微生物转化孕甾三醇的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
微生物转化是天然产物结构修饰非常有用的工具。它能够催化化合物中的不活泼碳原子,进行区域选择性和立体选择性反应,使得很多通过有机合成手段难以完成的反应迅速、顺利进行。所以,微生物转化已经成为一项可靠高效的手段来进行药物衍生物的合成。
     甾体类药物是目前继抗生素之后人类使用的第二大类药物,广泛的用于抗炎、利尿、孕激素、蛋白同化剂、肿瘤抑制剂等。孕甾三醇是剑麻皂苷元的水解产物,合理的利用孕甾三醇,将其转化成为医药、农药及有潜在用途的化合物,不仅可以寻找新的具有药理活性的衍生物,而且可达到进一步利用剑麻皂苷元的目的。
     本文运用微生物转化的手段对孕甾三醇进行结构修饰,分离鉴定了5个转化产物。主要结果如下:
     从十一株真菌中筛选出四株具有转化孕甾三醇能力的真菌,包括白腐真菌(Coriolusversicolor)、短刺小克银汉霉(Cunnonghamella blakesleeana)、雅致小克银汉霉(Cunnonghamella elegans)、刺孢小克银汉霉(Cunnonghamella echinulata)。最终选择刺孢小克银汉霉(Cunninghamella echinulata)作为转化菌株,经活化后加入底物pregnane-3β,16β,20-triol并进行扩大培养。借助正相柱层析、反相RP-18柱层析、SephadexLH-20等分离手段,从乙酸乙酯浸膏中分离得到6个转化产物,结合1D和2D NMR波谱技术、高分辨质谱等方法分别鉴定5个单体化合物:孕甾-3β,14α,16β,20-四醇(YZIII-1),孕甾-3-羰基-14α,16β,20-三醇(YZIII-2),孕甾-3-羰基-7β,16β,20-三醇(YZIII-3),孕甾-3β,7β,16β,20-四醇(YZIV-4),孕甾-3β,5,16β,20-四醇(YZIV-5)。这五个化合物均为新的孕甾三醇的衍生物。
Microbial transformation has been proven to be a useful addition to technology. Inertcarbon in a series of compounds could be catalyzed with the hydroxyl by the regioselectiveand stereo-selectivity synthesis of the technique and some complex organic reactions may beextremely specific and quickly completed. In addition, microorganisms can be used as areliable and efficient synthetic chemistry for obtaining sizable amounts of a number of drugderivatives
     Steroidal drugs are the second largest category of drugs only lower than antibiotics. Avariety of steroids are widely used as anti-inflammatory, diuretic, anabolic, contraceptive, andanticancer agents as well as in other applications. The effective method of direct oxidativedegradation of tigogenin into pregnane-3β,16β,20-triol has been developed. In order toconvert pregnane-3β,16β,20-triol into medicine and potentially useful organic molecules andthen applied to synthesize steroidal drugs, synthetic intermediates or natural steroids withimportant physiological activity, and further to utilize tigogenin rationally.
     In this article, the way which use biotransformation to modify the structure ofpregnane-3β,16β,20-triol by introducing the hydroxyl. The main contents and results areconcluded as follow:
     Screening scale experiments showed that Coriolus versicolor, Cunnonghamellablakesleeana, Cunnonghamella elegans and Cunnonghamella echinulata which are screenedfrom eleven microorganisms, have abilities to transform pregnane-3β,16β,20-triol into itsderivatives as determined by TLC. Cunninghamella echinulata had been selected astransforming bacteria form eleven test epiphytes and been used for a large scale liquidfermentation. Incubation of substrate pregnane-3β,16β,20-triol with Cunninghamellaechinulata yielded six major metabolites by multiple column chromatography on CC, ODS,Sephadex LH-20,et al., five of which were identified by various spectroscopic methods (1DNMR,2D NMR) in combination with HR-MS, MS and IR as pregnane-3β,14α,16β,20-tetrol(YZIII-1), pregnane-3-oxo-14α,16β,20-triol (YZIII-2), pregnane-3-oxo-7β,16β,20-triol(YZIII-3), pregnane-3β,7β,16β,20-tetrol (YZIV-4), and pregnane-3β,5,16β,20-tetrol (YZIV-5).These five metabolites were also new bioconversion products.
