基于煤矸石充填复垦土地的复垦效应研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
煤矸石是我国最主要的工业固体废弃物,约占全国工业固体废弃物的20%以上。我国在煤炭开采过程中,产生了大量煤矸石。据不完全统计,全国历年煤矸石累计堆存量约30亿t,年平均排放煤矸石1.5亿t,煤矸石堆放占地近6000hm2。同时,伴随着煤炭资源的开发,全国煤矿地下开采形成的塌陷区已达40万hm2,每年形成塌陷土地区1.5-2万hm2,其中耕地占30%。利用煤矸石对塌陷区进行充填复垦,既能处理煤矸石固体废物,减少煤矸石堆存占地,又能恢复开采沉陷地的利用价值,这是矿区实现综合治理、恢复矿区生态环境的一条有效途径。
     本文以淮南新庄孜和大通复垦区为研究对象,对复垦土壤生产力、土壤养分、土壤环境质量以及农作物健康安全等方面进行分析评价,综合研究煤矸石复垦土地的复垦效应。结果表明:
     (1)从覆土40cm到75cm,随着覆土厚度的增加,土壤养分呈增长趋势,当覆土厚度超过75cm以后,养分接近对照土壤的水平,覆土75cm与90cm土壤相比,养分变化出现随机性,养分随覆土厚度无明显增长。覆土75cm、90cm地块的生产力较好,但稍低于对照地块;覆土40cm、60cm地块的生产力都比较差,其有机质、N、P、K等养分普遍偏低,土壤总体肥力太差。
     (2)采用内梅罗污染指数法对复垦土壤进行环境质量评价,结果表明:在全部30土壤个样品中,28个样品都处于Ⅰ类水平,土壤质量清洁;有1个样品处于Ⅱ类水平,土壤质量尚清洁;还有1个样品处于Ⅲ类水平,土壤受到轻度污染;复垦土壤中Cu、Cd存在超标样品,超标率都为3.33%。参考淮南土壤背景值,对复垦土壤的累积污染指数进行分析,结果显示:复垦土壤中Cu、Ni有显著的累积效应,而Pb、Zn、Cr的累积效应不明显。
     (3)采用内梅罗污染指数法对复垦区小麦样品进行环境质量评价,结果表明:有1个小麦样品受到轻度污染,其他样品质量都处于清洁或尚清洁的状态,小麦样品受到Pb的轻度污染;对复垦区小麦样品进行人体污染元素暴露健康风险评价,结果表明:复垦土壤中Cu、Cd、Pb、Zn暴露的风险指数都小于1,处于安全水平,而Cr暴露的风险指数为1.21,样品存在健康风险
     图[18];表[18];参[80]
Gangue is the largest industrial solid waste, accounting for 20% industrial solid waste in our country. A large number of coal gangue is generated in the coal mining process. According to incomplete statistics, the impact of keeping a total gangue is about 3 billion tons over the years, the average annual emissions of the gangue is 150 million tons, and the area of heaping coal refuse s is near 6000hm2. At the same time, with the development of coal resources, the area of underground subsidence formed by coal mining has reached 400,000 hm2 in the country, the land area collapsed to is form 15,000 to 20,000 hm2 each year which accounted for 30 percent of arable land. The subsidence areas reclamation filling by coal gangue, it can handle solid waste and reduce coal waste storage area as well as restore exploitation of mining subsidence land, which is to achieve comprehensive management of the mining area and restore the ecological environment of a mining area.
     In this dissertation, reclamation lands of Xin Zhuangzi and Datong in Huainan are the study areas. Study on the reclamation effect of coal gangue reclamation land by analyzing and assessing the soil productivity, soil nutrient, soil environmental quality and food security of reclamation land. The results showed that:
     (1) The soil nutrient show a rising trend with the increase of the covering thickness from 40cm to 75cm, when higher than 75cm, the soil nutrient is close to the contrast soil. Comparing the 75cm with 90cm, the change of soil nutrient content appears randomly, with no significant increase.The productivity of 75cm,90cm plot is better,but slightly lower than the control plot, which is due to lack of nutrients such as organic matter and P, as well as original soil structure was destroyed in the the reclamation process of filling in the subsidence area, and reclaimed soil requires a maturation process.The productivity of the 40cm,60cm plot is less than the control plot. That is because its nutrients such as N, P, K and organic matte is generally low, and soil fertility is general poor.
