人CD96分子表达和功能的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
1992年,Wang及其同事发现并且克隆了一种新的细胞膜型分子,当时将其命名为Tactile(T cell activation increased late expression)。随后,在人类白细胞分化抗原协作组会议上将该分子命名为CD96。CD96分子表达于正常T细胞、T细胞克隆以及某些转化的T细胞系。外周血T细胞表达低水平的CD96分子,活化后其表达明显上调,并在刺激后第6~9天表达达到高峰值。在同种异体抗原刺激的条件下,NK细胞上CD96的表达也发生上调。CD96属于免疫球蛋白超家族,胞膜外区包含3个免疫球蛋白样结构域,共有15个N-连接糖基化位点,还有1个高度O-连接糖基化富含丝/苏/脯氨酸残基的茎状结构域,跨膜区有24个氨基酸残基,胞质区含44个氨基酸残基,并有一个富含碱性/脯氨酸的区域。自克隆CD96分子后的十多年间,由于不清楚其配体,该分子的研究无明显进展。直到2004年,Fuchs及其同事发现NK细胞可通过CD96识别PVR(CD155),促进NK细胞对表达CD155靶细胞的黏附,介导NK细胞对靶细胞表面上CD155的内化作用。由于PVR(CD155)高表达于某些肿瘤细胞,这一受体系统可能在NK细胞对肿瘤的识别和杀伤中起重要作用。然而,迄今为止对CD96表达和功能的认识还十分有限。
     在本课题中,我们通过对CD96分子的生物信息学分析,发现CD96的同源分子有CD166、CD113、CD226和CD86,预测CD96分子的配体结合位点为Y177、T186、T245、T246和V249,可结合配体上GLU-LYS-VAL保守序列。也发现CD96分子的胞质区有1个高度保守的ITIM模体,跨膜区有1个能结合跨膜型接头分子带正电的精氨酸残基。这些结果为进一步探讨CD96分子的功能及其信号转导途径提供了重要的启示。
     采用PHA刺激上调人T淋巴细胞系HSB-2细胞CD96分子的表达,用RT-PCR成功从该细胞中克隆出CD96分子胞膜外区第一免疫球蛋白V样结构域的cDNA基因,并将该cDNA插入pCDM18-T载体中,经过测序证实该序列正确。从pCD96-D1-T载体中通过双酶切得到CD96-D1 cDNA片段,将该cDNA插入到载体pCDM7中构建出pCDM7-CD96-D1真核表达载体。用脂质体将该载体的质粒转染CHO细胞,表达出CD96-D1-Fc融合蛋白。用抗-Fc mAb亲和层析柱对CD96-D1-Fc融合蛋白进行纯化。以纯化后的CD96-D1-Fc融合蛋白为免疫原制备了17株抗人CD96-D1 mAbs。用ELISA、FCM、Western Blot等方法对这些抗体进行了鉴定。按常规方法制备腹水,用饱和硫酸铵和阴离子交换层析法对抗CD96-D1 mAbs进行纯化。用过碘酸钠氧化法制备辣根过氧化物酶(HRP)标记的抗CD96-D1 mAbs,以建立测定可溶型CD96的夹心ELISA试剂盒。从抗CD96-D1 mAbs和HRP标记的CD96-D1 mAbs中筛选出最佳抗体配对,即包被抗体采用抗CD6-D1-No.5 mAb,检测抗体采用HPR标记的抗CD96-D1-No.13 mAb。对包被抗体和HPR酶标检测抗体的工作浓度进行优化,建立了测定可溶型CD96的夹心ELISA试剂盒。该试剂盒的灵敏度、精密度、准确度和稳定性均令人满意,为可溶型CD96的研究奠定了重要基础。我们对CD96在多种造血、非造血细胞系以及正常人PBmAb,检测抗体采用HPR标记的抗CD96-D1-No.13 mAb。对包被抗体和HPR酶标检测抗体的工作浓度进行优化,建立了测定可溶型CD96的夹心ELISA试剂盒。该试剂盒的灵敏度、精密度、准确度和稳定性均令人满意,为可溶型CD96的研究奠定了重要基础。
     我们对CD96在多种造血、非造血细胞系以及正常人PBMC中的表达情况进行了系统研究,发现CD96在造血和非造血细胞系中表达十分广泛。
     CD96也表达于正常人CD4+T细胞、CD8+T细胞、单核细胞和NK细胞。在PHA刺激后,CD4+T细胞、CD8+T细胞和NK细胞上CD96表达明显上调,证实CD96是一种活化表达增加的分子。但PHA对单核细胞CD96的表达上调作用不十分明显,提示不同细胞上CD96分子的表达调节具有不同特点。
     对CD96分子对细胞因子分泌的影响也进行了研究,发现用CD96-DI mAb交联正常人PBMC细胞上CD96受体,能促进PBMC细胞TNF和IL-10的分泌。单独CD96-D1 mAb的刺激并不能始动IL-2的分泌,但CD96-D1 mAb能促进同种异体抗原诱导的IL-2分泌。另外,CD96-D1 mAb交联CD96对IFN-γ和IL-4的分泌未发生明显影响。这些结果提示CD96分子在免疫调控、炎症反应、T细胞增殖和分化中可能发挥着重要作用。对CD96介导杀伤作用也进行了研究。在CD96-D1 mAb介导的重导向杀伤实验系统中,观察到CD96-D1 mAb能介导MLC中反应细胞对P815细胞的重导向杀伤。也发现CD96-D1 mAb能抑制MLC中反应细胞对K562细胞的杀伤,证实CD96为NK细胞的活化性受体,说明CD96胞膜外N-端第一免疫球蛋白V样结构域为参与CD96/CD155结合的主要结构域。
     CD96分子具有十分重要的生理功能,尤其是该分子参与NK细胞对肿瘤细胞的杀伤和黏附。本文研究了CD96结构、表达和功能,对弄清其信号转导通路和生理功能具有重要意义。
In 1992, Wang and his colleagues identified and cloned cDNA of a novel cell-surface protein named T cell activation increased late expression (Tactile). Subsequently, this molecule was designated as CD96 at Human Leukocyte Differentiation Antigen (HLDA) workshop. CD96 is expressed on normal T cell lines and clones, and some transformed T cells. It is expressed at low levels on peripheral T cells and is strongly up-regulated after activation, peaking 6 to 9 days after stimulation. It is also up-regulated on NK cells activated in mixed lymphocyte culture. CD96 is a member of the immunoglobulin superfamily (IgSF) with three Ig domains highly N-glycosylated and a long serine/ threonine/proline-rich motif in extracellular region, a 24 residue transmembrane region, and a 44 residue cytoplasmic region. The CD96 molecule had not been paid much attention for over a decade due to the lacking knowledge of its ligand. Until 2004, Fuchs and his colleagues showed that CD96 on NK cells recognize poliovirus receptor (PVR/CD155) which promotes NK cell adhesion to target cells expressing PVR (CD155), stimulates cytotoxicity of activated NK cells, and mediates acquisition of PVR from target cells. As PVR is highly expressed in certain tumors, this receptor system may be critical for NK cell recognition of tumors. However, the knowledge about CD96 expressions and functions is still limited at the moment.
