针刺对特定基因敲除小鼠肠运动的影响及其外周神经机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:
     针刺疗法适用于临床多种疾病,其中包括消化道胃肠功能紊乱。大量的实验和临床证据表明:针刺在治疗功能性肠病方面具有独到的疗效与优势。功能性肠病临床分为腹泻与便秘两种疾病,这两种疾病在临床治疗选穴时存在用穴交叉和混乱的状况,本实验的目的旨在明确临床选穴,为临床治疗疾病准确选穴提供进一步的指导。尽管目前已经有大量关于针刺治疗肠道疾病的研究,之前也有针刺对麻醉大鼠胃运动刺激效应的相关研究,但是关于胃肠运动调节方面针刺对自主神经功能调节作用的相关研究并不多见,而关于针刺起效的传入机制以及效应方式仍在研究当中。此外,在体同时记录小鼠空肠和结肠运动的实验研究也不多见,针刺作用到底是通过何种传入机制起作用以及针刺作用的效应受体为何仍不清楚。本研究采用肠道内水囊测压的方法观察针刺曲池、上巨虚、天枢及大肠俞四穴对正常及特定基因敲除小鼠空肠和远端结肠运动的影响,从而探讨针刺作用的外周感受器传入机制和效应器官受体调控机制。
     材料与方法:
     1.实验方案
     C57BL/6小鼠20只,TRPV1外周感受器基因敲除(TRPV1-/-)小鼠、ASIC3外周感受器基因敲除(ASIC3-/-)小鼠及效应受体M2&3基因敲除(M2&3-/-)小鼠各10只,体重20±2g,禁食不禁水24小时后,10%乌来糖溶液(乌来糖1-1.2g/kg)腹腔麻醉。小鼠取仰卧位,腹正中线剑突下切口,在幽门下5厘米左右的空肠处和肛门上2厘米左右的远端结肠处,分别放置直径为3毫米的水囊,水囊通过导管与压力换能器相连,用Micro1401和Spike27.03数据采集软件记录肠道运动的信号。
     2.穴位定位和针刺
     上巨虚穴(ST37):小鼠胫骨外侧偏下方6毫米处,直刺5毫米达到肌层;
     曲池穴(LI11):小鼠桡骨近端肘关节外侧前方的凹陷处,直刺3毫米;
     天枢穴(ST25):小鼠前正中线旁开5毫米,耻骨联合以上20毫米处,直刺2毫米;
     大肠俞穴(BL25):在腰部,当第4腰椎棘突下,旁开5毫米,直刺4毫米。
     针刺肢体一侧单穴,进行提插捻转的操作,刺激频率为2Hz,持续60秒。
     3.数据采集及分析
     采用Spike27.03信号采集分析系统,对小鼠的肠道内压力信号进行采集与分析。实验开始后,首先记录稳定的小鼠肠道内压力曲线60秒,然后穴位针刺60秒同时观察肠道内压力曲线的变化,比较针刺前后60秒压力曲线幅值及曲线下面积平均值的变化。使用SPSS17.0统计软件对针刺前、后60秒压力曲线幅值的平均值及曲线下面积平均值进行自身配对t检验,统计资料以均数±标准差(±SD)表示,P<0.05认为具有显著性差异,P<0.01认为具有非常显著性差异。
     结果:
     1.针刺不同腧穴对C57BL/6小鼠及TRPV1外周感受器基因敲(TRPV1-/-)小鼠(以下简称TRPV1KO小鼠)肠道运动的影响
     1.1针刺不同腧穴对C57BL/6小鼠肠道运动的影响
     1.1.1空肠运动
     手针刺激LI1160秒,明显促进了C57BL/6小鼠的空肠运动。C57BL/6小鼠空肠压力曲线的平均振幅和平均曲线下面积与针刺前相比均有不同程度的增加,P<0.05;而频率与针刺前相比则没有发生显著变化,P>0.05。
     手针刺激ST3760秒,明显促进了C57BL/6小鼠的空肠运动。C57BL/6小鼠空肠运动压力曲线的平均振幅和平均曲线下面积与针刺前相比均有显著增加,P<0.05;而其空肠运动压力曲线的平均频率与针刺前相比则没有发生明显变化,P>0.05。
     手针刺激ST2560秒,明显抑制了C57BL/6小鼠的空肠运动。C57BL/6小鼠空肠运动压力曲线的平均频率、平均振幅以及平均曲线下面积与针刺前相比均有显著降低,P<0.05。
     手针刺激BL2560秒,对C57BL/6小鼠的空肠运动无明显作用,空肠运动压力曲线的平均频率、平均振幅以及平均曲线下面积与针刺前相比均没有明显变化,P<0.05。
     1.1.2远端结肠运动
     手针刺激LI1160秒,明显促进了C57BL/6小鼠的远端结肠运动。C57BL/6小鼠远端结肠压力曲线的平均振幅和平均曲线下面积与针刺前相比均有显著增加,P<0.05;而其远端结肠运动压力曲线的平均频率与针刺前相比则没有发生明显变化,P>0.05。
     手针刺激ST3760秒,明显促进了C57BL/6小鼠的远端结肠运动。C57BL/6小鼠远端结肠压力曲线的运动平均振幅和平均曲线下面积与针刺前相比均有显著增加,P<0.05;而其远端结肠压力曲线的运动频率与针刺前相比则没有发生明显变化,P>0.05。
     手针刺激ST2560秒,明显促进了C57BL/6小鼠的远端结肠运动。C57BL/6小鼠远端结肠压力曲线的运动平均振幅和平均曲线下面积与针刺前相比均有显著增加,P<0.05;而其远端结肠压力曲线的平均频率与针刺前相比则没有发生明显变化,P>0.05。
     手针刺激BL2560秒,明显促进了C57BL/6小鼠的远端结肠运动。C57BL/6小鼠远端结肠压力曲线的运动平均振幅和平均曲线下面积与针刺前相比均有显著增加,P<0.05;而其远端结肠压力曲线的平均
     频率与针刺前相比则没有发生明显变化,P>0.05。
     1.2针刺不同腧穴对TRPV1KO小鼠空肠及远端结肠运动的影响
     1.2.1空肠运动
     手针刺激LI1160秒,明显促进了TRPV1KO小鼠的空肠运动。TRPV1KO小鼠空肠运动压力曲线的平均振幅和平均曲线下面积与针刺前相比均有显著增加,P<0.05;而其空肠运动压力曲线的平均频率与针刺前相比则没有发生明显变化,P>0.05。
     手针刺激ST3760秒,明显促进了TRPV1KO小鼠的空肠运动。TRPV1KO小鼠空肠运动压力曲线的平均振幅和平均曲线下面积与针刺前相比均有显著增加,P<0.05;而其空肠运动压力曲线的平均频率与针刺前相比则没有发生明显变化,P>0.05。
     手针刺激ST2560秒,明显抑制了TRPV1KO小鼠的空肠运动。TRPV1KO小鼠空肠运动压力曲线的平均频率、平均振幅以及平均曲线下面积与针刺前相比均有显著降低,P<0.05。
     手针刺激BL2560秒,对TRPV1KO小鼠的空肠运动无明显作用。TRPV1KO小鼠空肠运动压力曲线的平均频率、平均振幅以及平均曲线下面积与针刺前相比均没有发生明显变化,P>0.05。
     1.2.2远端结肠运动
     手针刺激LI1160秒,明显促进了TRPV1KO小鼠的远端结肠运动。TRPV1KO小鼠远端结肠运动压力曲线的平均振幅和平均曲线下面积与针刺前相比均有显著增加,P<0.05;而其远端结肠运动压力曲线的平均频率与针刺前相比则没有发生明显变化,P>0.05。
     手针刺激ST3760秒,明显促进了TRPV1KO小鼠的远端结肠运动。TRPV1KO小鼠远端结肠运动压力曲线的平均振幅和平均曲线下面积与针刺前相比均有显著增加,P<0.05;而其远端结肠压力曲线的运动频率与针刺前相比则没有发生明显变化,P>0.05。
     手针刺激ST2560秒,明显促进了TRPV1KO小鼠的远端结肠运动。TRPV1KO小鼠远端结肠运动压力曲线的平均振幅和平均曲线下面积与针刺前相比均显著增加,P<0.05;而其远端结肠运动压力曲线的平均频率与针刺前相比则没有发生明显变化,P>0.05。
     手针刺激BL2560秒,明显促进了TRPV1KO小鼠的远端结肠运动。TRPV1KO小鼠远端结肠压力曲线的平均振幅和平均曲线下面积与针刺前相比均有显著增加,P<0.05;而其远端结肠运动压力曲线的平均频率与针刺前相比没有发生明显变化,P>0.05。
     1.3针刺不同腧穴对C57BL/6小鼠及TRPV1KO小鼠空肠及远端结肠运动的影响的比较
     在同种系野生小鼠C57BL/6与TRPV1KO小鼠,针刺ST37与ST25对两种小鼠空肠和远端结肠运动的影响区别较为明显。
     针刺LI11和ST37对TRPV1KO小鼠空肠和远端结肠运动的促进作用均低于同种野生小鼠C57BL/6(即针刺LI11和ST37时,TRPV1KO小鼠空肠及远端结肠运动压力曲线的平均振幅变化率及平均曲线下面积变化率均均低于C57BL/6小鼠相应的变化率,P<0.05)。
     针刺ST25对TRPV1KO小鼠空肠运动的抑制作用也低于C57BL/6小鼠(即针刺ST25时,TRPV1KO小鼠空肠运动压力曲线的平均振幅变化率、平均曲线下面积变化率以及平均频率均低于同种系野生鼠C57BL/6小鼠相应的变化率,P<0.05);针刺ST25对TRPV1KO小鼠远端结肠运动的促进作用也低于C57BL/6小鼠(即针刺ST25时,TRPV1KO小鼠远端结肠运动压力曲线的平均振幅变化率及平均曲线下面积变化率均低于同种系野生鼠C57BL/6小鼠相应的变化率,P<0.05)。