引文
褚志义,史济平.2000.生物合成药物学.北京:化学工业出版社
    法幼华,马树恒,苏起恒,等.1981.转化5α-孕烷-3β,17α-二羟基-20-酮-21-醋酸酯为氢化可的松.微生物学报,21(4):489-492
    法幼华,马树恒,苏起恒,等.1982.从剑麻皂素合成氢化可的松.医药工业,13(12):1-3
    高锦明.2003.植物化学.北京:科学出版社:384
    韩广甸,马兆扬.2002.我国利用剑麻皂素合成甾体药物的研究进展.中国医药工业杂志,33(9):459-464
    胡海峰,李晓敦,朱宝泉.2006.微生物甾体羟化技术及其应用.国外医药抗生素分册,27(2):76-95
    李晓静.郭建喜.阳葵.2009.生长调节剂对微生物生长及甾体微生物转化的影响.海军工程大学学报,21(1):27-31.
    刘其明.1989.我国甾体微生物工业的发展.工业微生物,3:28-31
    刘婷,孙华,朝军等.2010.微生物转化法合成3-氧代齐墩果酸及其条件优化.化学与生物工程,27(3):55-59
    刘湘,汪秋安编著.2005.天然产物化学.北京:化学工业出版社,155-161
    吕斯琦,马琳.2010.中药微生物转化的现状及前景.药物评价研究,33(6):447-451
    马佛光,毕云,黄之镨等.2010.雷公藤固态生物转化产物减毒增效作用的实验研究.中草药,41(6):927-930
    宋欣.2004.微生物酶转化技术.北京:化学工业出版社:6:1-9
    谭仁祥,王剑文,编.2008.甾体化学.北京:化学工业出版社:33-35
    田天丽,沈竞,徐萌萌等.2008.虎杖中虎杖苷的微生物发酵转化研究.四川大学学报(自然科学版),45(2):437-440
    王旭,徐威,游松.2006.微生物转化在药学中的应用.沈阳药科大学学报,23:477-482
    王超.2003.环糊精作用下甾体化合物的生物转化特性研究[博士论文].天津:天津科技大学
    王普.2004.甾体体药物中间体HMPDD的C1,2位微生物脱氢工艺和动力学研究[博士论文].杭州:浙江大学
    王圆圆,余伯阳,李星等.2006.灰色链霉菌对芦丁的生物转化及产物的抗氧化活性.中国天然药物,4(1):66-69
    威尔穆特著.创新药物化学.第二版.迟玉明译2004.广州:广东世界图书出版公司:691
    徐礼粲,刘爱茹.1997.皂甙元分析方法的研究Ⅱ剑麻皂甙元薄层比色法.化学学报,239
    叶丽,史济平.2001.甾体微生物转化在制药工业中的应用.工业微生物,31:40-48
    俞俊堂主编,1992.生物工艺学.上海:华东化工学院出版社:286-289
    占纪勋,张元兴,宁黎丽等.2003.铜绿假单孢菌AS1.860对紫衫醇的微生物转化.应用与坏境生物学报,9(4):429-432
    张春燕,白宝星,王明蓉.2007.甾体药物生物转化体系的研究进展. World Notes on Antibiotics,28(5):210-214
    张九治,吴祖琪.1983.双炔失碳酯合成工艺改进.医药工业,14(4):9-10
    张丽青.1985.微生物转化在甾体药物合成中的应用.医药工业,16(1):37-41
    张怡轩,陈晓莹,赵文倩.2008.人参皂苷生物转化的研究进展.沈阳药科大学学报,25(5):419-22
    赵丙勇,杨永红,王东.2006.生物转化及其在药物合成上的应用.云南农业大学学报,21(6):765-769
    周维善,庄治平(主编).2002.甾体化学进展.北京:科学出版社:344-346
    Ahmad S, Garg S K, Johri B N.1992. Biotransformation of sterols: selective cleavage of the sidechain. Biotech Adv,10:1-67
    Angelova B, Fernandes P, Cruz A, Pinheiro H M, Mutafov S, Cabral J M S.2005. Hydroxylation ofandrostenedione by resting Rhodococcus sp. cells in organic media. Enzyme and Microbial Technology,37:718-722
    Arabi H, Tabatabaei Yazdi M, Faramarzi M A.2010. Influence of whole microalgal cell
    Asgher M, Bhatti H N, Ashraf M, Legge R L.2008. Recent developments in biodegradation ofindustrial pollutants by white rot fungi and their enzyme system. Biodegradation,19:771-783
    Asha S, Vidyavathi M.2009. Cunninghamella-A microbial model for drug metabolism studies-Areview. Biotechnology Advances,27:16-29
    Azerad R.1999. Microbial models for drug metabolism. Adv Biochem Eng Biotechno,63:169-218
    Bartmańska A, Dmochowska-G adysz J, Huszcza E.2005. Steroids’ transformations in Penicilliumnotatum culture. Steroids,70:193-198
    Denisov I G, Makris T M, Sligar S G, Schlichting I,2005. Structure and chemistry of cytochrome P450.Chem Rev,105:2253-2277
    Dong T, Wu G W, Wang X N, Gao J M.2010. Microbiological transformation of diosgenin by restingcells of filamentous fungus, Cunninghamella echinulata CGMCC3.2716. Mole Catalysis B: Enzymatic,67:251-256
    Donova M V, Gulevskaya S A, Dovbnya D V, Puntus IF.2005. Mycobacterium sp. mutant strainproducing9α-hydroxyandrostenedione from sitosterol. ApplMicrobiol Biotechnol67:671-678