     (2) Using nemerow pollution index method for reclamation soil environmental quality assessment, Results show that:In all 30 soil samples,28 samples are inⅠclass level, and the soil quality is clean; and The soil was slightly polluted; 1 sample is inⅡclass level, and the soil quality is slightly clean,1 sample is in III class level; the content of Cu and Cd in some samples is out-of-specification, all ratios are 3.33%. Reference soil background values of Huainan, the cumulative pollution index of soil reclamation were analyzed, shows that:the cumulative effect of Cu and Ni are significant, and cumulative effect of Pb, Zn, Cr are not obvious.
     (3) Using nemerow pollution index method for wheat sample environmental quality assessment, show that; 1 wheat sample is slightly polluted, other sample quality is clean or is slightly clean, slightly polluted by Pb; making exposure risk assessment for human body health elements polluted of soil reclamation, show that:all of the risk index of Cu、Cd、Pb、Zn are less than 1, in the safety level, but the risk index of Cr is 1.21, sample have health risk.
     Figure[18]; table[18]; reference[80]
引文
[1]胡振琪.土地复垦与生态重建[M].徐州:中国矿业大学出版社,2008
    [2]Doran JW,Parkin TB.Defining and assessing soil quality,In:Doran JW eds.Defining Soil Quality for A Sustainable Environment.SSSA Spec. Publ.35.SSSA and ASA,Madison, 1994.3-21
    [3]Doran J. W.,T. B. Parkin. in:Defining Soil Quality for a Sustainable Environment.3~21. Soil Science Society of America, Inc., Madison, Wisconsin USA,1994
    [4]Smith J. L., et al. in:Defining Soil Quality for a Sustainable Environment.149~157. Soil Science Society of America, Inc., Madison,Wisconsin USA,1994
    [5]Larson W. E.,F. J. Pierce, in:Defining Soil Quality for a Sustainable Environment.37~52. Soil Science Society of America, Inc., Madison, Wisconsin USA,1994
    [6]Muller G. Index of geoaccumulation in sediments of the Rhine River[J]. Geojournal,1967,2: 108-118
    [7]Islam KR,Weil RR. Soil quality indicator properties in mid-Atlantic soil as influenced by conservation management.Journal of Soil Water Conservation,2000,50:226-228
    [8]于君宝,刘景双,王金达,等.矿山复垦土壤典型元素时空变化研究[J].中国环境科学,2001,21(3):235-239
    [9]于君宝,王金达,刘景双,等.矿山复垦土壤营养元素时空变化研究[J].土壤学报,2002,,39(5):750-753
    [10]卞正富,张国良.矿山土复垦利用试验[J].中国环境科学,1999,19(1):81-84
    [11]陈龙乾.土地复垦评估探讨[J].矿山测量1996,(1):38-41
    [12]王辉,韩宝平,卞正富.充填复垦土壤水分竖直运动模拟研究[J].中国矿业大学学报.2007,36(5):690-696