     针刺BL25对TRPV1KO小鼠及同种系野生鼠C57BL/6小鼠空肠运动均无明显作用(即针刺BL25时,两种实验动物的空肠运动压力曲线的平均振幅变化率及平均曲线下面积变化率均无明显差异,P>0.05);针刺BL25对TRPV1KO小鼠远端结肠运动的促进作用低于同种系野生鼠C57BL/6小鼠(即针刺BL25时,TRPV1KO小鼠远端结肠运动压力曲线的平均振幅变化率及平均曲线下面积变化率均低于同种系野生鼠C57BL/6小鼠相应的变化率,P<0.05)。
     2针刺不同腧穴对ASIC3外周感受器基因敲除(ASIC3-/-)小鼠(以下简称ASIC3KO小鼠)空肠和远端结肠运动的影响
     2.1空肠运动
     手针刺激LI1160秒,明显促进了ASIC3KO小鼠的空肠运动。ASIC3KO小鼠空肠运动压力曲线的平均振幅和平均曲线下面积与针刺前相比均有显著增加,P<0.05;而其空肠运动的平均频率与针刺前相比则没有发生明显变化,P>0.05。
     手针刺激ST3760秒,明显促进了ASIC3KO小鼠的空肠运动。ASIC3KO小鼠空肠运动压力曲线的平均振幅和平均曲线下面积与针刺前相比均有显著增加,P<0.05;而其空肠运动的平均频率与针刺前相比则没有发生明显变化,P>0.05。
     手针刺激ST2560秒,明显抑制了ASIC3KO小鼠的空肠运动。ASIC3KO小鼠空肠运动压力曲线的平均频率、平均振幅以及平均曲线下面积与针刺前相比均有显著降低,P<0.05。
     手针刺激BL2560秒,对ASIC3KO小鼠的空肠运动无明显作用。ASIC3KO小鼠的空肠运动压力曲线的平均频率、平均振幅以及平均曲线下面积与针刺前相比均没有发生明显变化,P>0.05。
     2.2远端结肠运动
     手针刺激LI1160秒,明显促进了ASIC3KO小鼠的远端结肠运动。ASIC3KO小鼠远端结肠运动压力曲线的平均振幅和平均曲线下面积与针刺前相比均有显著增加,P<0.05;而其远端结肠运动压力曲线的平均频率与针刺前相比则没有发生明显变化,P>0.05。
     手针刺激ST3760秒,明显促进了ASIC3KO小鼠的远端结肠运动。ASIC3KO小鼠远端结肠运动压力曲线的平均振幅和平均曲线下面积与针刺前相比均有显著增加,P<0.05;而其远端结肠压力曲线的平均频率与针刺前相比则没有发生明显变化,P>0.05。
     手针刺激ST2560秒,明显促进了ASIC3KO小鼠的远端结肠运动。ASIC3KO小鼠远端结肠运动压力曲线的平均振幅和平均曲线下面积与针刺前相比均有显著增加,P<0.05;而其远端结肠压力曲线的平均频率与针刺前相比则没有发生明显变化,P>0.05。
     手针刺激BL2560秒,明显促进了ASIC3KO小鼠的远端结肠运动。ASIC3KO小鼠远端结肠运动压力曲线的平均振幅和平均曲线下面积与针刺前相比均有显著增加,P<0.05;而其远端结肠运动压力曲线的平均频率与针刺前相比则没有发生明显变化,P>0.05。
     2.3针刺不同腧穴对C57BL/6小鼠及ASIC3KO小鼠空肠及远端结肠运动的影响的比较
     在同种系野生小鼠C57BL/6与ASIC3KO小鼠,针刺ST37与ST25对两种小鼠空肠和远端结肠运动的影响区别较为明显。
     针刺LI11和ST37对ASIC3KO小鼠空肠和远端结肠运动的促进作用均低于同种系野生小鼠C57BL/6(即针刺LI11和ST37时,ASIC3KO小鼠空肠和远端结肠运动压力曲线的平均振幅变化率及平均曲线下面积变化率均低于同种系野生鼠C57BL/6小鼠相应的变化率,P<0.05)。
     针刺ST25对ASIC3KO小鼠空肠运动的抑制作用也低于同种系野生小鼠C57BL/6(即针刺ST25时,ASIC3KO小鼠空肠运动压力曲线的平均振幅变化率、平均曲线下面积变化率以及平均频率变化率均低于同种系野生鼠C57BL/6小鼠相应的变化率,P<0.05),同时对ASIC3KO小鼠远端结肠运动的促进作用也低于同种系野生小鼠C57BL/6(即针刺ST25时,ASIC3KO小鼠远端结肠运动压力曲线的平均振幅变化率及平均曲线下面积变化率均低于同种系野生小鼠C57BL/6相应的变化率,P<0.05)。
     针刺BL25对ASIC3KO小鼠及同种系野生鼠C57BL/6小鼠空肠运动均无明显作用(即针刺BL25时,两种实验动物空肠运动压力曲线均无明显差异的平均振幅变化率及平均曲线下面积变化率,P>0.05),同时对ASIC3KO小鼠远端结肠运动的促进作用低于同种系野生小鼠C57BL/6(即针刺BL25时,ASIC3KO小鼠远端结肠运动压力曲线的平均振幅变化率及平均曲线下面积变化率均低于同种系野生鼠C57BL/6小鼠相应的变化率,P<0.05)。
     2.4针刺不同腧穴对C57BL/6小鼠及TRPV1KO、ASIC3KO小鼠空肠及远端结肠运动的影响的比较
     在同种系野生小鼠C57BL/6与TRPV1KO小鼠与ASIC3KO小鼠,针刺ST37与ST25对三种实验动物空肠及远端结肠运动的影响区别较为明显。
     针刺LI11和ST37对TRPV1KO小鼠及ASIC3KO小鼠空肠和远端结肠运动的促进作用均低于同种系野生小鼠C57BL/6(即针刺LI11和ST37时,TRPV1KO小鼠及ASIC3KO小鼠空肠和远端结肠运动压力曲线的平均振幅变化率及平均曲线下面积变化率均低于同种系野生鼠C57BL/6小鼠相应的变化率,P<0.05);在两种基因敲除动物,针刺LI11和ST37对TRPV1KO小鼠空肠及远端结肠运动的促进作用均低于ASIC3KO小鼠(即针刺LI11和ST37时,TRPV1KO小鼠空肠及远端结肠运动压力曲线的平均振幅变化率及平均曲线下面积变化率均低于ASIC3KO小鼠相应的变化率,P<0.05)。
     针刺ST25对TRPV1KO小鼠及ASIC3KO小鼠空肠运动的抑制作用也低于同种系野生小鼠C57BL/6(即针刺ST25时,TRPV1KO小鼠及ASIC3KO小鼠空肠运动压力曲线的平均振幅变化率、平均曲线下面积变化率及平均频率变化率均低于同种系野生鼠C57BL/6小鼠相应的变化率,P<0.05);在两种基因敲除动物,针刺ST25对TRPV1KO小鼠空肠运动的抑制作用低于ASIC3KO小鼠(即针刺ST25时,TRPV1KO小鼠空肠运动压力曲线的平均频率变化率、平均振幅变化率及平均曲线下面积变化率均低于ASIC3KO小鼠相应的变化率,P<0.05)。同时针刺ST25对TRPV1KO小鼠及ASIC3KO小鼠远端结肠运动的促进作用也低于同种系野生小鼠C57BL/6(即针刺ST25时,TRPV1KO小鼠及ASIC3KO小鼠远端结肠运动压力曲线的平均振幅变化率及平均曲线下面积变化率均低于同种系野生鼠C57BL/6小鼠相应的变化率,P<0.05);在两种基因敲除动物,针刺ST25对TRPV1KO小鼠远端结肠运动的促进作用低于ASIC3KO小鼠(即针刺ST25时,TRPV1KO小鼠远端结肠运动压力曲线的平均振幅变化率及平均曲线下面积变化率均低于ASIC3KO小鼠相应的变化率,P<0.05)。
     针刺BL25对三种小鼠空肠运动均无明显作用(即针刺BL25时,三种实验动物空肠运动压力曲线均无明显差异的平均频率变化率、平均振幅变化率及平均曲线下面积变化率,P>0.05),同时针刺BL25对TRPV1KO小鼠及ASIC3KO小鼠远端结肠运动的促进作用均低于同种系野生小鼠C57BL/6(即针刺BL25时,TRPV1KO小鼠及ASIC3KO小鼠远端结肠运动压力曲线平均振幅变化率及平均曲线下面积变化率均明显低于同种系野生鼠C57BL/6小鼠相应的变化率,P<0.05);在两种基因敲除动物,针刺BL25对TRPV1KO小鼠远端结肠运动的促进作用低于ASIC3KO小鼠(及针刺BL25时,TRPV1KO小鼠远端结肠运动压力曲线平均振幅变化率及平均曲线下面积变化率均低于ASIC3KO小鼠相应的变化率,P<0.05)。
     3针刺不同腧穴对M2&3效应受体基因敲除(M2&3-/-)小鼠(以下简称M2&3KO小鼠)空肠及远端结肠运动的影响
     3.1空肠运动
     手针刺激LI1160秒,明显促进了M2&3KO小鼠的空肠运动。M2&3KO小鼠空肠运动压力曲线的平均振幅和平均曲线下面积与针刺前相比均有显著增加,P<0.05;而其空肠运动压力曲线的平均频率与针刺前相比则没有发生明显变化,P>0.05。
     手针刺激ST3760秒,明显促进了M2&3KO小鼠的空肠运动。M2&3KO小鼠空肠运动压力曲线的平均振幅和平均曲线下面积与针刺前相比均有显著增加,P<0.05;而其空肠运动压力曲线的平均频率则没
     有发生明显变化,P>0.05。
     手针刺激ST2560秒,明显抑制了M2&3KO小鼠的空肠运动。M2&3KO小鼠空肠运动压力曲线的平均频率、平均振幅以及平均曲线下面积与针刺前相比均有显著降低,P<0.05。
     手针刺激BL2560秒,针刺对M2&3KO小鼠的空肠运动无明显作用。M2&3KO小鼠空肠运动压力曲线的平均频率、平均振幅以及平均曲线下面积与针刺前相比均没有明显变化,P>0.05。
     3.2远端结肠运动