    Dulaney E L, Mcaleer W J, Koslowski M, Stapley E, Jaglom J.1955. Hydroxylation of progesteroneand11-desoxy-17-hydroxy-corticosterone by Aspergillus and Penicillium. Appl. Microbiol.3:336-340
    Editorial Committee of Chinese Materia Medica. State Drug Administration of China. ChineseMateria Medica (中华本草). Shanghai Science and Techonology Press,1999.7244
    Egorova O V, Gulevskaya S A, Puntus I F.2002. Production of androstenedione using mutants ofMycobacterium spp. Chem Technol Biotechnol,77:141-147
    Faramarzi M A, Aghelnejad M, Yazdi M T, Amini M, Hajarolasvadi N.2008b. Metabolism ofandrost-4-en-3,17-dione by the filamentous fungus Neurospora crassa. Steroids,73:13-18
    Faramarzi M A, Badiee M, Tabatabaei Yazdi M, Amini M, Torshabi M.2008a. Formation ofhydroxysteroid derivatives from androst-4-en-3,17-dione by the filamentous fungus Mucor racemosus.Journal of Molecular Catalysis B: Enzymatic,50:7-12
    Flygare S, Larsson P O.1989. Steroid transformat ion in aqueous two-phase systems: side-chaindegradation of cholesterol by Mycobacterium sp. Enzyme Microb Technol,11(11):752
    Fraga B M, Alvarez L, Suarez S.2003. Biotransformation of the diterpenes epicandicandiol andcandicandiol by Mucor plumbens. J Nat Prod,66:327-331
    Han J, Lin J R, Jin R H, Tian W S.2011. Synthesis of16S,20S-epoxypregnane-3S-ol acetate and itsregioselective epoxide-opening substitution. Acta Chim. Sin.,69:2272-2280
    Hunter A C, Kieran R.2009. An unusual ring—A opening and other reactions in steroidtransformation by the thermophilic fungus Myceliophthora thermophila. Steroid Biochemistry&MolecularBiology,116:171-177
    Huang D, Ding Y, Li Y.2006. Antitumor activity of a3-oxo derivative of oleanolic acid. Cancer Lett,23(2):289-296
    Janeczko T, Dmochowska-G adysz J, Kostrzewa-Sus ow E, Bia ońska A, Ciunik Z.2009.Biotransformations of steroid compounds by Chaetomium sp. KCH6651. Steroids,74:657-661
    Kieslich K.1985. Microbial side-chain degradation of sterols. Basic Microbiol,25:461-74
    Ko ek T, Szpineter A, wizdor A.2009. Studies on Baeyer–Villiger oxidation of steroids: DHEA andpregnenolone d-lactonization pathways in Penicillium camemberti AM83. Steroids:74:859–862
    Kollerov V V, Shutov A A, Fokina V V, Sukhodol’skaya G V, Donova MV.2008. Biotransformation of3-keto-androstanes by Gongronella butleri VKM F-1033. Journal of Molecular Catalysis B: Enzymatic,55:61-68
    Kouzi S A, McChesney J D.1991. Microbial Models of Mammalian Metabolism: Fungal Metabolismof the Diterpene Sclareol by Cunninghamella Species. J Nat Prod,54:483-490
    Kumar R, Dahiya J S, Singh D.2001. Nigam P. Biotransformation of cholesterol using Lactobacillusbulgaricus in a glucose-controlled bioreactor. Bioresource Technol,78:209-11
    Kumari G N K, Masilamani S, Ganesh M R, et al.2003. Microbial transformation of zaluzanin D.Journal of Phytochemistry,62:1101-1104
    Lin Y L, Song X, Fu J, Lin J Q, Qu Y B.2009. Microbial transformation of androst-4-ene-3,17-dioneby Bordetella sp. B4CGMCC2229. J Chem Technol Biotechnol,84:789-793