    [13]牟守国,董霁红,王辉等.采煤塌陷地充填复垦土壤呼吸的研究[J].中国矿业大学学报.2007,36(5):663-668
    [14]谢英荷,洪坚平,王镔等.煤矸石复垦中的氮素积累途径[J]应用与环境生物学报,2002,8(2):215-218
    [15]董霁红,卞正富,王贺封.矿山充填复垦场地重金属含量对比研究[J].中国矿业大学学
    报.2007,36(4):531-536
    [16]李新举,胡振琪,李晶等.采煤塌陷地复垦土壤质量研究进展[J].农业工程学报.2007,23(6):276-280
    [17]李清芳,马成仓,周秀杰等.煤矿塌陷区不同复垦方法及年限的土壤修复效果研究[J].淮北煤炭师范学院学报.2005,26(1):49-51
    [18]许丽,周心澄,王冬梅.煤矸石废弃地复垦研究进展[J].中国水土保持科学.2005,3(3):117-122
    [19]李富平,杨福海,王树国.复垦土壤重金属污染综合评价方法探讨[J].冶金矿山设计与建设,]997,29(3):57-60
    [20]陕永杰,白中科.黄土区大型露天矿区土壤质量评价指标研究[J].能源环境保护,2008,22(2):42-49
    [21]党志,刘丛强,尚爱安.矿区土壤中重金属活动性评估方法的研究进展[J].地球科学进展,2001,16(1):86-92
    [22]胡振琪,戚家忠,司继涛.不同复垦时间的粉煤灰充填复垦十壤重金属污染与评价[J].农业工程学报,2003.19(2):214-218
    [23]顾和和,胡振琪,秦延春,等.泥浆泵复垦土壤生产力的评价及其土壤重构[J].资源科学,2000,22(5):37-40
    [24]卞正富,张国良.矿山复垦土壤生产力指数的修正模型[J].土壤学报,2000,37(1):124-130
    [25]陈龙乾,邓喀中,徐黎华,等.矿区复垦土壤质量评价方法[J].中国矿业大学学报,1999,28(5):449-452
    [26]胡振琪,赵艳玲,姜晶,等.土地整理复垦项目验收方案研究[J].农业工程学报,2005,21(6):59-63
    [27]秦俊梅,白中科,李俊杰,等.矿区复垦土壤环境质量剖面变化特征研究——以平朔露天矿区为例[J].山西农业大学学报,2006,26(1):101-105
    [28]陈杰,王丽华,杨荣斌.基于Maplnfo的土壤质量评价系统的研究[J].煤炭技术,2008,27(8):132-134
    [29]侯文广,江聪世,熊庆文等.基于GIS的土壤质量评价研究[J].武汉大学学报:信息科学版,2003,28(1):60-64
    [30]胡月明,万洪富,吴志峰等.基于GIS的土壤质量模糊变权评价[J].土壤学报,2001,38(3):266-274
    [31]徐云霞,陈文德,彭培好.GIS技术支持下的土壤质量评价[J].四川林堪设计,2008,(3):23-25
    [32]胡月明,昊谷丰,江华等.基于GIS与灰关联综合评价模型的土壤质量评价[J].农林科技大学学报:自然科学版,2001,29(4):39-42
    [33]张学雷,张甘霖,龚子同.SOTER数据库支持下的土壤质量综合评价:以海南岛为例.山地 学报,2001,19(4):377-380
    [34]李松.淮南矿区煤矸石中若干微量元素的赋存状态及其静态淋溶试验研究[D].淮南:安徽理工大学,2003
    [35]白剑峰,崔龙鹏等.煤矸石释放重金属环境效应研究—淮南煤矿塌陷区水体实验实例调查[J].煤田地质与勘探,2004,4(32):7-9
    [36]冯启言等.充州煤田矸石中的微量有害元素及其土壤环境的影响[J].中国矿业,2002,11(1):67-69
    [37]党志.煤矸石一水相互作用的溶解动力学及其环境地球化学效应研究[J].矿物岩石地球化学通报,1997,16(4):259-261
    [38]郭高川,李惠.煤矿开采沉陷对环境的影响[J].山西煤炭,2007,2(27):55-57
    [39]胡振琪.煤矿山复垦土壤剖面重构的基本原理与方法[J].煤炭学报,1997,22(6):617-622.
    [40]崔龙鹏,淮南煤矿塌陷区煤研石填充复垦及其对环境的影响[J].安徽地质,1998,8(3):56-61.
    [41]刘桂建,杨萍明,彭子成,等煤矸石中潜在微量元素淋溶析出研究[J].高校地质学报,2001,7(4):449-457.
    [42]李富才.煤研石对环境的影响和综合防治措施[J].重庆环境科学,1988,10(4):172.
    [43]冯军会.煤矸石有害元素赋存状态、迁移规律及复垦环境效应[D].合肥:合肥工业大学,2003.
    [44]向建峰.淮南煤矸石中若干有害重金属元素含量及其迁移性研究[D].淮南:安徽理工大学,2004.
    [45]Zhu J.G, Han Y.,Liu G.,Zhang Y.L.and Shao X.H.,2000,Nitrogen in percolation water in paddy field with a rice/wheat rotation,Nutrient Cycling in Agroecosystem,57:75-82.
    [46]冯固,杨茂秋,白灯莎,黄金生.用32P示踪法研究石灰性土壤中磷素的形态及有效性变化[J].土壤学报.1996,33(3);301-307.
    [47]王庆仁,李继云.论合理施肥与土壤环境的可持续发展[J].环境科学进展.1999,7(2):116-123.
    [48]郭友红,李树志,鲁叶江.塌陷区矸石充填复垦耕地覆土厚度的研究[J].矿山测量,2008,6(2):59-61.