     手针刺激LI1160秒,明显促进了M2&3KO小鼠的远端结肠运动。M2&3KO小鼠远端结肠压力曲线的平均振幅和平均曲线下面积与针刺前相比均有显著增加,P<0.05;而其远端结肠运动压力曲线的平均频率与针刺前相比则没有发生明显变化,P>0.05。
     手针刺激ST3760秒,明显促进了M2&3KO小鼠的远端结肠运动。M2&3KO小鼠远端结肠运动压力曲线的平均振幅和平均曲线下面积与针刺前相比均有显著增加,P<0.05;而其远端结肠运动压力曲线的平均频率与针刺前相比则没有发生明显变化,P>0.05。
     手针刺激ST2560秒,明显促进了M2&3KO小鼠的远端结肠运动。M2&3KO小鼠远端结肠运动压力曲线的平均振幅和平均曲线下面积与针刺前相比均有显著增加,P<0.05;而其远端结肠运动压力曲线的平均频率与针刺前相比则没有发生明显变化,P>0.05。
     手针刺激BL2560秒,明显促进了M2&3KO小鼠的远端结肠运动。M2&3KO小鼠远端结肠运动压力曲线的平均振幅和平均曲线下面积与针刺前相比均有显著增加,P<0.05;而其远端结肠运动压力曲线的平均频率与针刺前相比则没有发生明显变化,P>0.05。
     3.3针刺不同腧穴对C57BL/6小鼠及M2&3KO小鼠空肠及远端结肠运动的影响的比较
     在同种系野生小鼠C57BL/6,针刺ST37与ST25对两种实验动物
     空肠及远端结肠运动的影响区别较为明显。
     针刺LI11和ST37对M2&3KO小鼠空肠和远端结肠运动的促进作用均低于同种系野生小鼠C57BL/6(即针刺LI11和ST37时,M2&3KO小鼠空肠和远端结肠运动压力曲线的平均振幅变化率及平均曲线下面积变化率均低于同种系野生鼠C57BL/6小鼠相应的变化率,P<0.05)。针刺ST25对M2&3KO小鼠空肠运动的抑制作用也低于同种系野生小鼠C57BL/6(即针刺ST25时,M2&3KO小鼠空肠运动压力曲线的平均振幅变化率、平均曲线下面积变化率以及平均频率变化率均低于同种系野生鼠C57BL/6小鼠相应的变化率,P<0.05)。同时对M2&3KO小鼠远端结肠运动的次进组也低于同种系野生小鼠C57BL/6(即针刺ST25时,M2&3KO小鼠远端结肠运动压力曲线的平均振幅变化率及平均曲线下面积变化率均低于同种系野生鼠C57BL/6小鼠相应的变化率,P<0.05)。针刺BL25对M2&3KO小鼠及同种系野生小鼠C57BL/6空肠运动均无明显作用(即针刺BL25时,二种实验动物空肠运动压力曲线均无明显差异的平均振幅变化率及平均曲线下面积变化率,P>0.05),同时对M2&3KO小鼠远端结肠运动的促进作用低于同种系野生鼠C57BL/6小鼠(即针刺BL25时,M2&3KO小鼠远端结肠运动压力曲线的平均振幅变化率及平均曲线下面积变化率均低于同种系野生鼠C57BL/6小鼠相应的变化率,P<0.05)。
     结论:
     1ST25作为空肠的单元穴位(与空肠内脏神经支配节段相同),针刺能够通过躯体-交感神经反射通路抑制空肠运动;LI11和ST37作为空肠的集元穴位(与空肠内脏神经支配远节段腧穴),针刺能够通过激活副交感神经通路促进空肠运动。
     2LI11、ST37、ST25、BL25作为远端结肠的集元穴位(与远端结肠内脏神经支配远节段腧穴),针刺四个穴位均可以通过激活副交感神经神经通路促进远端结肠运动。
     3针刺TRPV1KO及ASIC3KO小鼠,针刺腧穴的效应方向没有改变,但针刺产生的效应大小发生了明显的变化。提示TRPV1与ASIC3离子通道可能均参与了针刺作用的外周感受器传入神经机制,其中TRPV1离子通道可能发挥了更为重要的作用。
     4针刺M2&3KO小鼠,针刺腧穴的效应方向也没有改变,但针刺LI11和ST37对空肠的促进作用明显减弱。提示M2&3受体可能参与了针刺作用的靶器官效应受体机制,即迷走神经胆碱能受体在针刺单元穴促进空肠运动中起主要作用。从本次研究的结果来看,针刺对于TRPV1及ASIC3基因敲除小鼠空肠及远端结肠运动的调节作用均较野生鼠有所降低,这些结果支持A类和C类纤维较A类纤维在针刺调节肠道运动中起更主要作用,这两种感受器均参与了针刺对胃肠功能的调节,即当针刺ST37及LI11时,激活TRPV1及ASIC3受体离子通道,兴奋了副交感神经,引起增强空肠运动的效应;当针刺ST25时,激活TRPV1及ASIC3受体离子通道,兴奋了交感神经,引起抑制空肠运动的效应。同时从我们的实验结果中明显可以看出于C57小鼠比较,针刺对TRPV1基因敲除小鼠空肠运动的调节效应差于ASIC3基因敲除小鼠。也说明了TRPV1离子通道在针刺调节肠道运动的神经机制中发挥着更为关键的作用。而针刺这四个穴位对TRPV1和ASIC3基因敲除小鼠远端结肠运动的作用均以兴奋性效应为主,仅以兴奋效应的强度与野生型小鼠有所不同,那么针刺对于远端结肠的调节机制是通过何种受体机制起主导作用呢?即针刺作用对远端结肠的调节机制仍需进一步研究探讨?
     针刺对M2&3KO小鼠肠道运动的促进作用明显低于野生鼠,提示在M2&3受体在针刺促进肠运动中共同发挥了作用。结合之前的分析,我们有理由相信针刺可能是通过激活M2&3受体,与针刺作用引起副交感神经兴奋后促进肠道释放的乙酰胆碱相结合,发挥促进肠道收缩运动的效应。同时我们还观察到针刺对M2&3KO小鼠空肠运动的抑制作用与野生鼠相比较没有明显差异,说明M2&3两种受体在抑制肠道运动即兴奋交感神经及拮抗副交感神经兴奋所产生的收缩促进作用效应中意义不大或者没有作用。而针刺这四个穴位对M2&3KO小鼠远端结肠运动的作用均以兴奋性效应为主,仅以兴奋效应的强度与野生型小鼠有所不同,那么针刺对于远端结肠的调节机制是通过何种受体机制起主导作用呢?即针刺作用对远端结肠的调节机制仍需进一步研究探讨。
     基于上述实验结果我们可以得出,针刺对空肠及远端结肠运动的调节作用可能是通过激活传入纤维末梢的TRPV1、ASIC3离子通道启动针刺作用的传入途径,兴奋胆碱能副交感神经,通过M2&3受体机制,引起肠道收缩以促进肠道运动;通过激活传入纤维末梢的TRPV1及ASIC3受体通道,兴奋胃肠交感神经神经,引起对肠道收缩运动的拮抗作用以产生抑制肠道运动的效应。从结果来看,TRPV1及ASIC3受体通道均参与了针刺对肠运动调节的促进和抑制效应,说明在针刺对交感及副交感神经的兴奋效应中此两种受体通道均起到了一定作用,两者比较而言TRPV1受体通道在此效应中发挥了更为重要的作用。而针刺效应产生的的神经机制中是否还有其他感受器离子通道参与仍需要进一步实验研究。针刺这四个穴位均能够加强远端结肠运动,尤其是天枢穴与其对空肠运动的作用方向不一致,这一点可能与远端结肠的神经支配较复杂且主要以兴奋肠道运动的神经效应为主有关,而在这种加强效应中何种神经支配占据主导地位仍需进一步的实验研究进行深入探讨。
Object: Acupuncture has been tried against various diseases, includinggastrointestinal disorders. A large amount of experimental and clinicalevidence indicates the effectiveness of acupuncture in treating gastro-intestinal diseases. Though there were vast researches on the acupuncturetreatment of bowel diseases, previous studies have demonstrated theeffects of acupuncture stimulation on gastric motility in anesthetized rats,the evidence about the role of acupuncture on bowel motility of rodents innormal state, especially for the knockout mice, did not abound.Nevertheless, rare experiments were carried out to record the motility ofjejunum and colon of rodents in vivo, and even less studies relating to theeffects of acupuncture on that kind of bowel motility were reported athome. So the purpose of this is to investigate the effects of manual acupuncture (MA) on bowel motility in normal and autonomic nervescorrelation factor knockout mice and the mechanisms.
