基于DM642的视频图象压缩系统及其关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
电视制导是现代战争中应用广泛的一种精确制导方式,它是以视频信号实时传输为基础的。数字电视制导有效解决了传统模拟制导系统占用带宽宽、易受干扰、硬件复杂、体积大、不易标准化等问题,然而在实时传输中数字视频信号的高数据率与有限的传输带宽之间产生了矛盾,需要借助视频压缩技术来解决。因此,研究高保真、大压缩比、实时性强的视频压缩系统具有重要的理论和应用价值,是数字电视制导系统中亟待解决的课题。
     传统的视频压缩方法Motion-JPEG压缩效率不高、MPEG延迟较大, H.264作为新一代视频压缩编码国际标准是一种高效、低延迟的压缩编码方法,更加适合电视制导的应用。为此,本文重点对H.264压缩标准进行研究,并在此基础上设计实现电视制导图象压缩系统。论文首先总结了多种图象视频编码标准的技术框架,对各种标准进行了比较研究,尤其是对H.264编码标准的基本框架及基本原理进行了分析,重点研究了帧内、帧间预测模式,整数离散余弦变换与量化,熵编码等模块中的关键技术,分析了H.264所具有的独特优势,为本课题硬件设计与实现打下了坚实的理论基础。
     德州仪器生产的TMS320DM642数字信号处理器DSP专门设计用来处理视频多媒体信号,具有主频高、片上资源丰富等特点。本课题就是基于DM642处理器设计并实现双核并行处理的高速实时视频压缩处理平台。该平台通过DSP和FPGA双核配合工作,实现图象的采集、压缩、传输、解压缩、显示等功能;同时该平台留有以太网等扩展接口,可以实现目标跟踪等其他算法,具有很强的可扩展性和通用性。系统最终实现每秒压缩CIF格式图象20帧,基本实现实时压缩;在20倍以上压缩比的条件下,取得了33.72dB的峰值信噪比,获得了良好的图象恢复效果。
     快速的帧内、帧间预测算法是图象压缩系统中的关键技术,本文对已有的预测算法的原理和组成模块进行了深入的分析,在此基础上根据课题的需要,研究了三种基于搜索模式的优化运动估计算法,并且针对不同信道带宽和不同类型的视频序列进行了压缩仿真,实验表明改进后的算法对提高动态视频图象的压缩效率和恢复质量具有良好的效果。
TV weapon guidance is one of the widely used accurate weapon guidance modes in the modern war, which is based on the real time transmission of the video signal. Analog video signal is used by the conventional TV guidance system during the transmission, which needs wide bandwidth and is prone to interference. Furthermore, the hardware of the system is complicated and voluminous, which cannot easily be standardized. Employing digital TV guidance system is a way to solve this problem. However, there exists a great conflit between high data rate of the digital video signal and limited bandwidth of the channel during the real time transmission, which can be solved by video compression technique. Therefore, the research of the video compression system with high fidelity, large compression ratio, low delay is of great theoretical significance and application value, and is also an urgent task in the research and development of the digital TV guidance system.
     In the conventional video compression methods, Motion-JPEG has low compression efficiency and MPEG has high delay. While being a new gerneration video coding standard, H.264 is more suitable for the application to TV guidance for its high efficienct coding with low delay. In this thesis, the key techniques of H.264 video compression are studied to implement an image processing system for TV guidance. After the technique frameworks of many image and video coding standards are summarized, the comparison of them is also conducted. And especially the framework and principle of H.264 are analysed, focusing on the key module of intra-/inter- prediction, DCT transform and quantization, and entropy coding. It establishes a solid theoretical foundation for hardware design and realization.
     Texas Instruments’s TMS320DM642 DSP is specially designed for multimedia signal processing. DM642 with high CPU frequency has rich resources on the chip. The main research of the thesis is to design and realize a real-time dual-core video compression platform based on DM642 processor. On this board DSP and FPGA cooperate to capture video sequence, compress it using H.264 algorithm, and then transmit the code stream. In the receiver, DSP decompresses and displays the video sequence on the monitor. In the meantime,the circuitry contains Ethernet, VGA and PC104 interface, it can work on target tracking, pattern recognition and classification, so the system has a feature of versatility and extensibility. On the basis of the normal operation of the system, the thesis also does an optimization on system-level, function-level and sentence-level respectively. Finally the system can compress CIF image at the rate of 20 frames per second that meets the requirement of real-time video compression. The system can achieve PSNR of 33.72dB and good restoration images, at the compression rate of more than 20.
