川东二叠系生物礁的地质特征与地震预测技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
生物礁油气藏是一种典型的岩性油气藏,由于地质特点的多样性和复杂性,使得生物礁的勘探难度很大。在充分调研和技术开发的基础上,针对川东地区二叠系生物礁的地质特点和资料基础,以生物礁气藏为研究对象,从已知井井震响应特征分析出发,通过地震反射结构分析、神经网络波形分类处理、地震属性分析、三维可视化解释、多参数地震反演等多项地震特殊处理和解释方法,建立了生物礁和生物礁储层的判别模式,形成了有针对性的地震勘探配套技术。论文的主要研究内容和关键成果如下:①通过分析地震反射结构变化,有效识别生物礁体的分布范围。生物礁外形多表现为丘状或透镜状凸起,礁内部多表现为断续、杂乱或无反射空白区等特征,在礁体顶部会产生披覆构造,礁翼沉积物向礁体周缘上超现象等。②分析地震波形总体特征变化,针对生物礁所具有的特殊沉积环境、沉积相带和地层结构特点及其在地震上所具有的一些特殊识别特征和标志,利用神经网络技术,通过地震波形分类对地震道形状进行分类,达到生物礁发育相带和分布范围预测的目的。③进行多种地震属性分析,针对生物礁引起的地震信号差异,预测生物礁的分布范围,描述储层的非均质性变化。地震属性分析技术在川东黄龙场三维区生物礁预测中效果良好,生物礁在均方根振幅属性上特征明显。④在川东黄龙场三维解剖区,以地震振幅、相干和振幅频率体为主要属性体进行三维可视化处理和解释,通过多个属性体和多种可视化手段的应用,综合预测和解释出生物礁体的分布范围。⑤在充分分析储层的岩性、电性特征的基础上,选取对岩性区分比较敏感的伽玛、补偿中子和声速三条电测曲线,建立储层地质模型,并与地震信息建立联系,进行多参数综合反演处理和解释,达到岩性识别和储层预测的目的。综合使用伽玛和补偿中子反演结果进行生物礁储层识别和预测,使用声速反演结果研究储层孔隙度等物性变化。地震反射结构分析、神经网络波形分类处理、地震属性和三维可视化解释构成了川东地区二叠系生物礁定性预测和评价的主要技术系列。以伽玛、补偿中子、声波速度为目标曲线的多参数地震反演技术和方法是川东地区二叠系生物礁储层定量预测和物性评价的核心技术。
The reef oil/gas reservoir is a typical lithological oil/gas reservoir, as a result of the geological characteristic multiplicity and complexity, the exploration difficulty of reef reservoir is very big. In the full investigation, study and in the technical development foundation, in view of the reef reservoir's geological characteristics and the data base in Eastern Sichuan basin's Permian system, taking the reef reservoir as the object of study, analyzing the characteristics embarking from the known wells and seismic, through the seismic reflection structure analysis, the neural network waveform classification processing, the seismic attribute analysis, the three dimensional visualization interpretation, the multi-parameters seismic inversion and so on the many items of seismic special processing and interpretation methods, the paper has established reef and reef reservoir's distinction patterns, and formed the necessary seismic exploration technology. The paper's main research contents and the essential achievements are as follows:①Through the analysis of seismic reflection structure, distinguishes the distributed scope of a reef body effectively. The reef's contour is usually dome-shaped or lens shape bulge, the interior of a reef is usually multi-performance for off and on, disorderly or no reflection gap characteristics and so on. It can produce drape-like structure over top of a reef body, a reef flank deposit to the reef body boundary and so on.②Through analyzing of seismic waveform's overall characteristic changes, the special environment of deposition, the sedimentary face belt and the strata structure characteristics and some special recognition clues and signs of a reef on the seismic can be seen. The neural network technology, carries on the classification of seismic waveform, achieved the goal of predicting a reef's growth and distribution scope.