     MateriaI and Methods:
     1.Experimental protocols:
     Fufty adult mice (20mice of C57BL/6, and each10mice of TRPV1-/-mice,ASIC3-/-mice and M2/3-/-) were anaesthetized with10%urethane(intraperitoneally,1-1.2g/kg).A miniaturized solid-state pressuretransducer catheter with a water capsule (dia.3mm) in the end wasinserted into the lumen of the jejunum through the incision on theintestinal surface. Another catheter of the same type was inserted into thedistal colon through the anus. The capsules were placed1.5cm and1cmabove the incision of jejunum and the anus, respectively. This output wasacquired via a Micro1401interface and recorded using Spike2version7.03data acquisition software.
     2.Acupuncture procedure in anesthetized mice
     Quchi (LI11); located in the midpoint between the lateral end of thetransverse cubical crease and the lateral epicondyle of the humerus;Needles were inserted to a depth of5mm into the skin and underlyingmuscles at Shangjuxu (ST37) points. ST37is located at5mm lateral andlower from the anterior tubercle of the tibia in mice. Tianshu (ST25) islocated20mm above the symphysis pubis and5mm lateral from themidline in mice. Dachangshu (BL25): in the waist, under the fourthlumbar spines,5mm lateral to posterior midline. Acupuncture needleswere inserted unilaterally into acupoints and were twisted, lifted andthrust manually at a frequency of2Hz for60s in each type of mice.
     3.Data acquisition and analysis
     Each miniature pressure transducer catheter was connected to atransducer control unit, whose output signal was subsequently amplifiedfurther using a transducer amplifier in differential mode. This output wasacquired via a Micro1401interface and recorded using Spike2version7.03data acquisition software. All the data in the present study wereexpressed as means±standard deviation (SD), and analyzed bytwo-tailed Student’s t-test or one-way ANOVA with SPSS software17.0.P-values<0.05were considered significant difference. P-values<0.01were considered very significant difference.
     RESULTS:
     1. The effect of manual acupuncture at different acupoint on bowelmotility in C57BL/6and TRPV1KO mice.
     1.1The effect of manual acupuncture at different acupoint on bowelmotility in C57BL/6mice.MA at LI11and ST37both promoted the motility of jejunum and distalcolon (manifested as changed intestinal pressure, precisely increasedaverage amplitude and mean area under the contractile curve) ofC57BL/6mice (P<0.05). MA at ST25significantly inhibited themotility of jejunum (manifested as changed frequency and intestinalpressure, precisely decreased average amplitude, mean area under thecontractile curve, and the frequency) of C57BL/6mice (P<0.05), whilesignificantly increased the distal colonic motility (manifested as changedintestinal pressure, precisely increased amplitude and mean area underthe contractile curve) of C57BL/6mice (P<0.05). MA at BL25has notsignificantly effect at the motility of jejunum (manifested as changed frequency and intestinal pressure, precisely not significantly changedaverage amplitude, mean area under the contractile curve, and thefrequency) of C57BL/6mice (P>0.05), while significantly increased thedistal colonic motility (manifested as changed intestinal pressure,precisely increased amplitude and mean area under the contractile curve)of C57BL/6mice (P<0.05).
     1.2The effect of manual acupuncture at different acupoint on bowelmotility in TRPV1KO mice.
     MA at LI11and ST37both promoted the motility of jejunum and distalcolon (manifested as changed intestinal pressure, precisely increasedaverage amplitude and mean area under the contractile curve) of TRPV1KO mice (P<0.05). MA at ST25significantly inhibited the motility ofjejunum (manifested as changed frequency and intestinal pressure,precisely decreased average amplitude, mean area under the contractilecurve, and the frequency) of TRPV1KO mice (P<0.05), whilesignificantly increased the distal colonic motility (manifested as changedintestinal pressure, precisely increased amplitude and mean area underthe contractile curve) of TRPV1KO mice (P<0.05). MA at BL25hasnot significantly effect at the motility of jejunum (manifested as changedfrequency and intestinal pressure, precisely not significantly changeaverage amplitude, mean area under the contractile curve, and thefrequency) of TRPV1KO mice (P>0.05), while significantly increasedthe distal colonic motility (manifested as changed intestinal pressure,precisely increased amplitude and mean area under the contractile curve)of TRPV1KO mice (P<0.05).
     The strength of the promoted motility of jejunum and distal colon thatMA at LI11and ST37of TRPV1KO mice was lower than C57BL/6mice(manifested as changed intestinal pressure, precisely increased change rate of average amplitude and increased change rate of mean area underthe contractile curve both lower than C57BL/6mice)(P<0.05). Thestrength of the inhibited motility of jejunum that MA at ST25of TRPV1KO mice was lower than C57BL/6mice (manifested as changedfrequency and intestinal pressure, precisely decreased change rate ofaverage amplitude, decreased change rate of mean area under thecontractile curve, and the frequency all lower than C57BL/6mice)(P<0.05), while The strength of the increased motility of the distal colonic ofTRPV1KO mice was lower than C57BL/6mice (manifested as changedintestinal pressure, precisely increased change rate of amplitude andincreased change rate of mean area under the contractile curve both lowerthan C57BL/6mice)(P<0.05). MA at BL25has not significantly effectat the motility of jejunum (manifested as changed frequency andintestinal pressure, precisely no significant change rate of averageamplitude, change rate of mean area under the contractile curve, and thefrequency between TRPV1KO mice and C5BL/6mice) of two type miceboth (P>0.05), while the strength of the increased motility of distalcolonic of TRPV1KO mice was lower than C57BL/6mice (manifestedas changed intestinal pressure, precisely increased change rate ofamplitude and change rate of mean area under the contractile curve bothlower than C57BL/6mice)(P<0.05).
     2.The effect of MA at different acupoint on bowel motility in ASIC3KOmice.
     MA at LI11and ST37both promoted the motility of jejunum and distalcolon (manifested as changed intestinal pressure, precisely increasedaverage amplitude and mean area under the contractile curve) of ASIC3KO mice (P<0.05). MA at ST25significantly inhibited the motility ofjejunum (manifested as changed frequency and intestinal pressure, precisely decreased average amplitude, mean area under the contractilecurve, and the frequency) of ASIC3KO mice (P<0.05), whilesignificantly increased the distal colonic motility (manifested as changedintestinal pressure, precisely increased average amplitude and mean areaunder the contractile curve) of ASIC3KO mice (P<0.05). MA at BL25has no significant effect at the motility of jejunum (manifested aschanged frequency and intestinal pressure, precisely not significantlychanged average amplitude, mean area under the contractile curve, andthe frequency) of ASIC3KO mice (P>0.05), while significantlyincreased the distal colonic motility (manifested as changed intestinalpressure, precisely increased the average amplitude and the mean areaunder the contractile curve) of ASIC3KO mice (P<0.05).The strength of the promoted motility of jejunum and distal colon thatMA at LI11and ST37of ASIC3KO mice was lower than C57BL/6mice(manifested as changed intestinal pressure, precisely increased changerate of average amplitude and change rate of mean area under thecontractile curve both lower than C57BL/6mice)(P<0.05). The strengthof the inhibited motility of jejunum that MA at ST25of ASIC3KO micewas lower than C57BL/6mice (manifested as changed intestinal pressure,precisely decreased change rate of average amplitude, change rate ofmean area under the contractile curve, and the frequency all lower thanC57BL/6mice)(P<0.05), while The strength of the increased motilityof the distal colonic of ASIC3KO mice was lower than C57BL/6mice(manifested as changed intestinal pressure, precisely increased changerate of average amplitude and change rate of mean area under thecontractile curve both lower than C57BL/6mice)(P<0.05). MA at BL25has no significant effect at the motility of jejunum (manifested aschanged frequency and intestinal pressure, precisely not significantlychanged change rate of average amplitude, change rate of mean area under the contractile curve, and the frequency between ASIC3KO miceand C57BL/6mice) of both two type mice (P>0.05), while the strengthof the increased motility of distal colonic of ASIC3KO mice was lowerthan C57BL/6mice (manifested as changed intestinal pressure, preciselyincreased change rate of average amplitude and change rate of mean areaunder the contractile curve both lower than C57BL/6mice)(P<0.05).The strength of the promoted motility of jejunum and distal colon thatMA at LI11and ST37of ASIC3KO mice was lower than C57BL/6micebut higher than TRPV1KO mice(manifested as changed intestinalpressure, precisely increased change rate of average amplitude andchange rate of mean area under the contractile curve both lower thanC57BL/6mice but higher than TRPV1KO mice)(P<0.05). The strengthof the inhibited motility of jejunum that MA at ST25of ASIC3KO micewas lower than C57BL/6mice but higher than TRPV1KO mice(manifested as changed intestinal pressure, precisely decreased changerate of average amplitude, change rate of mean area under the contractilecurve, and the frequency all lower than C57BL/6mice but higher thanTRPV1KO mice)(P<0.05), while The strength of the increased motilityof the distal colonic of ASIC3KO mice was lower than C57BL/6micebut higher than TRPV1KO mice (manifested as changed intestinalpressure, precisely increased change rate of average amplitude andchange rate of mean area under the contractile curve both lower thanC57BL/6mice but higher than TRPV1KO mice)(P<0.05). MA atBL25has no significant effect at the motility of jejunum (manifested aschanged frequency and intestinal pressure, precisely not significantlychanged change rate of average amplitude, change rate of mean areaunder the contractile curve, and the frequency among TRPV1KO mice、ASIC3KO mice and C57BL/6mice) of all three type mice (P>0.05),while the strength of the increased motility of distal colonic of ASIC3KO mice was lower than C57BL/6mice but higher than TRPV1KO mice(manifested as changed intestinal pressure, precisely increased changerate of average amplitude and change rate of mean area under thecontractile curve both lower than C57BL/6mice but higher than TRPV1KO mice)(P<0.05).