     In present research, we analyzed the sequences of CD96 molecule through bioinformatics methods. The results show that its homologous molecules include CD166, CD113, CD226, and CD86. The predicted binding sites for its ligand are Y177, T186, T245, T246, and V249, which could interact with consensus GLU-LYS-VAL region on its ligand of CD155. Moreover, we identified the putative ITIM motif on its cytoplasmic tail and a positive charged arginine residue on its transmembrane region, which may associate with transmembrane signal adaptors. These results can enlighten our further exploration for CD96 functions and its signal pathways.
     We employed PHA to stimulate CD96 expressions on HSB2 which is a human T cell line. The first extracellular Ig V-like domain (CD96-D1) cDNA was cloned successfully through RT-PCR from PHA stimulated HSB-2 cells and inserted into pCDM18-T vector. The sequence of CD96-D1 cDNA was ascertained by DNA sequencing. The confirmed cDNA of CD96-D1 was digested from pCD96-D1-T vectors by two restriction endonucleases and inserted into pCDM7 vectors to construct the eukaryotic expression vector pCDM7-CD96-D1. This vector was transfected into CHO cells through lipofection method, and fusion protein of CD96-D1-Fc was expressed and purified by an anti-Fc mAb conjugated affinity column. The fusion protein of CD96-D1-Fc was employed as immunogen to prepare mAbs specific for CD96-D1. 17 clones of hybridomas secreting monoclonal antibodies against CD96-D1 were prepared and the mAbs were characterized by ELISA, FCM, and Western Blot. Ascitic fluids were prepared according to our lab’s routine protocol and primarily purified by ammonium sulfate precipitation and further by anion exchange chromatography. The purified mAbs were labeled with HRP by periodinate sodium. Optimal paired mAbs were selected, i.e., CD96-D1-No.5 mAb was employed as coated mAb, and CD96-D1-No.13 mAb as detecting mAb after HRP labeling. Following optimization of the working concentrations of coated and detecting mAbs, we successfully established ELISA kit for detecting soluble CD96. The sensitivity, precision, and accuracy of the kit were determined and satisfied. The kit’s establishment makes a solid foundation for soluble CD96 research.
     The expression of CD96 was extensively investigated using fluorescent staining and flow cytometry analysis. The results show that CD96 molecule is expressed broadly in both haematopoietic and non-haematopoietic tissues. The expressions of CD96 on CD4+T cell, CD8+T cell and NK cell were up-regulated after PHA stimulation, confirming that CD96 is an activation increased molecule. Furthermore, we investigated the effects of CD96 on cytokine secretions in PBMC or mixed lymphocyte culture, we found that TNF and IL-10 secretions by PBMC from health doners were increased after CD96 receptors were cross-linked by CD96-D1 mAb, but not IL-2, IFN-γ, and IL-4 secretions. These results suggest that CD96 receptors on PBMC might play important roles in immune regulations, inflammatory responses, T cell expansions and differentiations, to which much attention should be paid. Finally, we determined the effects of CD96 on cytotoxicity. In the experiment of antibody-dependent redirected cytotoxicity, we found that CD96-D1 mAb could mediate cytotoxicity against target P815 cells by effecter cell generated from MLC. Moreover, CD96-D1 mAb could block the cytotoxicity of MLC-generated effecter cells against target K562 cells suggesting that domain 1 at its N-terminal region is involved in CD96/CD155 engagement. These results confirmed that CD96 is an activating receptor.
     CD96 plays important functions, especially NK cytotoxicity and adhesion with tumors. The structure, expressions, and functions of CD96 were explored through bioinformatics and experimental approaches in our research, which is of great significances for cell signaling study and the investigation of its physiological and pathological significances in vitro and vivo.
引文
[1] Moretta L, Bottino C, Pende D, Castriconi R, Mingari MC, Moretta A. Surface NK receptors and their ligands on tumor cells. Semin Immunol. 2006; 18(3): 151-8.
    [2] Stewart CA, Vivier E, Colonna M. Strategies of natural killer cell recognition and signaling. Curr Top Microbiol Immunol. 2006; 298:1-21.
