., 2004, 324,153-169.
    [288] I. Gryczynski, J. Malicka, Z. Gryczynski, J. R. Lakowicz, Radiative decay engineering 4: Experimental studies of surface plasmon-coupled directional emission. Anal. Biochem., 2004, 324, 170-182.
    [289] J. R. Lakowicz, Radiative decay engineering 5: Metal-enhanced fluorescence and plasmon emission, Anal. Biochem., 2005, 337, 171-194.
    [290] K. Asian, J. Huang, G. M. Wilson, C. D. Geddes, Metal-enhanced fluorescence-based RNA sensing, J. Am. Chem. Soc, 2006,128,4206-4207.
    [291] K. Asian, I. Gryczynski, J. Malicka, E. Matveeva, J. R. Lakowicz, C. D. Geddes, Metal-enhanced fluorescence: An emerging tool in biotechnology, Curr. Opin. Biotechnol., 2005, 16, 55-62.
    [292] A. Parfenov, I. Gryczynski, J. Malicka, C. D. Geddes, J. R. Lakowicz, Enhanced fluorescence from fluorophores on fractal silver surfaces, J. Phys. Chem. B, 2003, 107, 8829-8833.
    [293] S. A. Levi, A. Mourran, J. P. Spatz, F. C. J. M. van Veggel, D. N. Reinhoudt, M. Moller, Fluorescence of dyes adsorbed on highly organized, nanostructured gold surfaces, Chem. Eur. J., 2002, 8, 3808-3814.
    [294] N. J. van Veen, S. Flink, M. A. Deij, R. J. M. Egberink, F. C. J. M. van Veggel, D. N. Reinhoudt, Monolayer of a Na~+-selective fluoroionophore on glass: Connecting the fields of monolayers and optical detection of metal, J. Am. Chem. Soc, 2000, 122, 6112-6113.
    [295] S. Flink, F. C. J. M. van Veggel, D. N. Reinhoudt, A self-assembled monolayer of a fluorescent guest for the screening of host molecules, Chem. Commun., 1999, 2229-2230.
    [296] M. Crego-Calama, D. N. Reinhoudt, New materials for metal ion sensing by self-assembled monolayers on glass, Adv. Mater., 2001, 13, 1171-1174.
    [297] L. Basabe-Desmonts, J. Beld, R. S. Zimmerman, J. Hernando, D. N. Reinhoudt, M. Crego-Calama, A simple approach to sensor discovery and fabrication on self-assembled monolayers on galss, J. Am. Chem. Soc, 2004, 126, 7293-7299.
    [298] C.-X. Jiao, C.-G. Niu, L.-X. Chen, G-L. Shen, R.-Q. Yu, A coumarin derivative covalently immobilized on sensing membrane as a fluorescent carrier for nitrofurazone, Anal. Bioanal. Chem., 2003, 376, 392-398.
    [299] X. Yang, J.-W. Xie, G-L. Shen, R.-Q. Yu, An Optical-fiber sensor for colchicine using photo-polymerized N-vinylcarbazole, Microchim. Acta, 2003, 142, 225-230.
    [300] H. Wang, Y. Fang, Y. Cui, D. Hu, G. Gao, Fluorescence properties of immobilized pyrene on quartz surface, Mater. Chem. Phys., 2002, 77, 185-191.
    [301] L. Gao, Y. Fang, X. Wen, Y. Li, D. Hu, Monomolecular layers of pyrene as a sensor to dicerboxylic acids, J. Phys. Chem. B, 2004,108,1207-1213.
    [302] L. Gao, Y. Fang, F. Lu, L. Ding, Immobilization of pyrene on quartz plate surface via a flexible long spacer and its sensing properties to dicarbonxylic acids, Sci. in China Ser. B, 2004, 47, 240-250.
    [303] F. Lu, Y. Fang, L. Gao, L. Ding, L. Jiang, Selectivity via insertion: Detection of dicarboxylic acids in water by a new film chemosensor with enhanced properties, J. Photochem. Photobiol. A, 2005, 175,207-213.