     3.The effect of MA at different acupoint on bowel motility in M2&3KOmice.
     MA at LI11and ST37both promoted the motility of jejunum and distalcolon (manifested as changed intestinal pressure, precisely increasedaverage amplitude and mean area under the contractile curve) of M2&3KO mice (P<0.05). MA at ST25significantly inhibited the motility ofjejunum (manifested as changed frequency and intestinal pressure,precisely decreased average amplitude, mean area under the contractilecurve, and the frequency) of M2&3KO mice (P<0.05), whilesignificantly increased the distal colonic motility (manifested as changedintestinal pressure, precisely increased average amplitude and mean areaunder the contractile curve) of M2&3KO mice (P<0.05). MA at BL25has no significant effect at the motility of jejunum (manifested aschanged frequency and intestinal pressure, precisely not significantlychanged average amplitude, mean area under the contractile curve, andthe frequency) of M2&3KO mice (P>0.05), while significantlyincreased the distal colonic motility (manifested as changed intestinalpressure, precisely increased average amplitude and mean area under thecontractile curve) of M2&3KO mice (P<0.05).
     The strength of the promoted motility of jejunum and distal colon thatMA at LI11and ST37of M2&3KO mice was lower than C57BL/6mice(manifested as changed intestinal pressure, precisely increased changerate of average amplitude and change rate of mean area under the contractile curve both lower than C57BL/6mice)(P<0.05). MA at ST25has not significantly different effect at the motility of jejunum(manifested as changed frequency and intestinal pressure, precisely notsignificantly different decreased change rate of average amplitude,change rate of mean area under the contractile curve, and the frequencybetween M2&3KO mice and C57BL/6mice) between two type mice (P>0.05), while The strength of the increased motility of the distal colonicof M2&3KO mice was lower than C57BL/6mice (manifested as changedintestinal pressure, precisely increased average amplitude and mean areaunder the contractile curve both lower than C57BL/6mice)(P<0.05).MA at BL25has not significantly effect at the motility of jejunum(manifested as not significantly changed frequency and intestinalpressure, precisely not significantly changed change rate of averageamplitude, change rate of mean area under the contractile curve, and thefrequency between M2&3KO mice and C57BL/6mice) of two type mice(P>0.05), while the strength of the increased motility of distal colonic ofM2&3KO mice was lower than C57BL/6mice (manifested as changedintestinal pressure, precisely increased change rate of average amplitudeand change rate of average mean area under the contractile curve bothlower than C57BL/6mice)(P<0.05).
     Conclusion:
     1.Tianshu (ST25) is the “homotopic point” for jejunum, and MA at ST25could inhibit the motility of jejunum via somato-sympathetic reflexpathway. Thus, Quchi (LI11) Shangjuxu (ST37) are the “heterotopicpoint” for jejunum, and MA at LI11and ST37could promote themotility of jejunum via increased parasympathetic tone.
     2.Quchi (LI11), Shangjuxu (ST37), Tianshu (ST25) and Dachangshu(BL25) are the “heterotopic point” for distal colon, and MA at LI11,ST37,ST25and BL25could promote the motility of distal colonvia increased parasympathetic tone.3.In TRPV1KO and ASIC3KO mice, MA at LI11, ST37, ST25and
     BL25have the same regulation of the motility of jejunum and distalcolon with C57BL/6mice. But the size of effect have the apparentdifferent. It points that TRPV1and ASIC3might be participated inthe afferent neural mechanism of MA.
     4.In M2&3KO mice, MA at LI11, ST37, ST25and BL25have the sameregulation of the motility of jejunum and distal colon with C57BL/6mice. But the size of effect of MA at LI11and ST37has the apparentreduce. It points that M2&3might be participated in the target’sresponse receptor mechanism of MA.
     So we can observe from this experiment that the effect of MA wasclosely related with acupoint’s inherent character. Both of TRPV1, andASIC3have its action in the the afferent neural mechanism of MA. AndM2&3might be participated in the target’s response receptor mechanismof MA. And why the different effect of MA at distal colon, the intrinsiccontradistinction must be investigated and research further.
引文
[1] Hurtak JJ. An overview of acupuncture medicine. J AlternComplement Med.2002;8(5):535-538.
    [2] Campbell A. The origins of acupuncture.Acupunct Med.2002;20(2-3):141.
    [3] Chen J, Song GQ, Yin J, Koothan T, Chen JD.Electroacu punctureimproves impaired gastric motility and slow waves induced by rectaldistension in dogs. Am J Physiol Gastrointest Liver Physiol.2008;295(3):614-620.
    [4] Diehl DL. Acupuncture for gastrointestinal and hepatobiliarydisorders. J Altern Complement Med.1999;5(1):27-45.
    [5] Anastasi JK, McMahon DJ. Testing strategies to reduce diarrhea inpersons with HIV using traditional Chinese medicine: acupunctureand moxibustion.J Assoc Nurses AIDS Care.2003;14(3):28-40.
    [6] BurgmannT, Rawsthorne P, Bernstein CN.Predictors of alternativeand complementary medicine use in inflammatory bowel disease: domeasures of conventional health care utilization relate to use? Am JGastroenterol.2004;99(5):889-893.
    [7] Broide E, Pintov S, Portnoy S, et al. Effectiveness of acupuncture fortreatment of childhood constipation. Dig Dis Sci.2001;46(6):1270-1275.
    [8] Zhu Z, Li H, Chen L, et al.Acupuncture treatment of habitualconstipation.J Tradit Chin Med.2003;23(2):133.
    [9] Chan J, Carr I, Mayberry JF. The role of acupuncture in the treatmentof irritable bowel syndrome: a pilot study. Hepatogastroenterology.1997;44(17):1328-1330.
    [10] Fireman Z, Segal A, Kopelman Y, et al.Acupuncture treatment forirritable bowel syndrome. A double-blind controlled study.Digestion.2001;64(2):100-103.
    [11] Schneider A, Enck P, Streitberger K, Weiland C, Bagheri S, Witte S,Friederich HC, Herzog W, Zipfel S. Acupuncture treatment inirritable bowel syndrome.Gut.2006;55(5):649–-654.
    [12] Takahashi T. Acupuncture for functional gastrointestinal disorders. JGastroenterol.2006;41(5):408-417.
    [13]赵建础.针刺调节免疫反应途径的初步研究[J].针刺研究,1997;22(1-2):91.
    [14]薛奇明,黄露,李宁.电针天枢穴对重症急性胰腺炎大鼠血清促和抗炎因子的影响[J].中西医结合学报,2011;9(6):658-664.
    [15]王荣,白海霞,冀来喜等.电针天枢不同配穴对溃疡性结肠炎大结肠黏膜保护作用的研究[J].世界中西医结合杂志,2007;2(11):639-642.
    [16]陈楚淘,严杰,锝浩梅等.电针天枢配大肠俞、天枢配上巨虚对溃性结肠炎模型大鼠血清NO、MDA影响的比较研究[J].中医药报,2008;14(12):1-3.
    [17]田浩梅,陈楚淘,陈平国等.电针不同穴组对溃疡性结肠炎模型鼠血清IL-6、IL-10-含量的影响[J].湖南中医杂志,2012;28(3):123-125.
    [18]秦明,饶志仁,黄裕新等.电针上巨虚、天枢穴对溃疡性结肠炎大鼠Fos和GFAP表达的影响[J]中医药导报,2012;18(2):17-19,23.
    [19]吴焕淦,施征,朱毅等.隔药灸治疗溃疡性结肠炎的临床研究[J].海针灸杂志,2007;26(4):3-4.
    [20]吴焕金,刘慧荣,施茵.隔药灸对溃疡性结肠炎大鼠IL-1β、IGF-表达影响的研究[J].江西中医学院学报,2004;16(6):56-60.
    [21]刘慧荣,谭琳蓥,崔云华等.艾灸大鼠天枢、气海穴对结肠成纤维胞分泌胰岛素样生长因子I、转化生长因子p1的调控作用[J].中组织工程研究与临床康复,2007;11(49):9897-9881.
    [22]刘慧荣,谭琳蓥,吴焕淦等.艾灸对溃疡性结肠炎肠纤维化大鼠肠成纤维细胞增殖影响的研究[J].上海针灸杂志,2008;27(7):42-45.
    [23]崔云华,周爽,吴焕淦等.从细胞凋亡角度验证隔药灸对溃疡性肠炎大鼠环氧合酶2及前列腺素E2的调节作用[J].中国组织工研究与临床康复,2008;12(24):4680-4684.
    [24]逢紫千,王富春,严兴科.针灸天枢穴对脾虚泄泻大鼠免疫功能响的实验研究[J].江苏中医药,2005;26(4):27-28.
    [25]王富春,逄紫千.针灸天枢穴对脾虚泄泻大鼠肠道功能影响的验研究[J].长春中医学院学报,2005;2(1):52-54.
    [26]张玉翠,于隽,孟庆玲等.电针不同神经节段穴位对大鼠胃运动常模型胃内压的影响[J].湖南中医药大学学报,2011;31(11):65-68.
    [27]余芝,夏有兵,鞠传慧等.电针下肢、腹部穴组对肥胖大鼠脂肪组一下丘脑通路调节差异的研究[J].时珍国医国药,2013;24(1):238-241.
    [28]戚莉,李娜,刘慧荣等.艾灸治疗IBS临床及其镇痛效应的研究[J]华中医药杂志,2010;25(12):2224-2227.
    [29] Noguchi E, Ohsawa H, Ikeda H, et al. Electroacupuncture stimu-lation effects on duodenal motility in anesthetized rats [J]. Jpn JPhysiol,2003;53:1-7.