    Lin J R, Jiang S F, Zhou N Y, Jin R H, Tian W S.2008. Controllable reaction of16R-bromopregnane-3S,20S-diol diacetate with bases. Acta Chim. Sin.,66:2637-2645
    Lin J R, Wang J, Chen L J, Wang Y C, Tang X M, Tian W S.2006. Studies on the regioselectivity ofacetylation-bromination in pregnanetriol. Acta Chim Sin.,64:1265-1268
    Lin J R, Zhou N Y, Xu Q H, Jiang S F, Tian W S.2007. The fragmentation reaction of16R-bromopregnane-3S,20S-diol. Tetrahedron Lett.,48:4987-4989
    Liu H M, Ge W Z, Li H P, Wu J.2007. Microbial transformation of5α,6α-epoxy-3β-hydroxy-16-pregnen-20-one by Trichoderma viride. Steroids,72:509-513
    Liu W H, Kuo C W, Wu K-L, Lee C-Y. Hsu W-Y.1994. Transformation of cholesterol to testosteroneby Mycobacterium sp. Ind Microbiol,13:167-71
    Liu W H, Lo C K.1997. Production of testosterone from cholesterol using a single-step microbialtransformation of Mycobacterium sp. Ind Microbiol Biotechnol,19:269-72
    Maatooq G T, Marzouk A M, Gray A I, Rosazza J P.2010. Bioactive microbial metabolites fromglycyrrhetinic acid. Phytochemistry,71:262-270
    Madyastha K M, Joseph T.1994. Transformation of16-dehydroprogesterone and17a-hydroxyprogesterone by Mucor piriformis. Appl Microbiol Biotechnol,41:170-177
    Mahato S B, Banerjee S, Podder S.1987. Novel microbial transformation of16-Dehydrpregnenoloneby Arthrobacter simplex. Tetrahedron Letters,28:5315-5318
    Mahato S B, Banerjee S, Podder S.1989. Steroid transformation by microorganisms-III.Phytochemistry,28:7-40
    Mahato S B, Banerjee S.1985. Steroid transformation by microorganisms-II. Phytochemistry,24:1403-1421
    Mahato S B, Garai S.1997. Advances in microbial steroid biotransformation. Steroids,62:332-345
    Mahato S B, Mazumder I.1995. Current trends in microbial steroid transformation. Phytochemistry,34:883-898
    Mahato S B, Mukherjee A.1984. Steroid transformation by microorganisms. Phytochemistry,23:2131-2154
    Mahato S B, Garai S.1997. Advances in microbial steroid biotransformation. Steroids,62:332-345
    Manosroi J, Abe M, Manosroi A.1999. Biotransformation of steroidal drugs using microorganismsscreened from various sites in ChiangMa, i Thailand. Bioresour Technol,69:67
    Matsuda T R, Yamanaka K.2009. Nakamura, Recent progress in biocatalysis for asymmetricoxidation and reduction. Tetrahedron: Asymmetry,20:513-557
    Megges R, Muller-Frohne M, Pfeil D, Ruckpaul K.1990. In Frontiers in Biotransformation3, Ed. byK. Ruckpaul, H. Rich, Taylor a Francis. London.204
    Murray H C, Peterson D H, Upjohn Co.1952. USA. U. S. Patent2602769
    Naim N, Adham N Z, El-Rehim H A, El-Hady A A.2003. Prednisolone production usingPseudomonas fluorescens cells immobilized with polymer carrier produced by radiation polymerization.Process Biochemistry:38:1083-1089
    Ohnishi T, Yokota T, Mizutani M.2009. Insights into the function and evolution of P450s in plantsteroid metabolism. Phytochemistry,70:1918-1929
    Parales R E, Bruce N C, Schmid A, Wackett L P.2002. Biodegradation, Biotransformation, andBiocatalysis (B3). Applied and Environmental Microbiology,4699-4709