    [3] Karre K, Ljunggren HG, Piontek G, Kiessling R. Selective rejection of H-2-deficient lymphoma variants suggests alternative immune defence strategy. Nature 1986; 319(6055):675-8.
    [4] Hildreth JE, Gotch FM, Hildreth PD, McMichael AJ.Ahuman lymphocyteassociated antigen involved in cell-mediated lympholysis. Eur J Immunol. 1983; 13(3): 202-8.
    [5] Spits H, Keizer G, Borst J, Terhorst C, Hekman A, de Vries JE. Characterization of monoclonal antibodies against cell surface molecules associated with cytotoxic activity of natural and activated killer cells and cloned CTL lines. Hybridoma 1983; 2(4): 423-37.
    [6] Gahmberg CG. Leukocyte adhesion: CD11/CD18 integrins and intercellular adhesion molecules. Curr Opin Cell Biol 1997; 9(5):643-50.
    [7] Shibuya, A., L. L. Lanier, and J. H. Phillips. Protein kinase C is involved in the regulation of both signaling and adhesion mediated by DNAX accessory molecule-1 receptor. J. Immunol. 1998; 161:1671.
    [8] Shibuya, K., L. L. Lanier, J. H. Phillips, H. D. Ochs, K. Shimizu, E. Nakayama, H. Nakauchi, and A. Shibuya. Physical and functional association of LFA-1 withDNAM-1 adhesion molecule. Immunity 1999. 11:615.
    [9] Fuchs A, Colonna M. The role of NK cell recognition of nectin and nectin-like proteins in tumor immunosurveillance. Semin Cancer Biol. 2006. 16(5): 359-66.
    [10] Takai Y, Irie K, Shimizu K, Sakisaka T, Ikeda W. Nectins and nectin-like molecules: roles in cell adhesion, migration, and polarization. Cancer Sci. 2003; 94(8):655-67.
    [11] Burns GF, Triglia T, Werkmeister JA, Begley CG, Boyd AW. TLiSAl, a human T lineage-specific activation antigen involved in the differentiation of cytotoxic T lymphocytes and anomalous killer cells from their precursors. J Exp Med 1985; 161(5):1063-78.
    [12] Scott JL, Dunn SM, Jin B, et al. Characterization of a novel membrane glycoprotein involved in platelet activation. J Biol Chem. 1989; 264 (23): 13475-82.
    [13] Shibuya A, Campbell D, Hannum C, et al. DNAM-1, a novel adhesion molecule involved in the cytolytic function of T lymphocytes. Immunity. 1996; 4(6): 573-81.
    [14] Shibuya A, Lanier LL, Phillips JH. Protein kinase C is involved in the regulation of both signaling and adhesion mediated by DNAX accessory molecule-1 receptor. J Immunol 1998; 161(4): 1671-6.
    [15] Shibuya K, Lanier LL, Phillips JH, et al. Physical and functional association of LFA-1 with DNAM-1 adhesion molecule. Immunity. 1999; 11(5): 615-23.
    [16] Ralston KJ, Hird SL, Zhang X, et al. The LFA-1-associated molecule PTA-1 (CD226) on T cells forms a dynamic molecular complex with protein4.1G and human discs large. J Biol Chem. 2004; 279(32): 33816-28.
    [17] Bottino C, Castriconi R, Pende D, et al. Identification of PVR (CD155) and Nectin-2 (CD112) as cell surface ligands for the human DNAM-1 (CD226) activating molecule. J Exp Med 2003;198(4):557-67.
    [18] Reymond N, Imbert AM, Devilard E, et al. DNAM-1 and PVR regulate monocyte migration through endothelial junctions. J Exp Med. 2004;199(10):1331-41.
    [19] Dardalhon V, Schubart AS, Reddy J, et al. CD226 is specifically expressed on the surface of Thl cells and regulates their expansion and effector functions. J Immunol. 2005;175(3):1558-65.
    [20] Shibuya K, Shirakawa J, Kameyama T, et al. CD226 (DNAM-1) is involved in lymphocyte function-associated antigen 1 costimulatory signal for naive T cell differentiation and proliferation. J Exp Med 2003; 198(12):1829-39.
    [21] Tao D, Shangwu L, Qun W, et al. CD226 expression deficiency causes high sensitivity to apoptosis in NK T cells from patients with systemic lupus erythematosus. J Immunol 2005; 174(3): 1281-90.
    [22] Mendelsohn CL, Wimmer E, Racaniello VR. Cellular receptor for poliovirus: molecular cloning, nucleotide sequence, and expression of a new member of the immunoglobulin superfamily. Cell 1989; 56(5): 855-65.
    [23] Nobis P, Zibirre R, Meyer G, Kuhne J, Warnecke G, Koch G. Production of a monoclonal antibody against an epitope on HeLa cells that is the functional poliovirus binding site. J Gen Virol 1985;66(Pt 12): 2563-9.
    [24] Irie K, Shimizu K, Sakisaka T, IkedaW, TakaiY. Roles and modes of action of nectins in cell-cell adhesion. Semin Cell Dev Biol 2004; 15(6):643-56.
    [25] Lange R, Peng X,Wimmer E, Lipp M, Bernhardt G. The poliovirus receptor CD155 mediates cell-to-matrix contacts by specifically binding to vitronectin. Virology 2001; 285(2): 218-27.
    [26] Masson D, Jarry A, Baury B, et al. Overexpression of the CD155 gene in human colorectal carcinoma. Gut. 2001; 49(2): 236-40.
    [27] Sloan KE, Eustace BK, Stewart JK, et al. CD155/PVR plays a key role in cell motility during tumor cell invasion and migration. BMC Cancer. 2004; 4:73.