    [304] L. Gao, Y. Fang, F. Lu, M. Cao, L. Ding, Immobolization of pyrene via diethylenetriamine on quartz plate surface for recognition of dicarboxylic acids, Appl. Surf. Sci., 2006, 252, 3884- 3893.
    [305] F. Lu, L. Gao, L. Ding, L. Jiang, Y. Fang, Spacer layer screening effect: A novel fluorescent film sensor for organic copper (Ⅱ) salts, Langmuir, 2006,22, 841-845.
    [306] S. Zhang, Y. Fang, L. Gao, L. Ding, F. Lu, Fluorescent sensors for nitro-aromatic compounds via monolayer assembly of polycyclic aromatics on substrate surfaces (in preparation).
    [307] L. Ding, Y. Fang, L. Jiang, L. Gao, X. Yin, Twisted intra-molecular electron transfer phenomenon of dansyl immobilized on chitosan film and its sensing property to the composition of ethanol-water mixtures, Thin Solid Films, 2005,478, 318-325.
    [308] J. Kang, L. Ding, Y. Fang, L. Gao, F. Lu, Preparation, characterization and performance evaluation of a fluorescent film sensor fabricated via immobilization of dansyl on glass plate surfaces for the detection of nitroaromatics in aqueous solution, Colloids Surf. A (submitted).
    [309] R. A. Potyrailo, R. C. Conrad, A. D. Ellington, G M. Hieftje, Adapting selected nucleic acid ligands (aptamers) to biosensors, Anal. Chem., 1998, 70, 3419-3425.
    [310] V. Benoit, A. Steel, M. Torres, Y.-Y. Yu, H. Yang, J. Cooper, Evaluation of three-dimensional microchannel glass biochips for multiplexed nucleic acid fluorescence hybridization assays, Anal. Chem., 2001, 73,2412-2420.
    [311] A. Gulino, P. Mineo, E. Scamporrino, D. Vitalini, I. Fragala, Molecularly engineered silica surfaces with an assembled porphyrin monolayer as optical NO_2 molecular recognizers, Chem. Mater., 2004, 16, 1838-1840.
    [312] D. W. J. McCallien, P. L. Burn, L. Anderson, Chelation of diamine ligands to zinc porphyrin monolayers amide-linked to glass, J. Chem. Soc, Perkin Trans. 1,1997, 2581-2586.
    [313] R. T. Bronson, D. J. Michaelis, R. D. Lamb, G A. Husseini, P. B. Farnsworth, M. R. Linford, R. M. Izatt, J. S. Bradshaw, P. B. Savage, Efficient immobilization of a cadmium chemosensor in a thin film: generation of a cadmium sensor prototype, Org. Lett., 2005, 7, 1105-1108.
    [314] J. C. Hicks, C. W. Jones, Controlling the density of amine sites on silica surfaces using benzyl spacers, Langmuir, 2006, 22, 2676-2681.
    [315] N. Delorme, J.-F. Bardeau, A. Bulou, F. Poncin-Epaillard, Azobenzene-containing monolayer with photoswitchable wettability, Langmuir, 2005, 21, 12278-12282.
    [316] L. A. J. Chrisstoffels, A. Adronov, J. M. J. Frechet, Surface-confined light harvesting, energy transfer, and amplification of fluorescence emission in chromophore-labeled self-assembled monolayers, Angew. Chem. Int. Ed., 2000,39, 2163-2167.
    [317] J. F. Gouin, F. Baros, D. Birot, J. C. Andre, A fibre-optic oxygen sensor for oceanography, Sens. Actuators B, 1997, 38-39, 401-406.
    [318] Y. Amao, K. Miyakawa, I. Okura, Novel optical oxygen sensing device: a thin film of a palladium porphyrin with a long alkyl chain on an alumina plate, J. Mater. Chem., 2000, 10, 305-308.