    Pazmi o D E T, Winkler M, Glieder A, Fraaije M W.2010. Monooxygenases as biocatalysts:Classification, mechanistic aspects and biotechnological applications. Journal of Biotechnology,146:9-24
    Peterson D H, Murray H C.1952. Microbiological oxygenation of steroids at carbon11. J Amer ChemSoc,74:1871-1872
    Rosazza J P, Stocklinski A W, Gustafson M A, Adrian J, Smith R V.1975. Microbial Models ofMammalian Metabolism. O-Dealkylation of10,11-Dimethoxyaporphine. J Med Chem,18:791-794
    Silbiger E, Freeman A.1991. Enzyme Microb Technol,13:869-872
    Smith M, Zahnley J, Pfeifer D.1993. Growth and cholesterol oxidation by Mycobacterium species inTween80medium. Appl Environ Microbiol,59(7):1425
    Smith R V, Rosazza J P.1974. Microbial models of mammalian metabolism. Aromatic hydroxylation.Arch Biochem Biophys,161:551-558
    Srisilam K, Veeresham C.2003. Biotransformation of drugs by microbial cultures for predictingmammalian drug metabolism. Biotechnol Adv:21:3-39
    Sukhodolskaya G V. Nikolayeva V M. Khomutov S M. Donova M V.2007. Steroid-1-dehydrogenaseof Mycobacterium sp. VKM Ac-1817D strain producing9α-hydroxy-androst-4-ene-3,17-dione fromsitosterol. ApplMicrobiol Biotechnol,74:867-873
    Reichstein T, Shoppee C W.1943. The Hormones of the Adrenal Cortex. Vitamins&Hormones,1:345-413
    Teresa K.1999. Biotransformation XLVII: transformations of5-ene steroids in Fusarium culmorumculture. Journal of Steroid Biochemistry&Molecular Biology,71:83-90
    Tian W S. CN96-116304.1998. Chem. Abstr,128,167599
    Torres Pazmi o D E, Winkler M, Glieder A, Fraaije M W.2010. Monooxygenases as biocatalysts:classification, mechanistic aspects and biotechnological applications. Journal of Biotechnology,146:9-24
    Vjacheslav V. Kollerov, Andrei A. Shutov, Victoria V. Fokina.2008. Biotransformation of3-keto-androstanes by Gongronella butleri VKM F-1033. Journal of Molecular Catalysis B: Enzymatic,55:61-68
    Wang M, Zhang L T, Shen Y B, Ma Y H, Zheng Y, Luo J M.2009. Effects ofhydroxypropyl-β-cyclodextrin on steroids1-en-dehydrogenation biotransformation by Arthrobactersimplex TCCC11037. Journal of Molecular Catalysis B: Enzymatic:59:58-63
    Wang Z L, Zhao F S, Chen D J, Li D T.2006. Biotransformation of phytosterol to produceandrosta-diene-dione by resting cells of Mycobacterium in cloud point system. Process Biochemistry,41:557-561
    Wu G W, Shi X W, Zhang Q, Gao J M.2011. Microbial transformations of diosgenin by the white-rotbasidiomycete Coriolus versicolor. J Nat Prod,74:2095-2101
    Xiong Z G, Wei Q, Chen H M, Chen S W, Xu W J, Qiu G F, Liang S C, Hu X M.2006. Microbialtransformation of androst-4-ene-3,17-dione by Beauveria bassiana. Steroids,71:979-983
    Zhang D L, Yang Y F, Leakey J E A, Cerniglia C E.1996. Phase I and phase II enzymes produced byCunninghamella elegans for the metabolism of xenobiotics. FEMS Microbiology Letters,138:221-226
    Zhao R Z, Liu S J, Zhou L L, et a1.2005. Rapid quantitative HPTLC analysis, on one plate, of ernodin,resveratrol and polydatin in the Chinese herb Polygonum cuspidatum. Chromatographia,61(5-6):311

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700