    [28] Freistadt MS, Eberle KE. Physical association between CD155 and CD44 in human monocytes. Mol Immunol 1997; 34(18): 1247-57.
    [29] Oda T, Ohka S, Nomoto A. Ligand stimulation of CD155alpha inhibits cell adhesion and enhances cell migration in fibroblasts. Biochem Biophys Res Commun 2004; 319(4): 1253-64.
    [30] Pende D, Spaggiari GM,Marcenaro S, et al. Analysis of the receptor-ligand interactions in the natural killer-mediated lysis of freshly isolated myeloid or lymphoblastic leukemias: evidence for the involvement of the Poliovirus receptor (CD155) and Nectin-2 (CD112). Blood 2005; 105(5): 2066-73.
    [31] Tahara-Hanaoka S, Miyamoto A, Hara A, Honda S, Shibuya K, Shibuya A. Identification and characterization of murine DNAM-1 (CD226) and its poliovirus receptor family ligands. Biochem Biophys Res Commun 2005; 329(3): 996-1000.
    [32] Tahara-Hanaoka S, Shibuya K, Kai H, et al. Tumor rejection by thepoliovirus receptor family ligands of theDNAM-l(CD226) receptor. Blood. 2006; 107(4): 1491-6.
    [33] Wang PL, O'Farrell S, Clayberger C, et al. Identification and molecular cloning of tactile. A novel human T cell activation antigen that is a member of the Ig gene superfamily. J Immunol. 1992. 148(8): 2600-8.
    [34] Gramatzki M, Ludwig WD, Burger R, et al. Antibodies TC-12 ("unique") and TH-111 (CD96) characterizeT-cell acute lymphoblastic leukemia and a subgroup of acute myeloid leukemia. Exp Hematol 1998; 26(13): 1209-14.
    [35] Fuchs A, Cella M, Giurisato E, et al. Cutting edge: CD96 (tactile) promotes NK cell-target cell adhesion by interacting with the poliovirus receptor (CD 155). J Immunol. 2004. 172(7): 3994-8.
    [36] Boles, K. S., S. E. Stepp, M. Bennett, V. Kumar, and P. A. Mathew. 2B4 (CD244) and CS1: novel members of the CD2 subset of the immunoglobulin superfamily molecules expressed on natural killer cells and other leukocytes. 2001.Immunol. Rev. 181:234.
    [37] Huang, J. F., Y. Yang, H. Sepulveda, W. Shi, I. Hwang, P. A. Peterson, M. R. Jackson, J. Sprent, and Z. Cai. TCR-mediated internalization of peptide-MHC complexes acquired by T cells. Science 1999. 286:952.
    [38] Carlin, L. M, K. Eleme, F. E. McCann, and D. M. Davis. Intercellular transfer and supramolecular organization of human leukocyte antigen C at inhibitory natural killer cell immune synapses. J. Exp. Med. 2001. 194:1507.
    [39] Boles KS, BarchetW, Diacovo T, Cella M, Colonna M. The tumor suppressor TSLC1/NECL-2 triggers NK-cell and CD8+ T-cell responses through the cell-surface receptor CRTAM. Blood 2005; 106(3): 779-86.
    [40] Kennedy J, Vicari AP, Saylor V, et al. A molecular analysis of NKT cells: identification of a class-I restricted T cell-associated molecule (CRTAM). J Leuk Biol 2000; 67(5): 725-34.
    [41] Galibert L, Diemer GS, Liu Z, et al. Nectin-like protein 2 defines a subset of T-cell zone dendritic cells and is a ligand for class-I-restricted T-cellassociated molecule. J Biol Chem 2005; 280(23): 21955-64.
    [42] Patino-Lopez G, Hevezi P, Lee J, et al. Human class-I restricted T cell associated molecule is highly expressed in the cerebellum and is a marker for activatedNKTand CD8+ T lymphocytes. J Neuroimmunol 2006; 171(1-2): 145-55.
    [43] Arase N, Takeuchi A, Unno M, et al. Heterotypic interaction of CRTAM with Necl2 induces cell adhesion on activated NK cells and CD8+ T cells. Int Immunol 2005; 17(9): 1227-37.
    [44] Wolk K, Kunz S, Witte E, Friedrich M, Asadullah K, Sabat R. IL-22 increases the innate immunity of tissues. Immunity 2004; 21(2): 241-54.
    [45] Kuramochi M, Fukuhara H, NobukuniT, et al. TSLC1 is a tumor-suppressor gene in human non-small-cell lung cancer. Nat Genet 2001; 27(4): 427-30.
    [46] Yageta M, Kuramochi M, Masuda M, et al. Direct association of TSLC1 and DAL-1, two distinct tumor suppressor proteins in lung cancer. Cancer Res 2002; 62(18): 5129-33.
    [47] Shingai T, Ikeda W, Kakunaga S, et al. Implications of nectin-like molecule-2/IGSF4/RA175/SgIGSF/TSLCl/SynCAMl in cell-cell adhesion and transmembrane protein localization in epithelial cells. J Biol Chem. 2003;278(37): 35421-7.
    [48] Fukuhara H, Masuda M, Yageta M, et al. Association of a lung tumor suppressor TSLCl with MPP3, a human homologue of Drosophila tumor suppressor Dig. Oncogene 2003; 22(40): 6160-5.
    [49] Biederer T, Sara Y, Mozhayeva M, et al. SynCAM, a synaptic adhesion molecule that drives synapse assembly. Science 2002; 297(5586): 1525-31.
    [50] Murakami Y. Involvement of a cell adhesion molecule, TSLCl/IGSF4, in human oncogenesis. Cancer Sci 2005; 96(9): 543-52.
