高青断裂带多藏共存机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
高青大断层是一条长期继承性活动的基底大断层,为一级铲式正断层,是东营凹陷与青城凸起的分界断层,它的发展和演化控制着青城凸起和博兴注陷的形成和演化,对油气聚集起着重要作用;尤其是沿着高青断裂带依次分布了油藏、甲烷气藏和二氧化碳气藏,这三种类型的藏共存在断裂带上并具有相对独立的特征。通过断裂封堵性研究、油源对比、气藏成因分析、不整合和连通砂岩在成藏过程中的作用以及多藏共存规律等方面对于这种特殊的成藏现象开展了系统的研究,取得了以下成果:
     在系统研究断层纵向、侧向封堵性机理的基础上,分析了高青大断裂具有幕式输导特征。断裂带兼具正断和扭动性质,以高17块油藏为例,通过断层两侧岩性的配置关系分析了高青断裂带的侧向封堵性。
     通过油源对比,说明高青油田油源主要来自博兴洼陷沙四段烃源岩;烃类气的地化指标反映为油型气,且都不同程度遭受生物降解。非烃类气层中碳同位素特征说明是无机成因,而且是岩浆—幔源成因。He、N_2也来自地幔。
     在高青断裂带的油气聚集成藏过程中,不整合面与连通砂体都起到了重要的配合作用,不整合面既是运移的通道,同时其上的泥岩起到了封堵的作用,砂体是油气斜侧向运移的主要通道,从而形成了地层不整合油气藏、断块油气藏、岩性油气藏、复合油气藏等不同类型的油气藏。
     高青断裂带具有多期、复式成藏的特点,油气富集区沿高青断裂带两侧呈带状分布,各含油气层系具有明显的分区性。断层、砂体、不整合对油气分布的控制作用,其中高青断裂带是油气分布的主控因素。
     油藏的油源是洼陷内烃源岩,烃类气藏属于油型气,二氧化碳气藏是深部物质上涌引发上地幔活动,导致深部挥发分及活动组分向上运移随岩浆入侵和断裂活动,在断裂带附近的各类圈闭为气体聚集的有利场所。同时花501气藏中含He,N_2和CO_2气为主的非烃气与油型CH_4气分层聚集,表明至少有两期成藏。
GaoQing big fault which has been regarded as a bounding fault of DongYing sag and QingCheng uplift, is a long term inheritable actival big fault of basement, whose evolution controls the formation and evolution of QingCheng uplift and BoXing sag, and also has profound effection on hydrocarbon accumulation; Especially these reservoirs of three kind(oil reservoir、methane reservoir and carbon dioxide gas pool) ,which distribute along the GaoQing fault zone, coexist within the fault zone and each has it's unique character. According to the research of the factors during reservoir formation (fault seal research、oil-source correlation、Genetic Analysis Gas Pool、Unconformity research) and many aspects such as rule of multi-reservoirs coexistence etc, we have conducted systematic research on this special phenomenon of reservoir formation, and reached following results:
     At the base of fault's vertical and crossrange blockage theory, it regards that GaoQing big fault has obvious character of episodic transporting, it also a fault with character of both normal faults and torquing. Taking Gao 17 oil reservoir for example, the research has analysised the crossrange blockage of GaoQing zone fault belt, according to the lithological ordonnance in two sides of fault.
     By oil-source correlation, it is clear that the Qinggao oil field's main oil-source comes from source rock of S4 section of BoXing sag; The geochemical index of hydrocarbon gas inflects it has the character of petroliferous gas and has suffered from different extent of biology degradation. The character of carbon isotopes in nonhydrocarbon gas layer has proved its inorganic origin, mainly of magma-mantle cause. He、N_2 have also come from mantle.
     In the process of oil-gas accumulation in Gao-qing fracture belt, unconformity surface and connected sand body make an important chrous. Not only fracture surface is the migration channel, but also the mudstone upon it, has plugging effect. Since the sand body is the main channel for the oil-gas's lateral migration, accordingly many reservoirs of different types has formed such as : unconformity oil-gas pool, fault block oil-gas pool, lithological oil-gas pool, composite pool and so on.