    [319] Y. Amao, K. Asai, I. Okura, Photoluminescent oxygen sensing using palladium tetrakis(4- carboxyphenyl)porphyrin self-assembled membrane on alumina, Anal. Commun., 1999, 36, 179-180.
    [320] Y. Fujiwara, Y. Amao, 1-Pyrenedecanoic acid chemisorption film as a novel oxygen sensing material, Sens. Actuators B, 2002, 85, 175-178.
    [321] Y. Fujiwara, Y. Amao, Novel optical oxygen sensing material: 1 -Pyrenedecanoic acid and perfluorodecanoic acid chemisorbed onto anodic oxidized aluminium plate, Sens. Actuators B, 2004,99, 130-133.
    [322] M. Mazur, G. J. Blanchard, Photochemical and electrochemical oxidation reactions of surface-bound polycyclic aromatic hydrocarbons, J. Phys. Chem. B, 2004, 108, 1038-1045.
    [323] M. Mazur, G. J. Blanchard, Probing intermolecular communication with surface-attached pyrene, J. Phys. Chem. B, 2005, 109, 4076-4083.
    [324] M. Dominska, K. Jackowska, P. Krysinski, G. J. Blanchard, Probing interfacial organization in surface monolayers using tethered pyrene. 1. Structural mediation of electron and proton access to adsorbates, J. Phys. Chem. B, 2005, 109, 15812-15821.
    [325] M. Dominska, P. Krysinski, G J. Blanchard, Probing interfacial organization in surface monolayers using tethered pyrene. 2. Spectroscopy and motional freedom of the adsorbates, J. Phys. Chem. B, 2005, 109, 15822-15827.
    [326] J. S. Major, G. J. Blanchard, Covalently bound polymer multilayers for efficient metal ion sorption, Langmuir, 2001, 17, 1163-1168.
    [327] M. Mazur, P. Krysinski, G. J. Blanchard, Use of zirconium-phosphate-carbonate chemistry toimmobilize polycyclic aromatic hydrocarbons on boron-doped diamond, Langmuir, 2005, 21, 8802-8808.
    [328] M. Mazur, G. J. Blanchard, Oxidative transformations of surface-bound perylene, Langmuir, 2005,21, 1441-1447.
    [329] L. Kelepouris, P. Krysinski, G J. Blanchard, Gauging molecular interactions between substrates and adsorbates. Substrate mediation of surface-bound chromophore vibronic coupling, J. Phys. Chem. B, 2003, 107,4100-4106.
    [330] D. S. Karpovich, G. L. Blanchard, Dynamics of a tethered chromophore imbedded in a self-assembled monolayer, Langmuir, 1996, 12, 5522-5524.
    [331] R. B. A. Sharpe, D. Burdinski, J. Huskens, H. J. W. Zandvliet, D. N. Reinhoudt, B. Poelsema, Chemically patterned flat stamps for microcontact printing, J. Am. Chem. Soc, 2005, 127, 10344-10349.
    [332] M. Peter, X.-M. Li, J. Huskens, D. N. Reinhoudt, Catalytic probe lithography: Catalyst-functionalized scanning probes as nanopens for nanofabrication on self-assembled monolayers, J. Am. Chem. Soc, 2003, 126, 11684-11690.
    [333] M. Mannini, D. Bonacchi, L. Zobbi, F. M. Piras, E. A. Speets, A. Caneschi, A. Cornia, A. Magnani, B. J. Ravoo, D. N. Reinhoudt, R. Sessoli, D. Gatteschi, Advances in single-molecule magnet surface patterning through microcontact printing, Nano Lett., 2005, 5, 1435-1438.
    [334] D. I. Rozkiewicz, B. J. Ravoo, D. N. Reinhoudt, Reversible covalent patterning of self-assembled monolayers on gold and silicon oxide surfaces, Langmuir, 2005,21,6337-6343.