    [51] Mao X, Seidlitz E, Ghosh K, Murakami Y, Ghosh HP. The cytoplasmic domain is critical to the tumor suppressor activity of TSLCl in non-small cell lung cancer. Cancer Res 2003; 63(22): 7979-85.
    [52] Mao X, Seidlitz E, Truant R, Hitt M, Ghosh HP. Re-expression of TSLCl in a non-small-cell lung cancer cell line induces apoptosis and inhibits tumor growth. Oncogene 2004; 23(33): 5632-42.
    [53] Sasaki H, Nishikata I, Shiraga T, et al. Overexpression of a cell adhesion molecule, TSLCl, as a possible molecular marker for acute-type adult T cell leukemia. Blood 2005; 105(3): 1204-13.
    [54] Dunn GP, Old LJ, Schreiber RD. The three Es of cancer immunoediting. Annu Rev Immunol 2004; 22:329-60.
    [55] Baury B, Masson D, McDermott Jr BM, et al. Identification of secreted CD155 isoforms. Biochem Biophys Res Commun 2003; 309(1): 175-82.
    [56] Ebnet K, Suzuki A, Ohno S, Vestweber D. Junctional adhesion molecules (JAMs): more molecules with dual functions? J Cell Sci 2004; 117(Ptl): 19-29.
    [57] Grundemann C, Bauer M, Schweier O, et al. Cutting edge: identification of E-cadherin as a ligand for the murine killer cell lectin-like receptor Gl. J Immunol 2006; 176(3): 1311-5.
    [58] Ito M, MaruyamaT, Saito N,Koganei S,Yamamoto K, Matsumoto N. Killer cell lectin-like receptor Gl binds three members of the classical cadherin family to inhibit NK cell cytotoxicity. J Exp Med 2006; 203(2): 289-95.
    [59] Markel G, Lieberman N, Katz G, et al. CD66a interactions between human melanoma andNKcells: a novel class IMHC-independent inhibitory mechanism of cytotoxicity. J Immunol 2002; 168(6): 2803-10.
    [60] Stern N, Markel G, Arnon TI, et al. Carcinoembryonic antigen (CEA) inhibitsNKkilling via interaction with CEA-related cell adhesion molecule. J Immunol. 2005; 174(11): 6692-701.
    [61] Humphrey, M. B., Lanier, L. L. and Nakamura, M. C, Role of ITAMcontaining adapter proteins and their receptors in the immune system and bone. Immunol. Rev 2005. 208: 50 - 65.
    [62] Tomasello, E. and Vivier, E., KARAP/DAP12/TYROBP: three names and a multiplicity of biological functions. Eur. J. Immunol. 2005. 35: 1670 -1677.
    [63] Samelson, L. E., Signal transduction mediated by the T cell antigen receptor: the role of adapter proteins. Annu. Rev. Immunol. 2002. 20: 371 - 394.
    [64] Ravetch, J. V. and Lanier, L. L., Immune inhibitory receptors. Science 2000. 290: 84 - 89.
    [65] Otipoby KL, Draves KE, Clark EA. CD22 regulates B cell receptor-mediated signals via two domains that independently recruit Grb2 andSHP-1. J Biol Chem. 2001. 276(47): 44315-22.
    [66] Isnardi I, Bruhns P, Bismuth G, Fridman WH, Daeron M. The SH2 domain-containing inositol 5-phosphatase SHIP1 is recruited to the intracytoplasmic domain of human FcgammaRIIB and is mandatory for negative regulation of B cell activation. Immunol Lett. 2006. 104(1-2): 156-65.
    [67] Gavrieli M, Watanabe N, Loftin SK, Murphy TL, Murphy KM. Characterization of phosphotyrosine binding motifs in the cytoplasmic domain of B and T lymphocyte attenuator required for association with protein tyrosine phosphatases SHP-1 and SHP-2. Biochem Biophys Res Commun. 2003. 312(4): 1236-43.
    [68] van Egmond, M., Damen, C. A., van Spriel, A. B., Vidarsson, G., van Garderen, E. and van de Winkel, J. G, IgA and the IgA Fc receptor. Trends Immunol. 2001.22:205-211.
    [69] van Egmond, M., van Vuuren, A. J., Morton, H. C, van Spriel, A. B., Shen, L., Hofhuis, F. M., Saito, T. et al., Human immunoglobulin A receptor (FcalphaRI, CD89) function in transgenic mice requires both FcR gamma chain and CR3 (CD11b/CD 18). Blood 1999. 93: 4387-4394.
    [70] Pasquier, B., Launay, P., Kanamaru, Y., Moura, I. C, Pfirsch, S., Ruffie, C, Henin, D. et al., Identification of FcalphaRI as an inhibitory receptor that controls inflammation: dual role of FcR-c ITAM. Immunity 2005. 22: 31-42.
    [71] Koga, T., Inui, M., Inoue, K., Kim, S., Suematsu, A., Kobayashi, E., Iwata, T. et al., Costimulatory signals mediated by the ITAM motif cooperate with RANKL for bone homeostasis. Nature 2004. 428: 758-763.
    [72] Hamerman, J. A., Tchao, N. K., Lowell, C. A. and Lanier, L. L.,Enhanced Toll-like receptor responses in the absence of signaling adaptor DAP12. Nat. Immunol. 2005. 6: 579-586.
    [73] Bouchon, A., Facchetti, R, Weigand, M. A. and Colonna, M., TREM-1 amplifies inflammation and is a crucial mediator of septic shock. Nature 2001. 410: 1103-1107.
    [74] Turnbull, I. R., McDunn, J. E., Takai, T., Townsend, R. R., Cobb, J. P. and Colonna, M, DAP12 (KARAP) amplifies inflammation and increases mortality from endotoxemia and septic peritonitis. J. Exp. Med 2005. 202: 363-369.