     Reservoir formation of Gaoqing fractural belt has character of multi-periods、multi-accumulation, the enriching sections distribute along the bilateral of GaoQing fault. Each layer that contains oil-gas has obvious regionalization. Fault、sand body、unconformity has controlled the distribution of oil-gas and GaoQing fault is the main control factor among them. The oil source of oil reservoir is the hydrocarbon source rock of sag; hydrocarbon gas reservoir is regarded as petroliferous gas; Dioxide carbon reservoir is formed mainly by the movement of upper mantle caused by the emerge of deep part material: the deep part volatile matter and actival compound made up-migration with magma intrusion and fractural movement, then trapped within multi-traps located at the structural belt. At the same time, the non-hydrocarbon gas in Hua 501 gas reservoir which mainly contains He、N_2 and CO_2,and CH_4 petroliferous gas assembled separately, this mean that there were at least two period for reservoir formation.
引文
[1] 巴基洛夫AA.,油气聚集带形成地质条件与分布.刘淑萱,徐树宝译.北京:石油工业出版社,1988
    [2] 刘银河,金之钧,张艺伟.从油气聚集带到含油气系统.勘探家,1998,3(4):55-58
    [3] 潘钟祥主编.石油地质学.北京:地质出版社,1986:225-232
    [4] 陈荣书主编.石油与天然气地质学.武汉:中国地质大学出版社,1994:189-194
    [5] Magoon L B.,含油气系统—研究现状和方法.杨瑞召,周庆凡,汪时成等译,北京:地质出版社,1992:1-20
    [6] Magoon L B.,Dow w G.,The System-from source to trap.AAPG Memoir,1994,60:3-22
    [7] 田作基,张光亚,等.塔里木库车含油气系统油气成藏的主控因素及成藏模式.石油勘探与开发,2001,28(5):12-16.
    [8] 黄志龙,郝石生,等.东海盆地丽水凹陷油气成藏组合与模式.天然气工业,2001,24(2):17-21.
    [9] 宋国奇.含油气盆地成藏组合体理论初步探讨.油气地质与采收率,2002,9(5):4-7.
    [10] 郝雪峰,等.陆相断陷盆地成藏组合体成藏模式探讨,油气地质与采收率,2002,9(5):11-13.
    [11] 张善文,等.网毯式油气成藏体系.石油勘探与开发,2003,30(1):1-10.
    [12] 李丕龙,等.陆相断陷盆地油气成藏组合.北京:石油工业出版社,2003.
    [13] 曹守连.南堡凹陷断裂带构造演化及成藏条件分析.断块油气田,1997,4(2):13-16.
    [14] 童崇光.吐哈盆地断裂机制探讨.复式油气田,1998,(3):47-49.
    [15] 陶明信,徐永昌,等.中国东部幔源流体的活动特征与成藏效应.大地构造与成矿学,2001,25(3):265-270.
    [16] 张金川,金之钧,等.深盆气藏的界定及地质特征研究.石油大学学报:自然科学版,2001,25(6):25-28.
    [17] 付广,等.断裂输导系统及其组合对油气成藏的控制作用,世界地质,2001,20(4).344-349
    [18] Hooper E C D., Fluid Migration along Growth Fault in Compacting Sediments. Journal of Petroleum Geology, 1991;14(2): 161-180.
    [19] 李明诚.石油与天然气运移(第三版).北京:石油工业出版社,2004.
    [20] Hindle.,Petroleum migration pathways and charge concentration, a three-dimensional model. AAPG Bulletin, 1997:V81: 1451-1481.
    [21] Sibson, Richard H.,Structral permeability of fluid-driven fault-fracture meshes. Journal of Structral Geology, 1996;18(8): 1031-1042.
    [22] 华保钦.构造应力场、地震泵和油气运移.沉积学报,1995,13(2):77-85.
    [23] Steven Losh, Lorraine Enlinton, Martin school etc.,Vertical and lateral fluid flow related to a large growth fault, South Eugene island block 330 field, offshore Louisiana. AAPG Bullitin, 1999;83(2): 244-276.
    [24] 曾溅辉,王捷,等.油气运移机理及物理模拟.北京:石油工业出版社,2002.
    [25] 刘泽容,信荃麟,邓俊国,等.断块群油气藏形成机制和构造模式.北京:石油工业出版社,1995:108-115.