    [30] Tian SL, Wang XY, Ding GH. Repeated electroacupunctureattenuates chronic visceral hypersensitivity and spinal cord NMDAreceptor phosphorylation in a rat irritable bowel syndromemodel[J].Life Sciences,2008;83(9110):356-363.
    [31]周娟,李为民.电针对肠易激综合征大鼠脊髓NMDA受体表达影响[J].上海针灸杂志,2006;27(6):38-40.
    [32]李为民.电针治疗肠易激综合征大鼠作用观察[J].上海针灸志,2006;25(3):43-47.
    [33] Xu GY, Winston JH, Chen JD. Electroacupuncture attenuatesvisceral hyperalgesia and inhibits the enhanced excita-bility ofcolon specific sensory neurons in a rat model of irritable bowelsyndrome [J]. Neurogastroenterol Motil,2009;21:1302-1325.
    [34]朱兵.针灸的科学基础,1998; p386-482,
    [35]荣培晶,朱兵.心经经脉、心因性牵涉痛与心脏相关联系的机制[J]中国科学,2002;32:63-68.
    [36] Schicho R et al, Nociceptive transmitter release in the dorsal spinalcord by capsaicin-sensitive fibers after noxious gastric stimulation.Brain Res.2005;1039:108-115.
    [37] Schuler MS.Acupuncture treatment of geriatric patients withischemic stroke: a randomized, double-controlled, single-blindstudy. J Am Geriatr Soc.2005;53:549-500.
    [38] Ernst M, lee MH. Sympathetic effects of manual and elec-tricalacupuncture of the Tsusanli knee point comparison with the Hokuhand points, sympathetic effects[J].Exp Neurol,1986;94(l):1-10.
    [39]王彩虹,王银平,许建敏等.不同刺激量的捻转手法对健康人皮温度的影响[J].上海针灸杂志,2007;26(7):33-35.
    [40] Imai K, Ariga H, Takahashi T. Electroacupuncture improvesimbalance of auto-nomic function under restraint stress in consciousrats [J].Am J Chin Med,2009;37(1):45-55.
    [41] Schneider A, Weiland C, Enck P, et al. Neuroendocrinolo-gicaleffects of acupuncture treatment in patients with irritable bowelsyndrome[J]. Complement Ther Med,2007;15(4):255-263.
    [42] Li P, Pitsillides KF. Rendig SV, et al. Reversal of reflex-inducedmyocardial ischemia by median nerve stimulation: a feline model ofelectroacupuncture [J]. Circulation,1998;97(12):1186-1194.
    [43] Kurono Y, Minagawa M, Ishigami T, et al. Acupuncture toDanzhong but not to Zhongting increases the cardiac vagalcomponent of heart rate variability [J]. Auton Neurosci,2011;161(l-2):116-120.
    [44]支建梅,王朝阳,王丽等.不同刺激量捻转补泻手法对应激性高压大鼠颈交感神经放电的影响[J].中医杂志,2009;50(9):811-813.
    [45]朱丹红,许建敏,章婷婷等.不同刺激量捻转手法针刺后三里穴高血压家兔血压的影响[J].上海针灸杂志,2011;30(12):864-868.
    [46]邢瀚,张春红,张妍等.针刺与交感神经的关系探讨[J].江苏中药,2010;42(9)):45-47.
    [47]段妍君,柯晖,陈泽斌.电针内关对室性期前收缩大鼠心植物神放电活动的影响[J].湖北中医药大学学报,2011;13(1):6-8.
    [48] Sato A, Sato Y, Schmidt R F. The impact of somatosensory input onautonomic functions. Rev. Physiol. Biochem Pharmacol.1997;130:1-328.
    [49] Noguchi E. Mechanism of reflex regulation of the gastro-duodenalfunction by acupuncture. eCAM2008;5:251-256.
    [50] Miranda A. Altered visceral sensation in response to somatic pain inthe rat. Gastroenterol.2004;126:1082-1089.
    [51]周吕.电针胃经穴对狗胃肠移行性复合运动及脑肠肽释放的用,科学通报,2000;45:2419-2426
    [52] Senna-Fernandes V. et al. Acupuncture at Zusanli and Sanyinjiaopoints on the gastrointestinal tract: a study of the bioavailability of99mTc-sodium pertechnetate in Rats eCAM2009;1-6.
    [53] Chen J. et al. Electroacupuncture improves impaired gastric motilityand slow waves induced by rectal distension in dogs. Am J PhysiolGastrointest Liver Physiol2008;295: G614–G620,.
    [54]朱兵等. Generating sensation and propagating myoelec-triccalresponses along the meridian. Science in China (Series C).2002;45:105-112.
    [55]常小荣,严洁,李江山等.针刺足阳明经穴对兔胃粘膜损伤前后运动功能的影响[J].中国针灸,2002;22(10):675-677.
    [56]朱兵.针灸的科学基础[M].青岛:青岛出版社,1998.
    [57]陶之理,席时元.“足三里”穴传入途径的探讨[J].针刺研究,2005;1982(1):66-69.
    [58]南京第一医学院.针刺“足三里”对肠运动反应的机制研究[M].北京:人民卫生出版社,1961.
    [59]刘乡.以痛制痛—针刺镇痛的基本神经机制[J].科学通报,2010;7(46):241-245.
    [60] Kagitani F, Uchida S, Hotta H, et al. Manual acupuncture needlestimulation of the rat hindlimb activates groups I, II, III and IVsingle afferent nerve fibers in the dorsal spinal roots[J]. Jpn JPhysiol,2005;55(3):149-155.
    [61] Kagitani F, Uchida S, Hotta H. Afferent nerve fibers andacupuncture[J]. Auton Neurosci,2010;157(1-2):2-8.
    [62] Ohsawa H, Yamaguchi S, Ishimaru H, et al. Neural mechanism ofpupillary dilation elicited by electro-acupuncture stimulation inanesthetized rats[J]. J Auton Nerv Syst,1997;64(2-3):101-106.
    [63] Mori H, Uchida S, Ohsawa H, et al. Electro-acupuncture stimulationto a hindpaw and a hind leg produces different reflex responses insympathoadrenal medullary function in anesthetized rats[J]. J AutonNerv Syst,2000;79(2-3):93-98.
    [64] Tjen-A-Looi S C, Fu L W, Zhou W, et al. Role of unmyelinatedfibers in electroacupuncture cardiovascular responses[J]. AutonNeurosci,2005;118(1-2):43-50.
    [65] Tjen-A-Looi S C, Fu L W, Zhou W, et al. Role of unmyelinatedfibers in electroacupuncture cardiovascular responses[J]. AutonNeurosci,2005;118(1-2):43-50.
    [66] Li Y Q, Zhu B, Rong P J, et al. Neural mechanism of acupuncturemodulated gastric motility [J].World J Gastroenterol,2007;13(5):709-716.
    [67] Uchida S, Kagitani F, Suzuki A, et al. Effect of acupunc-turelikestimulation on cortical cerebral blood flow in anesthetized rats[J].Jpn J Physiol,2000;50(5):495-507.
    [68] Sakai S, Hori E, Umeno K, et al. Specific acupuncture sensationcorrelates with EEGs and autonomic changes in human subjects [J].Auton Neurosci,2007;133(2):158-169.
    [69] Sakatani K, Kitagawa T, Aoyama N, et al. Effects of acupuncture onautonomic nervous function and prefrontal cortex activity [J]. AdvExp Med Biol,2010;662:455-460.
    [70] Craig AD. Interoception: the sense of the physiological condition ofthe body [J].Curr Opin Neurobiol,2003;3(4):500-505.
    [71] Plochocka-Zulinska D, Krukoff TL. Increased gene expression ofneuronal nitric oxide synthase in brain of adult spontaneouslyhypertensive Rats [J]. Brain Res Mol Brain Res,1997;48(2):291-297.
    [72] Kom Jl, Kim YS, Kang SK, et al. Electroacupuncture decreasesnitric oxide synthesis in the hypothalamus of spontaneouslyhypertensive rats[J].Neurosci Lett,2008;46(2-3):78-82.
    [73]汪克明,周逸平,周美启等.电针经脉对急性心肌缺血家兔心交神经放电活动的影响[J].针刺研究,2005;30(2):106-107.
    [74]陆永辉,唐旭东.《灵枢》针刺深度法治疗腹泻型肠易激综合征[J]中国针灸,2011;(11):34-43.
    [75]黄宪红,周刚,刘玉红.针灸治疗小儿腹泻60例[J].中国中医药现远程教育,2012;45(21):59.
    [76]程海英.针刺干预化疗副反应作用的临床研究[J].世界中西医合杂志,2012;7(9):772-775.
    [77]衣华强,方剑乔.上巨虚研究进展[J].中医外治杂志,2012;21(2):52-53.
    [78]王威,张燕,徐日.上巨虚穴调节胃肠运动的探讨[J].2011中国针学会年会,中国北京,2011;[C].
    [79] Chen CY, Ke MD, Kuo CD, et al. The influence of electroacu-puncture stimulation to female constipation patients. Am J Chin Med2013;41(2):301-313.
    [80] Zhang CX, Qin YM, Guo BR. Clinical study on the treatment ofgastroesophageal reflux by acupuncture. Chin J Integr Med2010;16(4):298-303.
    [81] Xiao WB, LiuYL. Rectal hypersensitivity reduced by acupointTENS in patients with diarrhea-predominant irritable bowelsyndrome: a pilot study. Dig Dis Sci2004;49(2):312-319.
    [82] Xing J, LariveB, MekhailN, et al.Transcutaneous electricalacustimulation can reduce visceral perception in patients with theirritable bowel syndrome: a pilot study. AlternTherHealth Med2004;10(1):38-42.