    [75] Sanjuan,M. A., Rao, N., Lai, K. T., Gu, Y., Sun, S., Fuchs, A., Fung-Leung, W. P. et al., CpG-induced tyrosine phosphorylation occurs via a TLR9-independent mechanism and is required for cytokine secretion. J. Cell Biol. 2006. 172: 1057-1068.
    [76] Gray, P., Dunne, A., Brikos, C, Jefferies, C. A., Doyle, S. L. and O'Neill, L.A., MyD88 adapter-like (Mal) is phosphorylated by Bruton's tyrosine kinase during TLR2 and TLR4 signal transduction. J. Biol. Chem 2006. 281:10489-10495.
    [77] Osborne, M. A., Zenner, G, Lubinus, M., Zhang, X., Songyang, Z., Cantley, L. C, Majerus, P. et al., The inositol 50-phosphatase SHIP binds to immunoreceptor signaling motifs and responds to high affinity IgE receptor aggregation. J. Biol. Chem 1996. 271: 29271-29278.
    [78] Kimura, T., Sakamoto, H., Appella, E. and Siraganian, R. P., The negative signaling molecule SH2 domain-containing inositol-polyphosphate 5-phosphatase (SHIP) binds to the tyrosine-phosphorylated beta subunit of thehigh affinity IgE receptor. J. Biol. Chem 1997. 272: 13991-13996.
    [79] Ganesan, L. P., Fang, H., Marsh, C. B. and Tridandapani, S., The proteintyrosine phosphatase SHP-1 associates with the phosphorylated immunoreceptor tyrosine-based activation motif of Fc gamma Rlla to modulate signaling events in myeloid cells. J. Biol. Chem 2003. 278: 35710-35717.
    [80] Vitale, M., Bottino, C, Sivori, S., Sanseverino, L., Castriconi, R., Marcenaro, E., Augugliaro, R. et al., NKp44, a novel triggering surface molecule specifically expressed by activated natural killer cells, is involved in non-major histocompatibility complex-restricted tumor cell lysis. J. Exp. Med. 1998. 187: 2065-2072.
    [81] Fuchs, A., Cella, M., Kondo, T. and Colonna, M., Paradoxic inhibition of human natural interferon-producing cells by the activating receptor NKp44. Blood 2005.106: 2076-2082.
    [82] Campbell, K. S., Yusa, S., Kikuchi-Maki, A. and Catina, T. L., NKp44 triggers NK cell activation through DAP12 association that is not influenced by a putative cytoplasmic inhibitory sequence. J. Immunol. 2004. 172: 899-906.
    [83] Blasius, A. L., Cella,M., Maldonado, J., Takai, T. and Colonna, M., Siglec-H is an IPC-specific receptor that modulates type I IFN secretion through DAP12. Blood 2006. 107: 2474-2476.
    [84] Dzionek, A., Sohma, Y, Nagafune, J., Cella, M., Colonna, M., Facchetti,F., Gunther, G. et al., BDCA-2, a novel plasmacytoid dendritic cell-specific type II C-type lectin, mediates antigen capture and is a potent inhibitor of interferon alpha/beta induction. J. Exp. Med 2001. 194: 1823-1834.
    [85] Thorley-Lawson, D. A., Epstein-Barr virus: exploiting the immunesystem. Nat. Rev. Immunol 2001. 1: 75-82.
    [86] Morrison, J. A., Raab-Traub, N., Chen, F., Liu, C, Lindvall, C, Xu, D. and Ernberg, I. Epstein-Barr virus latent membrane 2A (LMP2A) downregulates telomerase reverse transcriptase (hTERT) in epithelial cell lines. Int. J. Cancer 2005. 113:284-289.
    [87] Morrison, J. A. and Raab-Traub, N., Roles of the ITAM and PY motifs of Epstein-Barr virus latent membrane protein 2A in the inhibition of epithelial cell differentiation and activation of b-catenin signaling. J. Virol 2005. 79: 2375-2382.
    [88] Alexander David Barrow and John Trowsdale. You say ITAM and I say ITIM, let's call the whole thing off: the ambiguity of immunoreceptor signalling. Eur. J. Immunol. 2006. 36: 1646-1653.
    [89] Barrow, A. D., Astoul, E., Floto, A., Brooke, G, Relou, I. A., Jennings, N. S., Smith, K. G. et al., Cutting edge: TREM-like transcript-1, a platelet immunoreceptor tyrosine-based inhibition motif encoding costimulatory immunoreceptor that enhances, rather than inhibits, calcium signaling via SHP-2. J. Immunol 2004. 172: 5838-5842.
    [90] Schenkel, A. R., Chew, T. W. and Muller, W. A.Platelet endothelial cell adhesion molecule deficiency or blockade significantly reduces leukocyte emigration in a majority of mouse strains. J. Immunol 2004. 173:6403-6408.
    [91] Rajagopalan, S., Fu, J. and Long, E. O.Cutting edge: induction of IFNgamma production but not cytotoxicity by the killer cell Ig-like receptor KIR2DL4 (CD158d) in resting NK cells. J. Immunol 2001. 167: 1877-1881.
    [92] Agazie, Y. M. and Hayman, M. J., Molecular mechanism for a role ofSHP-2 in epidermal growth factor receptor signaling. Mol. Cell. Biol 2003. 23: 7875-7886.
    [93] Zhang, S. Q., Yang,W., Kontaridis, M. I., Bivona, T. G.,Wen, G, Araki, T.,Luo, J. et al., Shp2 regulates SRC family kinase activity and Ras/Erk activation by controlling Csk recruitment. Mol. Cell 2004. 13: 341-355.