    [26] 郭秋麟,米石云等.盆地模拟原理方法.北京:石油工业出版社,1998.
    [27] 侯家根,徐守余.河道砂储集层随机模拟方法分析.石油勘探与开发,1998,25(4):62-66.
    [28] 付广,张靖,李庆章.断层侧向封闭模式及研究方法.中国海上油气(地质),1998,12(1):42-46.
    [29] 付广,薛永超,杨勉.利用断裂充填物中泥质含量研究断层封闭型性的方法.石油学报,1996,10(2):7-12.
    [30] 吕延防,陈章明,陈发景.非线性映射分析断层封闭性评价方法.石油学报,1996,10(2):7-12
    [31] Berg, Robert R.,and Avery, Alana Haveman.,Sealing properties of Teritiary growth faults. Texas Gulf Coast. SSPG, 1995:79(3):375-393.
    [32] 童亨茂.断层开启与封闭的定量分析.石油与天然气地质,1998,19(3):215-220
    [33] 吕延防,付广.断层封闭型研究.北京:石油工业出版社,2002.
    [34] 童亨茂.断层开启与封闭的定量分析.石油与天然气地质,1998,19(3):215-220.
    [35] 吕延防,付广.断层封闭型研究.北京:石油工业出版社,2002.
    [36] 项希勇,张树林,程本合,等.沾化凹陷东部地区构造应力场分析及其应用.油气地质与采收率,2001,8(3):1-4.
    [37] 周新桂,孙宝珊,谭成轩,等.现今地应力与断层封闭效应.石油勘探与开发,2000,27(5):127-131.
    [38] 传波,梅廉夫,汤济广,等.含油气盆地断层封闭性研究探讨.断块油气田,2002;9(4): 1—5.
    [39] 万天丰,王明明,殷秀兰,等.渤海湾地区不同方向断裂带的封闭性.现代地质,2004,18(2):157-163
    [40] 刘尔周,刘斌,李建英,等.生长断层封闭性分析.石油勘探与开发,2002,29(3):37-39.
    [41] 潘钟祥.不整合对油气运移聚集的重要性.石油学报,1983,4(4):1-10.
    [42] 张克银,艾华国,吴亚军.碳酸盐岩顶部不整合面结构层及控油意义.石油勘探与开发,1996,23(5):16-19.
    [43] 张克银,杨克明,艾华国等.塔里木盆地T50面对油气运移作用的探讨.新疆石油地质,1996,17(3):225-230.
    [44] 吴亚军,张守安,艾华国.塔里木盆地不整合类型及其与油气藏的关系.新疆石油质,1998,19(2):101-105.
    [45] 张年富,曹耀华,况军.准格尔盆地腹部石炭系火山岩风化壳模式.新疆石油地质,1996,19(6):450-452.
    [46] 陈中红,查明,朱筱敏.准格尔盆地陆梁隆起不整合面与油气运聚关系.古地理学报,2003,5(1):120-126.
    [47] 汤良杰,金之钧,庞雄奇.多期叠合盆地油气运聚模式.石油大学学报(自然科学版),2000,24(4):67-70.
    [48] Dembicki H Jr, and Anderdon MJ.,secondary Migration of oil:Experiments Supporting Efficiant Movement of Separate. Buoyant oil phase along Limited Conduits. AAPG, 1989;V73: 1018-1021.
    [49] Catalan L,F Xiaowen, I Chatzis, and F A L Dullien.,An Experimental study of Secondary oil Migration. AAPG, 1992;V76: 638-650.
    [50] Sell O Metal.,Experimental Verification of Low-dip, Low-rate, Two-phase(secondary) Migration by Means of R-ray Absorbtion. Geofluids'93.1993.
    [51] Thomas M M, and clouse J A.,Scaled physical Model of Secondary oil Migration. AAPG Bulletin, 1995;V79: 19-29.
    [52] Larter S R, Bowler B, Li M, et al. Molecular indicators of secondary oil migration distances[J]. Nature, 1996, 383: 593-597.
    [53] Mackenzie AS, Leythaeuser D, Schaefer RG. Expulsion of petroleum hydrocarbons from shale source rocks[J]. Nature, 1983,301:506-509.