    [49]刘青柏,刘明国,冯景刚.MPI模型在矸石山复垦土壤生产力评价中的应用[J].水土保持研究,2006,13(3):24-25
    [50]卞正富.矿区土地复垦界面要素的演替规律及其调控研究[J].中国土地科学,1999,13(2):6-11
    [51]GB15618-1995.土壤环境质量标准[S]
    [52]安徽省环境监测中心站.安徽省土壤环境背景值调杏研究报告.1992.4.
    [53]GB 2762-2005.食品中污染物限量标准[S]
    [54]马瑾,周永章,窦磊等.广东汕头市农业土壤和蔬菜铅含量及健康风险评估安全与环境学报,2007,]2(6):77-79.
    [55]食品法典委员会.第二十四届会议文件号01/41[R].日内瓦,2001-07-02-07
    [56]WHO. Trace element in human nutrition and health [R].1996,137
    [57]中国营养学会编著.中国居民膳食营养素参考摄入量[M].北京:中国轻工业出版社,2000.
    [58]余涛,杨忠芳.重金属摄入总量与健康风险评估[J].矿物岩石地球化学通报,2007,(26):486-487.
    [59]WHO. Evaluation of certain food additives and contaminants. Sixteenth Report of the JECFA[R]. WHO Technical Report Series,1972
    [60]Yang Huifen, Luo Xueyun, Shen Wen, et al. National food contamination monitoring programmes21evels of mercury,lead and cadmium in Chinese foods [J]. Biomedical and Environmental Sciences,7(4):362-368
    [61]马振祥,姜声扬,张卫兵.实验室镉中毒致小鼠血液学指标改变及硫酸锌的保护作用[J].中国职业医学,2004,31(5):36-38
    [62]魏红兵,李权斌,王向东.磷肥中镉的危害及其控制现状[J].口岸卫生控制,2005,9(6):23-35
    [63]IARC. Monograph on the evaluation of carcinogenicity:An update of IAR C m o nog raphs[J].Geneva,1987,7:1-42
    [64]Glazovskaya M.a.,1994,Criteria for chromium in soil and waters,Geoderma,67:55-71
    [65]苗健,高琦,许思来.微量元素与相关疾病.郑州:河南医科大学出版社,1997
    [66]陈怀满.十壤中化学物质的行为与环境质量.北京:科学出版社,2002
    [67]Sorenson L.H.,The influence of clay on the rate of decay of amino acid metabolites syn thesized insoils during decomposition of cellulose,Soil Biol.Biochem.1975,7:171-177.
    [68]Sorenson L.H.,Carbon-nitrogin relationships during the humification of cellulose in soils containing different amount of clay, Soil Biol.Biochem.1981,13:313-321.
    [69]Anderson D.W.and Paul E.A.,Organo-mineral complex and their study by radiocarbon dating,Soil Sci.Soc.Am.J.1984,48:298-301.
    [70]Pink L.A.,Dyal R.S.and Allision F.E.,Protein-montmorillonite complexes,their preparation and the effects of soil microorganisms on their decompositions.Soil Sci.1954,78:109-118.
    [71]Kabala C.and Singh B.R.,Fractionation and mobility of copper,Lead,and zinc in soil profiles in the vicinity of a copper smelter,J.Environ.Qual.,2001,30:485-492.
    [72]Baath E.,1989,Effection of heavy metals in soil on microbial processes and populations(A view),Water,Air and Soil Pollution,47:335-379.
    [73]Chang F.H.and Broadbent F.E.,1982,Influence of trace metals on some soil nitrogen transformations,J.Environ.Qual.,11:1-4.
    [74]于天仁,可变电荷土壤的电化学[M].北京:科学出版社,1996.
    [75]Bolland M.D.A.,1997,Zinc adsorption by goethite in the absence and presence of phosphate,Austr.Soil Res,15:279-286.
    [76]何振立,袁可能,朱祖祥.评价土壤磷素植物有效性的物理化学指标[J].土壤学报,1991,28(3):302-308.
    [77]Horord I.C.R.,1979,Evalution of soil phosphate buffering indices,Austr.J.Soil Res.,17:495-504.
    [78]Horord I.C.R.and Mattingly G.E.G.,1976,Phosphate adsorption and plant availability of phosphate,Plant and Soil,44:377-389.
    [79]谢建昌.土壤钾素和钾肥的有效施用,土壤—植物营养学原理和施肥.北京:化学工业出版.1998.
    [80]陈怀满等编著.土壤—植物系统中的重金属污染[M].北京:科学山版社,1996,1-35.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700