    [94] Yu,W.M., Hawley, T. S., Hawley, R. G. and Qu, C. K., Catalytic-dependent and -independent roles of SHP-2 tyrosine phosphatase in interleukin-3 signaling. Oncogene 2003. 22: 5995-6004.
    [95] Kolch W. Coordinating ERK/MAPK signalling through scaffolds and inhibitors. Nat Rev Mol Cell Biol. 2005. 6(ll):827-37.
    [96] Kim, S., Poursine-Laurent, J., Truscott, S. M., Lybarger, L., Song, Y. J.,Yang, L., French, A. R. et al., Licensing of natural killer cells by host major histocompatibility complex class I molecules. Nature 2005. 436: 709-713.
    [97] Fernandez, N. C, Treiner, E., Vance, R. E., Jamieson, A. M., Lemieux, S. and Raulet, D. H., A subset of natural killer cells achieves self-tolerance without expressing inhibitory receptors specific for self-MHC molecules. Blood 2005. 105: 4416-4423.
    [98] Hatakeyama, M., Oncogenic mechanisms of the Helicobacter pylori CagA protein. Nat. Rev. Cancer 2004. 4: 688-694.
    [99] Neel, B.G. et al. The 'Shp'ing news: SH2 domain-containing tyrosine phosphatases in cell signaling. Trends Biochem. Sci. 2003. 28, 284-293.
    [100] Tenev, T. et al. Both SH2 domains are involved in interaction of SHP-1 with the epidermal growth factor receptor but cannot confer receptor-directed activity to SHP-1/SHP-2 chimera. J. Biol. Chem. 1997. 272,5966-5973.
    [101] O'Reilly, A.M. and Neel, B.G. Structural determinants of SHP-2 function and specificity in Xenopus mesoderm induction. Mol. Cell. Biol. 1998. 18, 161-177.
    [102] Qu, C-K. et al. Requirement of Shp-2 tyrosine phosphatase in lymphoid and hematopoietic cell development. Blood 2001. 97, 911-914.
    [103] Wang, Q. et al. SHP-2 modulates interleukin-1 -induced Ca2C flux and ERK activation via phosphorylation of phospholipase Cgl. J. Biol. Chem. 2005. 280, 8397-8406.
    [104] Gadina, M.L. et al. Cutting edge: involvement of SHP-2 in multiple aspects of IL-2 signaling: evidence for a positive regulatory role. J. Immunol. 1998. 160,4657-4661.
    [105] Lundin Brockdorff, J. et al. SHP-2 regulates IL-2 induced MAPK activation, but not Stat3 or Stat5 phosphorylation, in cutaneous T cell lymphoma cells. Cytokine 2002. 20, 141-147.
    [106] Salmond, R.J. et al. The src homology 2 domain-containing tyrosine phosphatase 2 regulates primary T-dependent immune responses and Th cell differentiation. J. Immunol. 2005.175, 6498-6508.
    [107] Wheadon, H. et al. Regulation of interleukin-3-induced substrate phosphorylation and cell survival by SHP-2 (Src-homology protein tyrosine phosphatase 2). Biochem. J. 2003. 376, 147-157.
    [108] Yu, W.M. et al. Catalytic-dependent and -independent roles of SHP-2 tyrosine phosphatase in interleukin-3 signaling. Oncogene 2003. 22, 5995-6004.
    [109] Ohtani, T. et al. Dissection of signaling cascades through gpl30 invivo: reciprocal roles for STAT3 and SHP-2-mediated signals in immune responses. Immunity 2000. 12, 95-105.
    [110] Gu, H. and Neel, B.G. The 'Gab' in signal transduction. Trends Cell Biol. 2003. 13, 122-130.
    [111] Yu, C-L. et al. Cytosolic tyrosine dephosphorylation of STAT5: potential role of SHP-2 in STAT5 regulation. J. Biol. Chem. 2000. 275, 599-604.
    [112] Chen, Y. et al. Identification of Shp-2 as a Stat5A phosphatase. J. Biol. Chem. 2003. 278, 16520-16527.
    [113] Atsumi, T. et al. A point mutation of Tyr-759 in interleukin 6 family cytokine receptor subunit gpl30 causes autoimmune arthritis. J. Exp. Med. 2002. 196,979-990.
    [114] McLoughlin, R.M. et al. IL-6 trans-signaling via STAT3 directs Tcell infiltration in acute inflammation. Proc. Natl. Acad. Sci. U. S. A. 2005. 102, 9589-9594.
    [115] Lehmann, U. et al. SHP-2 and SOCS3 contribute to Tyr-759-dependent attenuation of interleukin-6 signaling through gpl30. J. Biol. Chem. 2003.278, 661-671.
    [116] Du, Z. et al. Inhibition of IFN-a signaling by a PKC- and protein tyrosine phosphatase SHP-2-dependent pathway. Proc. Natl. Acad. Sci. U. S. A. 2005.102, 10267-10272.
    [117] You, M. et al. Shp-2 tyrosine phosphatase functions as a negative regulator of the interferon-stimulated JAK/STAT pathway. Mol. Cell. Biol. 1999. 19,2416-2424.
    [118] Chauhan, D. et al. SHP-2 mediates the protective effect ofinterleukin-6 against dexamethasone-induced apoptosis in multiple myeloma cells. J. Biol. Chem. 2000. 275, 27845-27850.
    [119] Shi, Z-Q. et al. The Shp-2 tyrosine phosphatase has opposite effects in mediating the activation of extracellular signal-regulated and c-Jun NH2-terminal mitogen-activated protein kinases. J. Biol. Chem. 1998. 273, 4904-4908.