    [54] Santos Neto E V, Hayes J.M. Use of hydrocarbon and carbon stable isotopes characterizing oils from the Potiguar Basin (Onshore)Northeastern Brazil[J]. 1999, AAPG Bu11.,83(9):406-518.
    [55] Z. Bing-Quan, Z. Jing-Lian, T. Xiang-Lin et al. Pb, Sr and Nd isotopic features in organic matter from China and their iplications for petroleum generation and migration[J]. Geochemica et Cosmochimica Acta. 2001,65(15):2555-2570.
    [56] England W.A. Mackenzie AS, Mann DM, et al. The movement and entrapment of petroleum fluids in the subsurface[J]. Journal of Geological Society, London. 144:327-347.
    [57] 王铁冠,李素梅,张爱云,等.利用原油含氮化合物研究油气运移[J].石油大学学报(自然科学版),2000,24(4):83-86.
    [58] 张金亮.利用流体包裹体研究油藏注入史[J],西安石油学院学报,1998,13(4):1—4.
    [59] 杨惠民.包裹体类型和成分特征在油气运移研究和油气储层评价中的应用-以赤水气田为例[J].海相油气地质,1997,2(3):16-21.
    [60] Richard W. Davis., Integration of geological data into hydrodynamic analysis of hydrocarbon movement, In W.A. England and A.J. Fleet eds. Petroleum Migration. Geological Society Special Publication 59, part 2:127-135,1991.
    [61] Thomas M.M., and Clouse J.A., Scaled physical model of secondary oil migration[J]. AAPG Bulletin ,1995,79(1): 19-29.
    [62] Hirsh L.M., and Thompson A.H., Minimum saturations and buoyancy in secondary migration[J].AAPG Bulletin 1995,79(5): 696-710.
    [63] Kross B.M., and Schlomer S., Aspect of natural gas generation and migration in sedimentary systems[J].Mineralogical Magazine ,1998,62A, 818-819.
    [64] Hantschel T., Finite element analysis and ray tracing modeling of petroleum migration[J]. Marine and Petroleum Geology, 2000,17(7): 816-821.
    [65] Meeaking P., Invasion percolation and secondary migration: experiments and simulationsEJ].Marine and Petroleum Geology, 2000,17(7):777-797.
    [66] Leythaeuser D., chwark L., and Keuser Ch., Geological conditions and geochemical effects secondary petroleum migration and accumulation[J]. Marine and Petroleum Geology, 2000,12(7): 857-859.
    [67] Davis J.C., and Harbaugh J.W., Statistical appraisal of seimic prospects in Louisiana-Texas outer continental shelf[J].AAPG Bulletin, 1988, 72(3):349-358.
    [68] Catalan, L.,F. Xiaowen, I. Chatzis, and F.A.L. Dullien, An experimental studyof secondary oil migration:AAPG Bull., 1992,76(5): 638-650.
    [69] Carruthers, D., and P. Ringose, Secondary oil migration:oil-rock contact volumes, flow behavior and rates, in Parmell, J. (ed.),Dating and duration of fluid flow-rock interaction. Geological Sociaty Special Publication 1989, No. 144: 205-220.
    [70] Dembicki, D. Jr., and M.J. Anderson, Secondary migration of oil:experiments supporting efficient movement of separate, buoyant oil phase along limited conduits:AAPG Bull., 1989,73(9): 1018-1021.
    [71] Dickey, P. A. and Cox , W. C., Oil and gas in reserviors with subnomalpressures . AAPG , 1977,61(12): 2134-2142.
    [72] Hooper E. C. D., Fluid migration along growth fault in compacting sediment. Journal of Petroleum Geology, 1991 , 14(2): 161-180.
    [73] Hunt, J. M., J. K. Whelan, L. B. Eglinton, and L. M. Cathles III, Relation of shales porosities,gas generation, and compaction to deep overpressures in the U. S. Gulf Coast, in Law, B. E., G. F. Ulmishek, and V. I. Slavin eds. Abnormal pressures in hydrocarbon environments:AAPG Memoir , 1998,70: 87-104.
    [74] Homas, M. M. and J. A. Clouse, Scaled physical model of secondary migration. AAPG Bull., 1995, 79(1): 19-59.