③Carries on many kinds of seismic attributes analysis, causes the seismic signal difference in view of the reef, forecast reef's distributed scope, describes reef reservoir's anisotropic change. The seismic attributes analysis technology is effective in Huanglongchang field's 3-D seismic area reef forecast in the Eastern Sichuan. The reef's characteristic is obvious in the root-mean-square amplitude attribute.④In the Huanglongchang field's 3-D seismic dissection area of the Eastern Sichuan, the seismic amplitude, coherence and amplitude-frequency body were used as main attributes to process and explain reefs based on the three dimensional visualization technique, through many attributes and many kinds of visualization methods application, comprehensively forecasts the reef's distributed scope.⑤In the full analysis of reefs reservoir's lithological characters and electrical characters foundation, the gamma, compensation neutron and sonic velocity three electrical measurement curves which are quite sensitive to lithological discrimination were selected to establish the reef reservoir's geology model, and to establish the relation with the seismic information, carried on multi-parameters seismic inversion processing and interpreting, achieved the goal of lithology recognition and reservoir forecast. The gamma and compensation neutron inversion results were carried on the reef reservoir's recognition and forecast, and the sonic velocity inversion result was carried on study of a reef reservoir's porosity. The seismic reflection structure analysis, the neural network waveform classification processing, the seismic attributes interpreting and the three dimensional visualization explanation constituted the Permian reef's qualitative forecast and appraisal main technical series in the Eastern Sichuan. Take the gamma, compensation neutron, sonic velocity as the goal curves multi-parameters seismic inversion technology is the Permian reefs reservoir's quantitative forecast and l appraisal core technologies in the Eastern Sichuan.
引文
[1]В.Г.库兹涅佐夫.礁地质学及礁的含油气性[M].北京:石油工业出版社,1983
    [2]蔡立国,饶丹,潘文蕾.川东北地区普光气田成藏模式研究[J].石油实验地质,2005,27(5):462-467
    [3]陈太源.川东上二叠统生物礁气藏的地震反射特征[J].天然气工业,1987,7(2):11-15
    [4]陈祖庆,杨鸿飞,王涛.川东北宣汉-达县地区礁滩相储层地震预测研究[J].南方油气,2005,18(4):31-36
    [5]范嘉松,张维.生物礁的基本概念、分类及识别特征[J].岩石学报,1985,1(3):45-56
    [6]范嘉松.古代生物礁研究中的若干问题,兼论我国西南地区二叠系生物礁的类型[J].石油与天然气地质,1988,9(1):46-54
    [7]范嘉松,吴亚生.我国生物礁研究中的问题及发展方向[J].石油与天然气地质,1992,13(4):463-464
    [8]范嘉松.中国生物礁与油气[M].北京:海洋出版社,1996,326-329
    [9]范嘉松,吴亚生.川东二叠纪生物礁的再认识[J].石油与天然气地质,2002,23(1):12-18
    [10]凡睿,高林,何莉等.川东北飞仙关组鲕滩储层地震预测[J].勘探地球物理进展,2003,26(3):199-203
    [11]黄先平,杨天泉,张红梅.四川盆地下二叠统沉积相及其勘探潜力区研究[J].天然气工业,2004,24(1):10-12
    [12]姜在兴.沉积学[M].北京:石油工业出版社,2003,404-434