    [120] You, M. et al. Modulation of the nuclear factor k B pathway by Shp-2 tyrosine phosphatase in mediating the induction of interleukin (IL)-6 by IL-1 or tumor necrosis factor. J. Exp. Med. 2001.193, 101-110.
    [121] Leibson, P.J. The regulation of lymphocyte activation by inhibitory receptors. Curr. Opin. Immunol. 2004. 16, 328-336.
    [122] Henshall, T.L. et al. Src homology 2 domain-containing tyrosine phosphatases, SHP-1 and SHP-2, are required for platelet endothelial cell adhesion molecule-1/CD31-mediated inhibitory signaling.J. Immunol. 2001. 166,3098-3106.
    [123] Lee, K-M. et al. Molecular basis of T cell inactivation by CTLA-4. Science 1998. 282, 2263-2266.
    [124] Chuang, E. et al. The CD28 and CTLA-4 receptors associate with the serine/threonine phosphatase PP2A. Immunity 2000. 13, 313-322.
    [125] Parry, R.V. et al. CTLA-4 and PD-1 receptors inhibit T-cell activation by distinct mechanisms. Mol. Cell. Biol. 2005. 25, 9543-9553.
    [126] Okazaki, T. et al. New regulatory co-receptors: inducible costimulator and PD-1. Curr. Opin. Immunol. 2002. 14, 779-782.
    [127] Nishimura, H. et al. Development of lupus-like autoimmune diseasesby disruption of the PD-1 gene encoding an ITIM motifcarrying immunoreceptor. Immunity 1999. 11, 141-151.
    [128] Nishimura, H. et al. Autoimmune dilated cardiomyopathy in PD-1 receptor-deficient mice. Science 2001. 291, 319-322.
    [129] Chemnitz, J.M. et al. SHP-1 and SHP-2 associate with immunoreceptor tyrosine-based switch motif of programmed death 1 upon primary human T cell stimulation, but only receptor ligation prevents T cell activation. J. Immunol. 2004. 173, 945-954.
    [130] Newton-Nash, D.K. and Newman, P.J. A new role for plateletendothelial cell adhesion molecule-1 (CD31): inhibition of TCRmediated signal transduction. J. Immunol. 1999. 163, 682-688.
    [131] Prager, E. et al. Induction of hyporesponsiveness and impaired T lymphocyte activation by the CD31 receptonligand pathway in T cells. J. Immunol. 2001. 166, 2364-2371.
    [132] Wilkinson, R. et al. Platelet endothelial cell adhesion molecule-1 (PECAM-1/CD31) acts as a regulator of B-cell development, B-cell antigen receptor (BCR)-mediated activation, and autoimmune disease. Blood 2002. 100, 184-193.
    [133] Newman, D.K. et al. Inhibition of antigen-receptor signaling by Platelet Endothelial Cell Adhesion Molecule-1 (CD31) requires functional ITIMs, SHP-2, and p561ck. Blood 2001. 97, 2351-2357.
    [134] Watanabe, N. et al. BTLA is a lymphocyte inhibitory receptor with similarities to CTLA-4 and PD-1. Nat. Immunol. 2003. 4, 670-679.
    [135] Yusa, S. et al. SHP-1- and phosphotyrosine-independent.inhibitorysignaling by a killer cell Ig-like receptor cytoplasmic domain in human NK cells. J. Immunol. 2002. 168, 5047-5057.
    [136] Yusa, S. et al. KIR2DL5 can inhibit human NK cell activation via recruitment of Src-homology region 2-containing protein tyrosine phosphatase-2 (SHP-2). J. Immunol. 2004. 172, 7385-7392.
    [137] Yusa, S. and Campbell, K.S. Src homology region 2-containing protein tyrosine phosphatase-2 (SHP-2) can play a direct role in the inhibitory function of Killer Cell Ig-like receptors in human NK cells. J. Immunol. 2003. 170,4539-4547.
    [138] Yamasaki, S. et al. Gads/Grb2-mediated association with LAT is critical for the inhibitory function of Gab2 in Tcells. Mol. Cell. Biol. 2003. 23, 2515-2529.
    [139] Pratt, J.C. et al. Cutting edge: Gab2 mediates an inhibitory phosphatidylinositol 30-kinase pathway in T cell antigen receptor signaling. J. Immunol. 2000. 165, 4158-1163.
    [140] Kwon, J. et al. Receptor-stimulated oxidation of SHP-2 promotes T-cell adhesion through SLP-76-ADAP. EMBO J. 2005. 24, 2331-2341.
    [141]黄昆仑,罗云波.用巢式和半巢式PCR检测转基因大豆Roundupready及其深加工食品.农业生物技术学报,2003,11(5):461-466.
    [142] Stina Englund, Andra's Ballagi Porda'ny, Goran Bo lske, Karl Erik Johansson. Single PCR and nested PCR with a mimic molecule for detection of Paratuberculosis. Mycobacteriology, 1999, 33: 163-171.
    [143] Jaber Aslanzadeh, Barbara B Padilla2, John D Shanley. Evaluationof PCR and nested PCR for laboratory diagnosis of hepatitis C virus infection. Molecular and Cellular Probes, 1996, 10: 173-178.
    [144]金伯泉.细胞与分子免疫学实验技术[M].西安:第四军医大学出版社,2002:18-28.
    [145] Bryceson YT, March ME, Ljunggren HG, Long EO. Synergy among receptors on resting NK cells for the activation of natural cytotoxicity and cytokine secretion. Blood. 2006 Jan l;107 (l):159-66.
    [146] Kakehi S, Nakahama KI, Morita I. Expression and possible role of PVR/CD 155/Necl-5 in osteoclastogenesis. Mol Cell Biochem. 2007 Feb 8.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700