    [83] Zhang C, Guo L, Guo X, et al. Short and long-term efficacy ofcombining Fuzhengliqi mixture with acupuncture in treatment offunctional constipation. J Tradit Chin Med2013;33(1):51-59.
    [84] Lin LW, Fu YT, Dunning T, Zhang AL, Ho TH, Duke M, Lo SK.Efficacy of traditional Chinese medicine for the manage-ment ofconstipation: a systematic review. J Altern Complement Med2009;15(12):1335-1346.
    [85] Lin Y, Zhou Z, Shen W, et al. Clinical and experimental studies onshallow needling technique for treating childhood diarrhea. J TraditChin Med1993;13(2):107-114.
    [86] Yang C, Yan H. Observation of the efficacy of acupuncture andmoxibustion in62cases of chronic colitis. J Tradit Chin Med1999;19(2):111-114.
    [87] Anastasi JK, McMahon DJ, Kim GH. Symptom management forirritable bowel syndrome: a pilot randomized controlled trial ofacupuncture/moxibustion. Gastroenterol Nurs2009;32(4):243-255.
    [88]李健.电针“大肠俞”穴治疗单纯性便秘53例[J].贵阳中医学院报,2010;33(4):58.
    [89] Sato A, Sato Y, Suzuki A, et al. Neural mechanisms of the reflexinhibition and excitation of gastric motility elicited byacupuncturelike stimulation in anesthetized rats. Neurosci Res1993;18(1):53-62.
    [90] Tatewaki M, HarrisM, Uemura K, et al. Dual effects of acupunctureon gastric motility in conscious rats. Am J Physiol Regul IntegrComp Physiol2003;285(4):862-872.
    [91] Tada H, Fujita M, Harris M,et al. Neural mechanism ofacupuncture-induced gastric relaxations in rats. Dig Dis Sci2003;48(1):59-68.
    [92] Li YQ, Zhu B, Rong PJ, Ben H, Li YH.Effective regularity inmodulation on gastric motility induced by different acupointstimulation. World J Gastroenterol2006;12(47):7642-7648.
    [93] Li YQ, Zhu B, Rong PJ, et al. Neural mechanism ofacupuncture-modulated gastric motility. World J Gastroen-terol2007;13(5):709-716.
    [94] Maroto M, Bone RA, Dale JK. Somitogenesis.Development2012;139(4):2453-2456.
    [95] Rong PJ, Zhu B, Huang QF, et al. Acupuncture inhibition onneuronal activity of spinal dorsal horn induced by noxious colorectaldistention in rat. World J Gastroenterol2005;11(7):1011-1017.
    [96] Hill CE, Ngu MC. Development of the extrinsic sympatheticinnervation to the enteric neurones of the rat small intestine. JAutonNervSyst1987;19(2):85-93.
    [97] Romanovsky A. Thermoregulation: some concepts have changed.Functional architecture of the thermoregulatory system [J]. AmJPhysiol Regul Integr Com Physiol,2007;292(1):37-46.
    [98] Venkatachalam K, Monteil C. TRP channels [J]. Annu RevBiochem,2007;76:387-417.
    [99]韩重阳,王晓良.瞬时受体电位通道研究进展[J].生理科学展,2008;39(1):27-32.
    [100] Nilius B, Owsianik G. The transient receptor potential family of ionchannels [J]. Genome Biol,2011;12(3):218.
    [101] Nelson PL, Beck A, Cheng H. Transient receptor-proteinsilluminated; current views on TRPs and disease[J].VetJ,2011;187(2):153-164.
    [102] Helliwell RJA, McLatchie LM,Clarke M, et al. Capsaicinsensitivity is associated with the expression of thevanilloid(capsaicin) receptor (VR1) mRNA in adult rat sensoryganglia[J]. Neurosci Lett,1998;250(3):177-180.
    [103] Pingle SC, Matta JA, Ahern GP. Capsaicin receptor: TRPV1promiscuous TRP channel[J].H andb Exp Pharmacol,2007;179(PartⅡ):155-171.
    [104] Patterson L M, Zheng H, Ward S M, et al. Vanilloid receptor (VR1)expression in vagal afferent neurons innervating the gastrointestinaltract[J]. Cell Tissue Res,2003;311(3):277-287.
    [105] Robinson D R, McNaughton P A, Evans M L, et al. Characteri-zation of the primary spinal afferent innervation of the mouse colonusing retrograde labeling[J]. Neurogastroenterol Motil,2004;16(1):113-124.
    [106] Schicho R, Florian W, Liebmann I, et al. Increased expression ofTRPV1receptor in dorsal root ganglia by acid insult of the ratgastric mucosa [J]. Eur J Neurosci,2004;19(7):1811-1818.
    [107] Jara-Oseguera A, Simon S A, Rosenbaum T. TRPV1: on the roadto pain relief [J].Curr Mol Pharmacol,2008;1(3):255-269.
    [108] Veronesi B, Oortgiesen M. The TRPV1receptor: Target oftoxicants and therapeutics [J]. Toxicol Sci,2006;89(1):1-3.
    [109] Derbenev AV, Monroe MJ, Glatzer NR, et al. Vanilloid-mediatedheterosynaptic facilitation of inhibitory synaptic input to neurons ofthe rat dorsal mot or nucleus of the vagus [J]. J Neurosci,2006;26(38):9666-9672.
    [110] Schumacher MA, Eilers H. TRPV1splice variant s: structure andfunction[J]. Front Biosci,2010;15:872-882.
    [111] Aviado DM, Guevara Aviado D. The Bezole-Jarisch reflex.Ahistorical perspective of cardiopulmonary reflexes [J]. AnnNYAcad Sci,2001;940:48-58.
    [112] Xu F, Gu QH, Lee LY, et al. Acute hypoxia prolongs theapneainduced by right atrial injection og capsaicin [J].J ApplPhysiol,2003;94(4):1446-1454.
    [113] Barbara M, Grzegorz K, Manfred G. Anadamide andmethanandamide induce both vaniloid VR1and cannabinoidCB1receptor-mediated changes in heart rate and blood pressure inanesthetized rats[J]. Arch Pharmacol,2001;364(6):562-569.
    [114] Wang RR, Xu FD, Zhang JG, et al. Carotid sinus nerve is involvedin cardiorespiratory responses to intracarotid injection of capsaicinin the rats[J]. J Appl Physiol,2006;100(1):60-66.
    [115] Vellani V, Mapplebeck S, Moriondo A, et al. Protein kinase Cactivaton potentiates gating of the vanilloid receptor VR1bycapsaicin, proton, heat and anandamide[J]. J Physiol,2001;534(3):8132-8251.
    [116] Ito S, Kume H, Naruse K, et al. A novel Ca2+influx pathwayactivated by mechanical stretch in human airway smooth musclecells. Am J Respir Cell Mol Biol,2008;38(4):407-413.
    [117] Guibert C, Ducret T, Savineau JP. Expression and physiologicalroles of TRP channels in smooth muscle cells. Adv Exp Med Biol,2011;704:687-706.
    [118] Landsberg JW, Yuan JX. Calcium and TRP channels in pulmonaryvascular smooth muscle cell proliferation. News Physiol Sci,2004;19:44-50.
    [119] Beech DJ, Muraki K, Flemming R. Non-selective cationic channelsof smooth muscle and the mammalian homologues of DrosophilaTRP. J Physiol,2004;559(Pt3):685-706.
    [120] Christensen AP, Corey DP. TRP channels in mechanosen-sation:director indirect activation? Nat Rev Neurosci,2007;8(7):510-521.
    [121]杨宇,曹宇.温度感受相关的TRP蛋白家族研究进展[J].生理科学进展,2005;36(1):80-82.
    [122] Stucky C L, Dubin A E, Jeske N A, et al. Roles of transientreceptor potential channels in pain [J].Brain Res Rev,2009;60(1):2-23.
    [123] Bolcskei K, Helyes Z, Szabo A, et al. Investigation of the role ofTRPV1receptors in acute and chronic nocicep-tive processesusing gene-deficient mice[J]. Pain,2005;117(3):368-376.
    [124] Akbar A, Yiangou Y, Facer P, et al. Expression of the TRPV1receptor differs in quiescent inflammatory bowel disea-se with orwithout abdominal pain [J]. Gut,2010;59(6):767-774.
    [125] Hammer J, Fuhrer M, Pipal L, et al. Hypersensitivity for capsaicinin patients with functional dyspepsia[J]. Neurogastroenterol Motil,2008;20(2):125-133.
    [126] Gonlachanvit S, Mahayosnond A, Kullacanijaya P. Effects of chilion postprandial gastrointestinal symptoms in diarrhoea predo-minant irritable bowel syndrome: evidence for capsaicinsensitivevisceral nociception hypersensi-tivity [J]. Neurogastroenterol Motil,2009;21(1):23-32.
    [127] Clapham D E. TRP channels as cellular sensors [J]. Nature,2003;426(6966):517-523.
    [128] Kechagias S, Botella S, Petersson F, et al. Expression of vanilloidreceptor-1in epithelial cells of human antral gastric mucosa [J].Scand J Gastroenterol,2005;40(7):775-782.
    [129] Basbaum A I, Bautista D M, Scherrer G, et al. Cellular andmolecular mechanisms of pain[J]. Cell,2009;139(2):267-284.
    [130]石宏,吉长福,尚红燕等.与感觉相关的ASIC3、TRPV1基因敲除小鼠繁殖性能的观察与痛阈的比较[J].中国比较医学杂志,2013;23(5):1-4.
    [131] Hwang SJ, Valtschanoff JG. Vanilloid receptor VR1-posi-tiveafferents are distributed differently at different levels of theratlumbar spinal cord [J]. Neurosci Lett,2003;349(1):41-44.