    [335] T. Michalske, N. Edelstein, M. Sigman, J. Trewhella, Workshop Report: Basic Research Needs for Countering Terrorism. Sponsored by the Office of Basic Energy Sciences, Office of Science, U.S. Department of Energy, March 2002.
    [336] J. R. Lawowicz, Principles of Fluorescence Spectroscopy, New York: Kluwer Academic / Plenum Publishers, 1999.
    [337] T.-X. Wei, C.-H. Huang, P.-H. Xie, Y.-J. Hou, B.-W. Zhang, F.-Q. Liu, K. Ibrahim, H.-J. Qian, Effect of steric hindrance on photoinduced electron transfer of self-assembled monolayers of three isomeric Ru (Ⅱ)-bipyridine complexes on ITO electrode, Phys. Chem. Chem. Phys., 2000,2,1333-1337.
    [338] T. A. Taton, R. C. Mucic, C. A. Mirkin, R. L. Letsinger, The DNA-mediated formation of supramolecular mono- and multilayered nanoparticle structures, J. Am. Chem. Soc, 2000, 122, 6305-6306.
    [339] M. J. Hostetler, R W. Murray, Colloids and self-assembled monolayers, Curr. Opin. Colloid Interface Sci., 1997, 2, 42-50.
    [340] S. Zhang, Y. Fang, D. Hu, G. Gao, Abnormal fluorescence behavior of pyrene functionalized chitosan films to some quenchers, Chin. J. Chem., 2003, 21,249-252.
    [341] G. M. Credo, A. K. Boal, K. Das, T. H. Galow, V. M. Retello, D. L. Feldheim, C. B. Gorman, Supramolecular assembly on surfaces: Manipulating conductance in noncovalently modified mesoscale structures, J. Am. Chem. Soc., 2002, 124, 9036-9037.
    [342] P. Kohli, G. J. Blanchard, Design and demonstration of hybrid multiplayer structures: Layerby-layer mixed covalent and ionic interlayer linking chemistry, Langmuir, 2000, 16, 8518-8524.
    [343] G. Biesmans, G. Verbeek, B. Verschuere, M. van der Auweraev, F. C. de Schryver, On the fluorescence of anthracene chromophores in Langmuir-Blodgett films, Thin Solid Films, 1989, 169, 127-142.
    [344] X-H Xu, A. J. Bard, Immobilization and hybridization of DNA on an aluminum (Ⅲ) alkanebisphonate thin film with electrogenerated chemiluminescent detection, J. Am. Chem. Soc., 1995, 117, 2627-2631.
    [345] T. E. Mallouk, J. A. Gavin, Molecular recognition in lamellar solids and thin films, Acc. Chem. Res., 1998, 31,209-217.
    [346] G. L. Fisher, A. E. Hooper, R. L. Opila, D. L. Allara, N. Winograd, The interaction of vapor- deposited AI atoms with CO_2H groups at the surface of a self-assembled alkanethiolate monolayer on gold, J. Phys. Chem. B, 2000, 104, 3267-3273.
    [347] K. Kalyanasundaram, J. K. Thomas, Environmental effects on vibronic band intensities in pyrene monomer fluorescence and their application in studies of micellar systems, J. Am. Chem. Soc., 1977, 99, 2039-2044.
    [348] 刘敬兰,陈连文,周鸿娟,气相色谱法测定新型多元复合液肥中二羧酸,色谱,1999,17,95-96.
    [349] A. Limbeck, P. Puxbaum, Organic acids in continental background aerosols, Atmos. Environ., 1999, 33, 1847-1852.
    [350] 许士玉,胡敏,曾立民,气溶胶水溶性有机物(WSOC)中二元羧酸的测定,环境化学,2002,21,83-86.
    [351] 刘磊,童爱军,发光型主体分子胍基芘识别二羧酸根阴离子,光谱学与光谱分析,2002,22,273-277.
    [352] S. A. Ezzell, C. L. McCormick, in Water-Soluble Polymers, S. W. Shalaby, C. L. McCormick,??G. B. Butler (eds.), ACS Symposium Series 467, ACS, Washington DC, 1997.