    [13]李登华,唐跃,殷积峰等.川东黄龙场构造上二叠统长兴组生物礁特征与潜伏礁预测[J].中国地质,2006,33(2):427-433
    [14]李明,候连华,邹才能等.岩性地层油气藏地球物理勘探技术与应用[M].北京:石油工业出版社,2005
    [15]李书舜,刘大成.四川地区晚二叠世沉积环境与生物礁[J].沉积学报,1988,6(3):112-116
    [16]李学义.四川盆地碳酸盐岩地区地震勘探技术难点及对策探讨[J].天然气工业,2000,20(2):12-17
    [17]李岩峰,刘殊,曾晓.川东飞仙关组鲕滩储层地震响应特征及预测[J].石油物探,2005,44(3):236-239
    [18]刘大成,李书舜.川东鄂西晚二叠世长兴期沉积相与生物礁含油气有利相带特征探讨[J].石油实验地质,1989,11(2):152-158
    [19]刘海林,徐明华,李灿平.川东黄龙场构造长兴组生物礁地震预测研究[J].物探化探计算技术,2002,24(2):106-110
    [20]刘划一,王一刚,杨雨等.川东上二叠统生物礁气藏多元信息综合预测方法研究[J].天然气工业,1999,19(4):13-18
    [21]刘岭山.川东-鄂西晚二叠世长兴期隐伏礁体预测初议[J].石油与天然气地质,1993,14(2):161-163
    [22]刘殊,杨继友.一个可能的生物礁预测[J].石油物探,2004,43(1):20-25
    [23]刘殊,唐建明,马永生等.川东北地区长兴组-飞仙关组礁滩相储层预测[J].石油与天然气地质,2006,27(3):332-338
    [24]刘殊,郭旭升,马宗晋等.礁滩相地震响应特征和油气勘探远景[J].石油物探,2006,45(5):452-458
    [25]马永生,傅强,郭彤楼.川东北地区普光气田长兴-飞仙关气藏成藏模式与成藏过程[J].石油实验地质,2005,27(5):455-460
    [26]强子同,文应初,唐杰等.四川及邻区晚二叠世沉积作用及沉积盆地的发展[J].沉积学报,1990,8(1):79-87
    [27]邱燕.生物礁的地震鉴别方法[J].海洋地质,1999,2:12-21
    [28]任兴国,姚声贤,罗利等.川东生物礁测井响应及判别模式[J].测井技术,1999,23(3):190-197
    [29]沈安江,陈子炓,寿建峰.相对海平面升降与中国南方二叠纪生物礁油气藏[J].沉积学报,1999,17(3):367-373
    [30]王永标,徐桂荣,张克信等.中国二叠纪生物礁的研究现状及新进展[J].地质科技情报,1998,17(1):36-39
    [31]王一刚,张静,杨雨等.四川盆地东部上二叠统长兴组生物礁气藏形成机理[J].海相油气地质,1997,5(1-2):145-152
    [32]王一刚,文应初,张帆等.川东地区上二叠统长兴组生物礁分布规律[J].天然气工业, 1998,18(6):10-15
    [33]王忠东,王津义.川东地区晚二叠世长兴期生物礁分布特征[J].江汉石油学院学报,2003,25(2):30-31
    [34]卫平生,刘全新,张景廉等.再论生物礁与大油气田的关系[J].石油学报,2006,27(2):38-42
    [35]吴亚生,范嘉松.生物礁的定义与分类[J].石油与天然气地质,1991,12(3):346-348
    [36]谢继容.川东长兴组生物礁的高分辨率层序地层研究[J].矿物岩石,2002,22(1):49-54
    [37]徐国强,吴伟航,武恒志等.塔里木盆地和田河地区上奥陶统礁滩沉积体地震识别及其发育分布规律[J].矿物岩石,2006,26(2):80-85
    [38]徐明华,王绪本,李学华.自然伽马反演在双家坝构造飞仙关组鲕滩储层预测中的应用[J].石油物探,2003,42(2):169-178
    [39]徐建斌,李学义,青銮文等.四川碳酸盐岩山地地震勘探综述[J].石油地球物理勘探,2000,35(3):386-394
    [40]殷积峰,李军,谢芬等.波形分类技术在川东生物礁气藏预测中的应用[J].石油物探,vol46(1),2007,53-57
    [41]殷积峰,李军,谢芬等.川东二叠系生物礁的地震预测技术[J].石油地球物理勘探,vol42(1),2007,70-75
    [42]曾伟,徐建斌,黄继祥等.川东北地区长兴期生物礁结构分类及分布[J].沉积学报,1998,16(3):132-136
    [43]张继庆,李汝宁,官举铭等.四川盆地及邻区晚二叠世生物礁[M].成都:四川科学技术出版社,1990
    [44]钟建华,温志峰,李勇等.生物礁的研究现状与发展趋势[J].地质论评,2005,51(3):288-298
    [45] A. K. Kuhme, 1985, Devonian reefs, SEG Expanded Abstracts 4,406
    [46] A. L. Boylan, D. A. Waltham, D. W. J. Bosence, etc., 2002, Digital rocks: linking forward modeling to carbonate facies, Basin Research, 14(3), 401-415
    [47] Armin K. Kuhme, 1987, Seismic interpretation of reefs, The Leading Edge 6, 60
    [48] C. C. Pretorius, W. F. Trewick, A. Fourie,etc, 2000, Application of 3-D seismics to mine planning at Vaal Reefs gold mine, number 10 shaft, Republic of South Africa, Geophysics 65,1862
    [49] Clif Jordan and James Lee Wilson, 1998, Reefs: Geologic considerations for Geophysicists, The Leading Edge 17, 325
    [50] Efrain Mendez-Hernandez, 2003, A brief history and recent advances in seismic technology for the petroleum industry in Mexico, The Leading Edhe 22, 1116