     Fast intra- and inter- frame prediction algorithm for image compression system is one of the key techniques of H.264. The thesis has conducted an in-depth analysis on existed algorithm theory for intra- and inter- frame prediction. To meet the needs of the fast prediction, the thesis does plenty of research based on the search algorithm. Proved by the simulation on PC programs, the modified algorithm improves much in the image compression efficiency and quality of the restoration results.
引文
1 O. Egger, P. Fleury, T. Ebrahimi and M. Kunt. High Performance Compression of Visual Information—A Tutorial Review—Part I: Still Pictures. Proc. IEEE. 1999, 87(6):976~1011
    2 N. Jayant, J. Johnston and R. Safranek. Signal Compression Based on Models of Human Perception. Proc. IEEE. 1993, 81(10):1385~1421
    3 K. N. Ngan, H. C. Koh and W. C. Wong. Hybrid Image Coding Scheme Incorporating Human Visual System Characteristics. Optical Engineering. 1991, 30(7):940~946
    4刘永昌.战术导弹精确制导技术发展分析.弹箭技术. 1995,8(12):1~14
    5周晓群.精确制导武器技术与发展趋势.舰船电子对抗. 2001, (5): 12~17
    6付伟.激光、图象复合制导技术概述.光电对抗与无源干扰. 1998, (2):11~16
    7 ISO/IEC JTC1/SC2/WG8. Digital Compression and Coding of Continuous-Tone Still Pictures (IS 10918-1). 1991:13~22
    8 ISO/IEC JTC1/SC29/WG1. Information Technology-JPEG2000 Image Coding System: Core Coding System (IS 15444-1). ISO/IEC JTC1/SC29/WG1/N1646. Mar. 2000:2~15
    9 ISO/IEC JTC1/SC29/WG11. Coding of Moving Picture and Associated Audio for Digital Stirage Media at up to about 1.5Mbit/s--Part2: Video (IS 11172-2). 1992:18~28
    10 ITU-T and ISO/IEC JTC1/SC29/WG11. ITU-T Rec. H.222|Generic Coding of Moving Picture and Associated Audio Information--Part2: Video (IS 13818-2). Nov. 1994:2~10
    11 ISO/IEC JTC1/SC29/WG11. Generic Coding of Audio-Visual Objects--Part2: Visual (IS 14496-2), ISO/IEC JTC1/SC29/WG11/N2502. Atlantic City, USA. Oct. 1998:12~22
    12 J. M. Martinez. MPEG-7 overview. ISO/IEC JTC1/SC29/WG11/N6828. Palma de Mallorca. Oct. 2004:1~12
    13 J. Bormans, K. Hill. MPEG-21 overview. ISO/IEC JTC1/SC29/WG11/N5231. Shanghai, China. Oct. 2001:1~25
    14 ITU-T. ITU-T Recommendation H.261: Video Codec for Audiovisual Services at p×64kbit/s. 1993:1~2
    15 ITU-T. ITU-T Recommendation H.263: Video Coding for Low Bit Rate Communication. 1996:1~2
    16 ITU-T. ITU-T Recommendation H.263 Version 2: Video Coding for Low Bit Rate Communication. 1998:4~24
    17 ITU-T. Draft for“H.263++”annexes U, V, and W to Recommendation H.263. 2000:12~16
    18 VCEG. H.26L Test Model Long Term Number 9 (TML-9) Draft0. Document VCEG-N83 d1. Dec. 2001:33~42
    19 JVT. ITU-T Rec. H.264|ISO/IEC 14496-10 Advanced Video Coding. Final Committee Draft, Document JVT-G050. Mar. 2003:15~18
    20 JVT. of ISO/IEC MPEG & ITU-T VCEG(ISO/IEC JTC1/SC29/WG11 and ITU-T SG16 Q-6), Version 3 of H.264/AVC, 12 Meeting: Redmond. WA, USA. July, 2004:16~32
    21 Thomas Wiegand. Overview of the H.264 video coding standard. IEEE Transactions on Circuit and System for Video Technology, 2003, 13(7):560~576
    22 Yu Hong-Bin. A Novel Error Recovery Scheme for H.264 Video and Its Application in Conversational Services. IEEE Transaction on Consumer Electronics, Feb 2004, 50(1):329~334
    23 Xu Yanling. H.264 Video Communication Based Refined Error. IEEE Transaction on Consumer Electronics, Feb 2004,50(4):1135~1142
    24 Stephan Wenger. H.264/AVC Over IP. IEEE Transactions on Circuit and System for Video Technology, July 2003,13(7):645~657
    25 Wei Jiang. A Perceptual Based Dead-Zone Adjustment Algotithm. Proceedings of 2004 International Symposium on Intelligent Multimedia, Video and Speech Processing. Hong Kong Oct 2004:498~501
    26 B.Barmada. Prioritized Transmission of Data Partitioned H.264 Video With Hierarchical QAM. IEEE Signal Processing Letters. Aug 2005,12(8): 577~581