    [353] 黄春辉,李富友,黄岩谊,光电功能超薄膜,北京大学出版社,北京,2001.
    [354] D. L. Pilloud, C. C. Moser, K. S. Reddy, P. L. Dutton, Surface-promoted thioether linkage between proto- or hemato porphyrins and thiol-silanized quartz: Formation of self-assembled monolayers and interaction with imidazole and carbon monoxide, Langmuir, 1998, 14, 4809-4818.
    [355] W. L. Murphy, D. J. Mooney, Bioinspired growth of crystalline carbonate apatite on biodegradable polymer substrate, J. Am. Chem. Soc., 2002, 124, 1910-1917.
    [356] 吴刚,材料结构表征及应用,化学工业出版社,北京,2002.
    [357] F. M. Winnik, Photophysics of preassociated pyrenes in aqueous polymer solutions and in other organized media, Chem. Rev., 1993, 93,587-614.
    [358] J. Matsui, M. Mitsuishi, T. Miyashita, A study on fluorescence behavior of pyrene at the interface of polymer Langmuir-Blodgett films, J. Phys. Chem. B, 2002, 106, 2468-2473.
    [359] Y. Fang, Fluorescence Techniques in Colloid and Polymer Science, Shaanxi Normal University Press, Xi'an, 2002.
    [360] F. M. Winnik, N. Tamai, J. Yonezawa, Y. Nishimura, I. Yamazaki, Temperatur-induced phase transition of pyrene-labeled (hydroxypropyl)cellulose in water: Picosecond fluorescence studies, J. Phys. Chem., 1992, 96, 1967-1972.
    [361] Y. Taniguchi, M. Mitsuya, N. Tamai, I. Yamazaki, H. Masuhara, Fluorescence spectra of vacuum-deposited films of ω-(1-pyrenyl)alkanoic acids, Chem. Phys. Lett., 1986, 132, 516-520.
    [362] A. Tsuchida, T. Ikawa, M. Yamamoto, Intrapolymer excimer formation solely with the fulloverlap conformation in poly(2-vinylpyrene), Polymer, 1995, 36, 3103-3106.
    [363] J. B. Birks, Photophysics of Aromatic Molecules, Wiley, London, 1970.
    [364] Y. Itoh, S. E. Webber, M. A. J. Rodgers, Photo harvesting vinylphenanthrene-methacrylic acid polymers: Singlet-state migration and trapping, Macromolecules, 1989, 22, 2766-2775.
    [365] Y. Itoh, H. Satoh, T. Yasue, A. Hachimori, H. Satozono, S. Suzuki, S. E. Webber, Amphiphilic alternating carbazole copolymers: Photophysical properties of poly[N-vinylcarbazole-altcitraconic acid] in aqueous solution, Macromolecules, 1994, 27, 1434-1439.
    [366] I. Soutar, The application of luminescence techniques in polymer science, Polym. Int., 1991, 26, 35-49.
    [367] A. P. de Silva, H. Q. No Gunaratne, C. McVeigh, G. E. M. Maguire, P. R. S. Maxwell, E. O'Hanlon. Fluorescent signalling of the brain neurotransmitter γ-aminobutyric acid and??related amino acid zwitterions, Chem. Commun., 1996, 2191-2192.
    [368] T. Buranda, J. Huang, G. V. Ramarao, L. K. Ista, R. S. Larson, T. L. Ward, L. A. Sklar, G. P. Lopez, Biomimetic molecular assemblies on glass and mesoporous silica microbeads for biotechnology, Langmuir, 2003,19, 1654-1663.
    
    [369] A. W. Czarnik, Fluorescent Chemosensors for Ion and Mmolecular Recognition, ACS Symposium Series 538, American Chemical Society, Washington DC, 1992.
    [370] A. W. Czarnik, Chemical communication in water using fluorescent chemosensors, Acc. Chem. Res., 1994,27, 302-308.