    [51] Erwin W. Adams, John P. Grotzinger, Wesley A. Watters, etc., 2005, Digital characterization of thrombolite-stromatolite reef distribution in a carbonate ramp system (terminal Proterozoic, Nama Group, Namibia), AAPG Bulletin, 89, 1293-1318
    [52] Fabian T. Wirnkar and Neil L. Anderson, 1989, Seismic analysis of the differential compaction of reef and off-reef sediments, SEG Expanded Abstracts 8, 888
    [53] Gildas Omnes, Charles Wu, and Roger Turpening, 1988, Experimental reservoir delineation project in Michigan: Surface and borehole seismic images of the springdale reef, SEG Expanded Abstracts 7,165
    [54] Graeme G. Phipps, 1989, Exploring for dolomitized Slave Point carbonates in northeastern British Columbia, Geophysics 54, 806
    [55] Graham R. Davies, 1996, Waulsortian Reefs, Alberta, Canada local and regional perspectives, SEG Expanded Abstracts 15, 402
    [56] Henry W. Posamentier and Priscilla Laurin, 2005, Seismic geomorphology of Oligocene to Miocene carbonate buildups offshore Madura, Indonesia, SEG Expanded Abstracts 24, 429
    [57] J. A. Grow, W. P. Dillon, and J. S. Schlee, 1982, Late Mesozoic carbonate banks and reefsalong U.S. Atlantic margin, SEG Expanded Abstracts 1, 495
    [58] James Lee Wilson and Clif Jordan, 1999, Marine carbonate facies patterns, The Leading Edge 18, 314
    [59] Joerg H. Meyer and Wayne Tittle, 1998, Exploration risk reduction using borehole seismic: East Texas pinnacle reef applications, SEG Expanded Abstracts 17, 369
    [60] John H. Beard, Ernest E. Cook, and M. Reece Henderson, 1983, Exploration for patch or pinnacle reefs in the Permian basin using advanced stratigraphic techniques, SEG Expanded Abstracts 2, 291
    [61] John van der Laan and John Pendrel, 2001, Geostatistical simulation of porosity and risk in a Swan Hills reef, SEG Expanded Abstracts 20, 1588
    [62] Joseph Galewsky, 1998, The dynamics of foreland basin carbonate platforms: tectonic and eustatic controls, Basin Research, 10(4), 409-416
    [63] Karen Rose Cercone and Kyger C. Lohmann, Late burial diagenesis of Niagaran (Middle Silurian ) pinnacle reefs in Michigan Basin, AAPG Bulletin, 1987, 71: 156-166
    [64] L. Pomar, 2001, Types of carbonate platforms: a genetic approach, Basin Research, 13(3), 313-334
    [65] Luis Pomar and and W. C. Ward, 1999, Reservoir-scale heterogeneity in depositional packages and diagenetic patterns on a reef-rimmed platform, upper Miocene, Mallorca, Spain, AAPG Bulletin, 83, 1759-1773
    [66] Maria Ester Lara, 1993, Divergent wrench faulting in the Belize Southern Lagoon; implications for Tertiary Caribbean Plate movements and Quaternary reef distribution, AAPG Bulletin, 77, 1041-1063