    [75] Killops, S. D.,A. D. Woolhouse, R J Weston and R A Coke, A geochemical appraisal of oil generation in the Taranak Basin, New Zealand[J]. AAPG. Bulletin, 1994, 78(10): 1560-1585.
    [76] Li,M., Larter, S. R., D. Stoddart and M. Bjorpy, Fractionation of pyrrolic nitrogen compounds in petroleum during migration: derivation of migrationrelated geochemic al parameters, in Cubitt, J. M. ,W. A. England(eds), The geochemistry of reservoirs. Geological Socioty Special Publication, 1995, No. 86: 103-121.
    [77] Norman H. O., A. W. Michell and J. G. Gluyas, The filling and emptying of the Ula Oilfield:fluid inclusion constraints, in Cubitt, J. M. and England, W. A. (eds), The geochemistry of reservoirs. Geological Socioty Special Publication [C] No. 86, 1994: 141-157.
    [78] Neuzil, C. E., and Pollock, D. W., Erosional unloading and fluid pressures in hydraulically "Tight" Rocks. Journal of geology, 1983, 91(1): 179-193.
    [79] Neuzil,C. E., Low fluid pressure within the Pierre Shale:a transient response to erosion. Water resources research, 1993, 29(7): 2007-2020.
    [80] Ozkaya, I., Computer simulation of primary oil migration in Kuwait. Journal of petroleum geology, 1991,14(1): 37-48.
    [81] Price L C., Basin richness and source rock disruption: a fundamental relationship?[J]. Journal of petroleum Geology, 1994, 17(1): 5-38.
    [82] Price, L. C., and Lefever J. A. , Does Bakken horizontal drilling imply a huge oil resource base in fractured shales ? in J. W. Schmoker, E. B. Coalson, and C. A. Brown, eds., Geological studies relevant to horizontal drilling in western North America: Rock Mountain Association of Geologists, 1992: 199-214.
    [83] Parks, K.P. and Toth, J., Field evidence for erosion-induced underpressuring in upper Cretaceous and Tertiary strata, west central Alberta, Canada[J].Bulletin of Canadian petroleum geology, 1995, 43(3): 281-292.
    [84] Stefan, B., Synthesis and model of formation-waterflow ,Alberta Basin ,Canada . AAPG, 1995,79(8): 1159-1178.
    [85] Stefan, B., and Underschultz, J.R., Large-scake underpressuring in the Mississippian-Cretaceous succession, southwestern Alberta Basin [J]. AAPG Bull, 1995, 79(7): 989-1004.
    [86] Sweeney, J.J.,and Burnham, A.K., Evolution of a simple model of vitrinite reflectance based on chemical kinetics[J].AAPG Bulletin, 1990,74(4): 1559-1570.
    [87] 李丕龙,庞雄奇,等.陆相断陷盆地隐蔽油气藏形成.北京:石油工业出版社,2004:16:254-294.
    [88] 王捷,关德范,等.油气生成运移聚集模型研究[M].北京:石油工业出版社,1999.
    [89] 查明著.断陷盆地油气二次运移与聚集[M].北京:地质出版社,1997.
    [90] 龚再升,李思田,等.南海北部大陆边缘盆地分析与油气聚集[M].北京,科学出版社,1997.
    [91] 罗群,白新华.断裂活动与油气成藏系统[J].成油体系与成藏动力学论文集,北京:地震出版社,1999:88-94.
    [92] 孙水传,陈红汉.石油地质动力学的内涵与展望[J].地学前缘,1995.2(3):9-14
    [93] 李思田,王华,路风香.盆地动力学—基本思路与若干研究方法[M].第1版,武汉:中国地质大学出版社.1999.
    [94]李明诚.对油气运聚研究中的一些概念的再思考.石油勘探与开发,2002,29(2):13-16.
    [95] 戴家权,金之钧,等.深盆气成藏机理及动态分布的定量研究.石油学报.2003,24(1):39-43.
    [96] 田世澄,陈永进等.论成藏动力系统中的流体动力学机制.地学前缘,2001,008(004):329-336.
    [97] 王志欣.毛管压力是油(气)初次运移的动力吗7.石油试验地质,2000,22(3):195-200.
    [98] 陈章明,张云峰,韩有信,等.透镜状山岩体聚油模拟实验及其机理分析.石油实验地质,1998,20(2):166-170.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700