    [371] H. Ikeda, M. Nakamura, N. Ise, N. Oguma, A. Nakamura, T. Ikeda, F. Toda, A. Ueno, Fluorescent cyclodextrins for molecule sensing: fluorescent properties, NMR characterization, and inclusion phenomena of n-dansylleucine-modified cyclodextrins, J. Am. Chem. Soc, 1996,118,10980-10988.
    [372] K. Bandyopadhyay, L. Shu, H. Liu, L. Echegoyen, Selective K~+ recognition at the interface during self-assembly of a bis-podand thiol on a gold surface, Langmuir, 2000,16, 2706-2714.
    [373] Y. Zheng, X. Cao, J. Orbulescu, V. Konka, F. M. Andreopoulos, S. M. Pham, R. M. Leblanc, Peptidyl fluorescent chemosensors for the detection of divalent copper, Anal. Chem., 2003,75,1706-1712.
    [374] N. J. Turro, P. L. Kuo, Pyrene excimer formations in micelles of nonionic detergents and of water-soluble polymers, Langmuir, 1986, 2,438-442.
    [375] K. Char, C. W. Frank, A. P. Gast, W. T. Tang, Hydrophobic attraction of pyrene-end-labeled poly(ethylene glycol) in water and water-methanol mixtures, Macromolecules, 1987,20, 1833- 1838.
    [376] H. Fukumura, K. Hayashi, Time-resolved fluorescence anisotropy of labeled plasma proteins adsorbed on polymer surfaces, J. Colloid Interface Sci., 1990, 135,435-442.
    [377] A. B. Descalzo, R. Martinez-Manez, R. Radeglia, K. Rurack, J. Soto, Coupling selectivity with sensitivity in an integrated chemosensor framework: Design of a Hg~(2+)-responsive probe, operating above 500 nm, J. Am. Chem. Soc, 2003, 125, 3418-3419.
    [378] C. Goze, G. Ulrich, L. Charbonniere, M. Cesario, T. Prange, R. Ziessel, Cation sensors based on terpyridine-functionalized boradiazaindacene, Chem. Eur. J., 2003, 9, 3748-3755.
    [379] B. Turfan, E. U. Akkaya, Modulation of boradiazaindacene emission by cation-mediated oxidative PET, Org. Lett., 2002, 4, 2857-2859.
    [380] M. Royzen, Z. Dai, J. W. Canary, Ratiometric displacement approach to Cu (Ⅱ) sensing by fluorescence, J. Am. Chem. Soc, 2005, 127, 1612-1613.
    [381] R. Kramer, Fluorescent chemosensors for Cu~(2+) ions: Fast, selective, and highly sensitive, Angew. Chem. Int. Ed., 1998, 37, 772-773.
    [382] A. Torrado, G. K. Walkup, B. Imperiali, Exploiting polypeptide motifs for the design of selective Cu (Ⅱ) ion chemosensors, J. Am. Chem. Soc, 1998,120, 609-610.
    [383] S. Bhattacharya, M. Thomas, Synthesis of a novel thiazole based dipeptide chemosensor for Cu (Ⅱ) in water, Tetrahedron Lett., 2000,41, 10313-10317.
    [384] M. Beltramello, M. Gatos, F. Mancin, P. Tecilla, U. Tonellato, A new selective fluorescence chemosensor for Cu (Ⅱ) in water, Tetrahedron Lett., 2001,42,9143-9146.
    [385] A. Singh, Q. Yao, L. Tong, W. C. Still, D. Sames, Combinatorial approach to the development of fluorescent sensors for nanomolar aqueous copper, Tetrahedron Lett., 2000, 41,9601-9605.
    [386] R. Martinez, A. Espinosa, A. Tarraga, P. Molina, New Hg~(2+) and Cu~(2+) selective chromo- and fluoroionophore based on a bichromophoric azine, Org. Lett., 2005, 7, 5869-5872.