    27 Iain E.G.Richardson. H.264 and MPEG-4 Video Compression. 2003:159~162.
    28 F. Pan. Fast Intra Mode Decision Algorithm for H.264/AVC Video Coding.International Conference Signal Processing, Beijing, 2004:1191~1194.
    29 Chun-ling Yang. A Fast H.264 Intra Prediction Algorithm Using Macroblock Properties. International Conference on Imae Processing, Singapore, 2004:461~464
    30 Zhi-Yi Mai. Improved Best Prediction Mode(s) Selection Methods Based on Structural Similarity In H.264 I-Frame Encoder. Systems, Man and Cybernetics, 2005 IEEE International Conference. 3(3):2673~2678
    31 Thomas Wiegand. Affine Multi-Picture Motion-Compensated Prediction. IEEE Transactions on Circuit and System for Video Technology, Feb 2005,15(2):197~209
    32 Dongming Zhang. Complexity Scalable Motion Estimation Based On Modes Pre-Selection in H.264. ICSP’04 Proceedings, Beijing,2004: 1516~1522
    33 Jianfeng Xu. Efficient Fast ME Predictions and Early-termination Strategy Based on H.264 Statistical Characters. ICICS-PCM 2003, Singapore, Dec 2003:218~222
    34 Jinghong Zheng. Efficient Motion Vector Recovery Algorithm for H.264 Based on a Polynomial Model. IEEE Transactions on Multimedia, June 2005, 7(3):507~513
    35 Thomas Wiegand. Motion- and aliasing-compensated prediction for hybrid video coding. IEEE Transactions on Circuit and System for Video Technology, July 2003,13(7):577~587
    36 Muhammad Owais Khan. Optimization of Motion Compensation for H.264 Decoder by Pre-Calculation. IEEE INMIC. 2004:55~60
    37 Texas Instruments. TMS320DM642 datasheet, Literature Number: SPRS200F. July 2002–Revised June 2004:20~28
    38 Texas Instruments. TMS320C6000 CPU and Instruction Set Reference Guide. Literature Number: SPRS189F. Oct 2000:1~11
    39 Texas Instruments. TMS320C64x-C64x+ DSP CPU and Instruction Set Reference Guide. Literature Number: SPRU732C. August 2006:2~7
    40 Texas Instruments. TMS320C6000 DSP Cache User's Guide. Literature Number: SPRU656A. May 2003:2~8
    41 Texas Instruments. TMS320C6000 EMIF to External SDRAM Interface. Literature Number: SPRA433D. March 2004:38~59
    42 Texas Instruments. TMS320C6000 EMIF to External Asynchronous SRAM Interface. Literature Number: SPRA542A. August 2001:1~26
    43 Texas Instruments. TMS320C6000 EMIF to External Flash Memory. Literature Number: SPRA568A. February 2002:9~24
    44 Texas Instruments. TMS320C6000 EMIF-Overview of Support of High Performance Memory Technology. Literature Number: SPRA631. Apr 2000:94~134
    45 Texas Instruments. TMS320C64x EDMA Architecture. SPRA994. March 2004:3~9
    46 Texas Instruments. TMS320C6000 DSP EDMA controller. Literature Number: SPRU234B. March 2005:2~41
    47 Texas Instruments. TMS320C6000 DSP Interrupt Selector Reference Guide. Literature Number: SPRU646A. January 2004:5~17
    48 Texas Instruments. TMS320C6000 Optimizing Compiler User's Guide. Literature Number: SPRS187K. Oct 2000:2~12
    49 Texas Instruments. TMS320C6000 Programmer’s Guide. Literature Number: SPRS198D. Mar 2000:12~28