    [132] Clapham DE. SnapShot: Mammalian TRP channels [J]. Cell,2007;129(1):220-220.
    [133] T. S. Abraham, M. Chen, and S.Ma,“TRPV1expression inacupuncture points: response to electroacupuncture stimulation,”Journal of Chemical Neuroanatomy,2011;41(3):129-136.
    [134] Yang-Shuai Su, Wei He, ChiWang, et al. Intensity-Response”Effects of Electroacupuncture on Gastric Motility and ItsUnderlying Peripheral Neural Mechanism [J].ECAM,2013;1155(10):1-8.
    [135] E Noguchi, H. Ohsawa, S. Kobayashi,et al.“The effect ofelectro-acupuncture stimulation on the muscle blood flow of thehindlimb in anesthetized rats,” Journal of the Autonomic NervousSystem,1999;75(2-3):78-86.
    [136] Abraham TS, Chen ML, Ma SX. TRPV1expression in acupuncturepoints: response to electroacupuncture stimulation [J].J ChemNeuroanat,2011;41(3):129-136.
    [137] J. J.Xin,Y. S. Su, Z. K. Yang et al.“Effects of electroacupunctureand regional thermal stimulation at “Zusanli”(ST36) on painthresholds of TRPV1knock-out mice,” Zhen Ci Yan Jiu,2012;37(6):431-439.
    [138] K Kawakita, M Funakoshi.“Suppression of the jawopen-ing reflexby conditioning A-δfiber stimulation and electroacupuncture in therat,”Experimental Neurology,1982;78(2):461-465.
    [139] E. Noguchi, H. Ohsawa, S. Kobayashi, et al.“The effect ofelectro-acupuncture stimula-tion on the muscle blood flow of thehindlimb in anesthe-tized rats,” Journal of the Autonomic NervousSystem,1999;75(2-3):78-86.
    [140] H. Ohsawa, S. Yamaguchi, H. Ishimaru, et al. Neural mechanism ofpupillary dilation elicited by electroacu-puncture stimulation inanesthetized rats[J].Journal of theAutonomic Nervous System,1997;64(2-3):101-106.
    [141] M. Tatewaki, M. Harris, K. Uemura, et al. Dual effects ofacupuncture on gastric motility in conscious rats [J]. The AmericanJournal of Physiology,2003;285(4):R862-R872.
    [142] H. Kametani, A. Sato, Y. Sato, et al. Neural mechanisms of reflexfacilitation and inhibition of gastric motility to stimulation ofvarious skin areas in rats [J]. Journal of Physiology,1979;294:407-418.
    [143] A. Sato, Y. Sato, A. Suzuki, and S. Uchida.“Neural mechanisms ofthe reflex inhibition and excitation of gastric motility elicited byacupuncture-like stimula-tion in anesthetized rats,” NeuroscienceResearch,1993;18(1):53-62.
    [144] J Yin, JDZ Chen. Gastrointestinal motility disorders andacupuncture [J].Autonomic Neuroscience,2010;157(1-2):33-37.
    [145] T Takahashi. Acupuncture for functional gastrointestinaldisorders[J]. Journal of Gastroenterology,2006;41(5):408-417.
    [146] SJ Wang, HY Yang, GS Xu. Acupuncture alleviates colorec-talhypersensitivity and correlates with the regulatory mechanism ofTrpV1and p-ERK,” Evidence-Based Comple-mentary andAlternative Medicine,2012;48(3):123-130.
    [147] Bassl er EL, Ngo-Anh TJ, Geisl er HS, et al. Molecular andfunctional characterization of acid-sensingion channel (ASIC)1b[J].J Biol Chem,2001;276(36):33782-33787.
    [148] Wal dmann R, Lazdunski M. H(+) gated cation channels:neuronalacid sensors in the NaC/DEG family of ion channels[J]. Curr OpinNeurobiol,1998;8(3):418-424.
    [149] Wal dmann R, Champigny G, Linguegl ia E, et al. H(+)gated cationchannel s[J]. Ann N Y Acad Sci,1999;868:67-76.
    [150] Wu LJ, Duan B, Mei YD, et al. Characterization of acid-sensing ionchannels in dorsal horn neurons of rat spinal cord[J]. J Biol Chem,2004;279:43716-43724.
    [151] Babinski K, Le KT, Seguela P. Molecular cloning and regionaldistribution of a human proton receptor subunit with biphasicfunctional properties[J]. J Neurochem,1999;72(1):51-57.
    [152] Benson CJ, Xie J, Wemmie JA, et al. Heteromultimers ofDEG/ENaC subunits form H+-gated channels in mouse sensoryneurons [J]. Proc Natl Acad Sci USA,2002;99(4):2338-2343.
    [153] Price MP, Thompson RJ, Eshcol JO, et al. Stomatin modulatesgating of acid-sensing ion channels [J]. J Biol Chem,2004;279(51):53886-53891.
    [154] Sluka K A, PriceM P, Breese N M, et al.Chronic hyperalgesiainduced by repeat ed acid injections in muscle is abolished by theloss of ASIC3, but not ASIC1.Pain,2003;106(3):229-239.
    [155] J. J.Xin,Y. S. Su, Z. K. Yang et al.“Effects of electroacupunctureand regional thermal stimulation at “Zusanli”(ST36) on painthresholds of TRPV1knock-out mice,” Zhen Ci Yan Jiu,2012;37(6):431-439.
    [156] Hruska-Hageman AM, Benson CJ, Leonard AS, et al. PSD-95andLin-7b int eract with acid-sensing ion channe-l3and have oppositeeffects on H+-gated current [J].J Bi ol Chem,2004;279(45):46962-46968.
    [157] Sutherland SP, Benson CJ, Adelman JP, et al. Acid-sensin-gionchannel3matches the acid-gated current in cardiac-schemiasensingneurons [J]. Proc Nati Acad Sci USA,2001;98(2):711-716.
    [158] Junichi Y, Heather N W, Ligia A N, et al. Sustained CurrentsThrough ASIC3Ion Channels at the Modest pH Changes ThatOccur During Myocardial Ischemia. Circ Res,2006;99(5):501-509.
    [159] Immke DC, McCleskey EW. ASIC3: a lactic acid sensorfor cardiacpain[J]. Sci World J,2001;1(1):510-512.
    [160] Sluka K A, PriceM P, Breese N M, et al.Chronic hyperalge-siainduced by repeat ed acid injections in muscle is abolished by theloss of ASIC3, but not ASIC1.Pain,2003;106(3):229-239.
    [161] Sluka K A, Radhakrishnan R, Benson C J, et al. ASIC3in musclemed-I at es mechanical, but not heat, hyperalge-sia associatedwith muscle inflammat ion.Pain,2007;129(1):102-112.
    [162] Chen CC, Zimmer A, Sun WH, et al. A role for ASIC3in themodulation of high-intensity pain stimulation. Proc Natl Acad SciUSA,2002;99(13):8992-8997.
    [163] Price MP, Thompson RJ, Eshcol JO, et al. St omatin modulatesgatingof acid-sensing ion channels [J]. J Biol Chem,2004;279(51):53886-53891.
    [164] Tobin G, Giglio D, Lundgren O. Muscarinic receptor subtypes inthe alimentary tract [J]. J Physiol Pharmacol,2009;60(1):3-21.
    [165] Ehlert F J, Ostrom R S, Sawyer G W. Subtypes of the muscarinicreceptor in smooth muscle[J]. Life Sci,1997;61(18):1729-1740.
    [166] Michel A D, Whiting R L. The binding of [3H]4-diphe-nylacetoxy-N-methylpiperidine methiodide to longitu-dinal ilealsmooth muscle muscarinic receptors [J]. Eur J Pharmacol,1990;176(2):197-205.
    [167]王斌,程峰涛.M受体亚型和胃肠道平滑肌功能[J].中国病理生理杂志,2001;17(11):1093-1096.
    [168] Eglen RM, Reddy H, Watson N. Muscarinic acetylcholine receptorsubtypes in smooth muscle [J]. Trends in Pharmacol Sci,1994;15(4):114-119.
    [169] DePonti F, Einaudi A, Cosentino M. Dif ferential effects ofantimuscarinic agents on intestinal motility in the conscious dog. JPharmacol Exp Ther,1993;264(2):789-794.
    [170] Shi XZ, Sarna SK. Inflammatory modulation of muscarinicreceptor activation in canineileal circular muscle cells [J]. Gastroenterology,1997;112(3):864-874.
    [171] Shi XZ, Sarna SK. Inflammation suppresses the circular but not thelong itudinal muscle contractility during ileal inflammation.Gastroenterology,1997;112(4): A824.
    [172] Zhang L, Horowitz B, Buxton ILO. Muscarinic receptor s in caninecolonic circular smooth muscle [J]. Coexis-tence of M2and M3subtypes. Mol Pharmacol,1991;40(6):943-951.
    [173] Eglen RM. Muscarinic receptor sub type: pharmacology andphysiology [J]. ProgMed Chem,2005;43:105-136.
    [174] Sohn UD,Harnett KM, De Petris G,et al. Distinct muscari-nicreceptors,G proteins and phospholipases in esopha-geal and lowesophageal spincter circular muscle [J]. J Pharmacol Exp Ther,1993;267(3):1205-1214.
    [175] Gregory WS, Frederick JE. Contractile roles of the M2and M3muscarinic receptors in the guinea pig colon [J]. J Pharmacol ExpTher,1998;284(1):269-277.
    [176]秦晓民,石宣政.消化道平滑肌胆碱能M受体亚型及其细胞内信息传递机制[J].华人消化杂志,1998;6(3):274-275.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700