    [387] G. De Santis, L. Fabbrizzi, M. Licchelli, C. Mangano, D. Sacchi, N. Sardone, A fluorescent chemosensor for the copper (Ⅱ) ion, Inorg. Chim. Acta, 1997, 257, 69-76.
    [388] G. Klein, D. Kaufmann, S. Schurch, J.-L. Reymond, A fluorescent metal sensor based on macrocyclic chelation, Chem. Commun., 2001, 561-562.
    [389] J. Yoon, N. E. Ohler, D. H. Vance, W. D. Aumiller, A. W. Czarnik, A fluorescent chemosensor signalling only Hg (Ⅱ) and Cu (Ⅱ) in water, Tetrahedron Lett., 1997, 38,3845-3848.
    [390] Y. Zheng, K. M. Gattas-Asfura, V. Konka, R. M. Leblanc, A dansylated peptide for the selective detection of copper ions, Chem. Commun., 2002,2350-2351.
    [391] T. Mayr, T. Werner, Highly selective optical sensing of copper (Ⅱ) ions based on fluorescence quenching of immobilised Lucifer Yellow, Analyst, 2002, 127,248-252.
    [392] J. A. Sclafani, M. T. Maranto, T. M. Sisk, S. A. Van Arman, Terminal alkylation of linear polyamines, J. Org. Chem., 1996, 61, 3221-3222.
    [393] K. Rurack, Flipping the light switch 'ON' - the design of sensor molecules that show cation-induced fluorescence enhancement with heavy and transition metal ions, Spectrochim. Acta A, 2001, 57, 2161-2195.
    [394] D. Xing, R. Dorr, R. P. Cunningham, C. P. Scholes, Endonuclease III interactions with DNA substrates. 2. The DNA repair enzyme endonuclease III binds differently to intact DNA and to apyrimidinic/apurinic DNA substrates as shown by tryptophan fluorescence quenching, Biochemistry, 1995, 34,2537-2544.
    [395] M. Wasylewski, J. Malecki, Z. Wasylewski, Fluorescence study of escherichia coli cyclic AMP receptor protein, J. Protein Chem., 1995,14,299-308.
    [396] P. Grandini, F. Mancin, P. Tecilla, P. Scrimin, U. Tonellato, Exploiting the self-assembly strategy for the design of selective Cu (Ⅱ) ion chemosensors, Angew. Chem. Int. Ed., 1999, 38, 3061-3064.
    [397] M. Berton, F. Mancin, G. Stocchero, P. Tecilla, U. Tonellato, Self-assembling in surfactant aggregate: An alternative way to the realization of fluorescence chemosensor for Cu (Ⅱ) ions, Langmuir, 2001, 17, 7521-7528.
    [398] Y. Zheng, Q. Huo, P. Kele, F. M. Andreopoulos, S. M. Pham, R. M. Leblanc, A new fluorescent chemosensor for copper ions based on tripeptide glycyl-histidyl-lysine (GHK), Org. Lett., 2001, 3, 3277-3280.
    [399] T. Gunnlaugsson, J. P. Leonard, N. S. Murray, Highly selective colorimetricnaked-eye Cu (Ⅱ) detection using an azobenzene chemosensor, Org. Lett., 2004, 6, 1557-1560.
    [400] Z. C. Xu, Y. X. Xiao, X. H. Qian, J. N. Cui, D. W. Cui, Ratiometric and selective fluorescent sensor for Cu~Ⅱ based on internal charge transfer (ICT), Org. Lett., 2005, 7, 889-892.
    [401] J. P. Desvergne, A. W. Czarnik (Eds.), Chemosensors of Ion and Molecule Recognition, NATO ASI Series; Kluwer Academic Publishers, Dordrecht, 1997.
    [402] Q. Wu, E. V. Anslyn, Catalytic signal amplification using a heck reaction: an example in the fluorescence sensing of Cu (Ⅱ), J. Am. Chem. Soc, 2004, 126, 14682-14683.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700