    50 J.Jain, A.Jain. Displacement measurement and its application in interframe image coding. IEEE Trans. Commun., Dec 1981, 29(12):1799~1808
    51 R.Li, B.Zeng and M.L.Liou. A new three-step search algorithm for block motion estimation. IEEE Trans. on Circuits and Systems for Video Technology, Aug 1994, 4(4):438~443
    52 M.Chanbari. The cross-search algorithm for motion estimation. IEEE Trans. Commun., July 1990, 38(7):950~953
    53 O.T.-C Chen. Motion estimation using a one-dimentional gradient descent search. IEEE Trans. on Circuits and Systems for Video Technology, June 2000,10(4):608~616
    54 Lurng-Kuo Liu, E.Feig. A block-based gradient descent search algorithm for block motion estimation in video coding. IEEE Trans. on Circuits and Systems for Video Technology, Aug 1996, 6(4):419~422
    55 Lai-Man Po, Wing-Chung Ma. A novel four-step search algorithm for fast block motion estimation. IEEE Trans. on Circuits and Systems for Video Technology, June 1996, 6(2):313~317
    56 Shan Zhu, Kai-Kuang Ma. A new diamond search algorithm for fast block matching motion estimation. IEEE Trans. Image Processing, Feb 2000, 9(2):287~290
    57 Chun-Ho Cheung, Lai-Man Po. A new cross-diamond search algorithm for fast block motion estimation. IEEE Trans. on Circuits and Systems for Video Technology, Dec 2002, 12(12):1168~1177
    58 Ce Zhu, Xiao Lin and Lap-Pui Chau. Hexagon-based search pattern for fast block motion estimation. IEEE Trans. on Circuits and Systems for Video Technology, May 2002, 12(5):349~355
    59 Lijun Luo, Cairong Zou, Xiqi Gao and Zhenya He. A new prediction search algorithm for block motion estimation in video coding. IEEE Trans. Consumer Electron., Feb 1997, 43(1):56~61
    60 Yun-Teng Roan, Pei-Yin Chen. A fuzzy search algorithm for the estimation of motion vectors. IEEE Trans. Broadcast., June 2000, 46(2):121~127
    61 Jae Hun Lee, Jong Beom Ra. Block motion estimation based on selective integral projections. International Conference on Image Processing ICIP’2002, NewYork, Sept. 2002:689~692
    62 C-M.Kuo, C-P.Chao and C-H Hsieh. A new motion estimation algorithm for video coding using adaptive kalman filter. Real-Time Imaging, Oct 2002:387~398
    63 J.Chalidabhongse, C.-C.J.Kuo. Fast motion vector estimation using multiresolution-spatio-temporal correlations. IEEE Trans. on Circuits and Systems for Video Technology, June 1997, 7(3):477~488
    64 Huan-Sheng Wang, R.M Mersereau. Fast algorithm for the estimation of motion vectors. IEEE Trans. Image Processing, Mar 1999, 8(3):435~438
    65 K.Lengwehasatit, A.Ortega. Probabilistic partial-distance fast matching algorithm for motion estimation. IEEE Trans. on Circuits and Systems for Video Technology, Feb 2001, 11(2):139~152
    66 ZB. Chen, P. Zhou. and Y. He. Fast Motion Estimation for JVT. JVT-G016, Joint Video Team (JVT) of ISO/IEC MPEG & ITU-T, 7th Meeting: PattayaII, Thailand, Mar. 2003:7~14
    67 H. C. Tourapis, A. M. Tourapis. Fast Motion Estimation within the H.264 Codec. ICME 2003.Baltimore, 2003:517~520

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700