    [67] M. F. Middleton, Seismic stratigraphy of Devonian reef complexes, northern Canning Basin, Western Australia, AAPG Bulletin, 1987, 71:1488-1498
    [68] Monty C L V., 1995, The rise and nature of carbonate mud-mounds:an introductory actualistic approach.In:Monty C L V,Bosence D W J,Bridges P H and Pratt B R,eds.Carbonate Mud-Mounds,Their Origin and Evolution, Spec.Publ.Int.Assoc. Sedimental, 23, Oxford: Blackwell, 11-48
    [69] Neil L. Anderson and R. James Brown, 1988, Seismic signature of the morinville Leduc formation reef, SEG Expanded Abstracts 7, 749
    [70] Nigel R. Watts, Murrary P. Coppold, and J. L. Douglas, 1994, Application of reservoir geology to enhanced oil recovery from Upper Devonian Nisku reefs, Alberta, Canada, AAPG Bulletin, 78, 78-101
    [71] N. L. Anderson, R. J. Brown, R. C. Hinds, etc., 1989, Seismic signature of a Swan Hills (Frasnian) reef reservoir, Snipe Lake, Alberta, Geophysics 54, 148
    [72] N. L. Anderson, R. J. Brown, and R. C. Hinds, 1989, Low- and high-relief Leduc formation reefs: A seismic analysis, Geophysics 54, 1410
    [73] N. L. Anderson and E. K. Franseen, 1991, Differential compaction of Winnipegosis reefs: A seismic perspective, Geophysics 56, 142
    [74] Riding R., 1977, Reef concepts, In:proc.3rd Intern.Coral Reef Symposium. Miami, 209-213
    [75] Riding R., 2002, Structure and composition of organic reefs and carbonate mud mounds: concepts and categories, Earth-Science Reviews, 58(1-2):163-231
    [76] Scott L. Montgomery, 1996, Cotton Valley Lime pinnacle reef play; Branton Field, AAPG Bulletin, 80, 617-629
    [77] Scott L. Montgomery, T. Hodge Walker, Gregory P. Wahlman, etc., 1999, Upper Jurassic “reef” play, East Texas Basin; an updated overview; Part 1, Background and outboard trend, AAPG Bulletin, 83, 707-726
    [78] Scott L. Montgomery, Rob Karlewicz, and Dan Ziegler, 1999, Upper Jurassic reef play, East Texas Basin; an updated overview; Part 2, Inboard trend, AAPG Bulletin, 83, 869-888
    [79] S. Qing Sun and V. Paul Wright, 1998, Controls on reservoir quality of an Upper Jurassic reef mound in the Palmers Wood Field area, Wwald Basin, southern England, AAPG Bulletin, 82, 497-515
    [80] Stanton R J.,1967, Factors controlling shape and internal facies distribution of organic carbonate buildups, Bull.Am.Assoc.Pet.Geol., 51:2462-2467
    [81] Thomas L. Davis, 1972, Velocity variations around Leduc reefs, Alberta, Geophysics 37, 584
    [82] W. G. Caughlin, F. J. Lucia, and N. L. McIver, 1976, The detection and development of Silurian reefs in northern Michigan, Geophysics 42, 646
    [83] Wolfgang Kiessling, Erik Fluegel, and Jan Golonka, 1999, Paleoreef maps; evaluation of a comprehensive database on Phanerozoic reefs, AAPG Bulletin, 83, 1552-1587

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700