鸡传染性支气管炎免疫增强型核酸疫苗的构建与免疫保护机理的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本研究首先对IBV S、IBV S1及ChIL-15基因进行修饰改造,并构建了三段修饰后基因的真核表达载体质粒。在此基础上,利用一段编码(G4S)3多肽的碱基linker将ChIL-15分别与IBV S和IBV S1基因进行连接,并成功构建了两个融合基因真核表达载体质粒,即pcDNA3.1-IBV S1-linker-ChIL-15及pcDNA3.1-IBV S-linker-ChIL-15质粒。两个融合基因质粒的体外瞬时转染试验表明,融合基因能够在细胞内进行表达,同时表达后的融合蛋白可以被ChIL-15单克隆抗体和IBV全病毒粒子多克隆抗体检测出来,进一步证明了融合基因表达的蛋白保留了融合前两段基因各自的生物活性,为后续动物免疫试验提供了理论基础。
     在动物免疫试验中设计了7个处理组,即S组(免疫IBV S基因真核表达质粒)、S1组(免疫IBV S1基因真核表达质粒)、S+IL-15组(混合免疫IBV S基因与ChIL-15真核表达质粒)、S1+IL-15组(混合免疫IBV S1基因与ChIL-15真核表达质粒)、S-IL-15组(免疫IBV S与ChIL-15融合基因真核表达质粒)、S1-IL-15组(免疫IBV S1与ChIL-15融合基因真核表达质粒),以及1个空质粒对照组组(C组)。同时,利用淋巴细胞转化试验、酶联免疫吸附试验、实时荧光定量PCR技术及流式细胞仪技术对不同处理龄雏鸡的各项免疫指标进行了检测,最后应用病毒攻击试验进一步比较了不同质粒之间保护率的差别。
     试验结果表明,6组免疫组各日龄多数免疫指标都高于C组,其中有ChIL-15基因参与的S+IL-15、S1+IL-15、S-IL-15及S1-IL-15四组免疫组免疫效果尤为突出。具体表现为:T、B淋巴细胞增殖功能,CD4+、CD8+、、TCRαβ+及TCRγδ+T细胞数量,外周血液中抗IBV特异性抗体水平以及免疫器官中IL-2 mRNA的表达量与C组相比较都有明显的提高,而且以S1-IL-15组最为显著。对S组及S1组比较时发现,S1组的最明显优势在于其可以较早地诱导机体产生细胞免疫及体液免疫应答。
     攻毒后对各试验组IBV靶器官进行了病理组织学研究,同时还对不同免疫组之间的免疫保护率进行了比较,结果进一步证明了ChIL-15能够很好地提高机体的免疫保护能力,尤其是S1-IL-15抵御病毒感染的能力更为突出,这也表明在linker帮助下融合基因能够在机体内更好地发挥二者的生物学协同作用,而且ChIL-15能够更有效地展示其免疫增强作用的优势。
     综上所述,通过本试验研究表明,ChIL-15基因在配合IBV抗原基因免疫过程中,不但能够促进机体的细胞免疫应答能力,而且能够提高机体体液免疫应答的能力,进而促进机体产生较强的免疫力以抵抗病毒的攻击。本试验首次构建的ChIL-15基因与病毒抗原基因融合基因质粒以及试验结果为进一步研究ChIL-15的生物活性提供了试验依据,同时为探讨开发研制新型免疫增强型抗病毒疫苗提供了理论基础。
In this research, IBV S, IBV S1 and ChIL-15 gene were modified and reconstructed firstly, then these genes were inserted into a eukaryotic expression vector, pcDNA3.1(+), to construct three new plasmids. Furthermore, a flexible linker which could express the (G4S)3 polypeptide was used to link the ChIL-15 gene with IBV S and S1 gene to construct two fusion gene plasmid of eukaryotic expression vetor-pcDNA3.1-IBV S1-linker-ChIL-15 and pcDNA3.1-IBV S-linker-ChIL-15. The results of the transient transfection of these two fusion plasmids in vitro showed that the fused gene could express together in Vero cells and could be located by specific anti-ChIL-15 monoclonal antibody and anti-IBV polyclonal antibody, therefore, it proved that the protein expressed by fusion gene could retain the bioactivities of two proteins, it also provided the theoretical foundation for the following immunization research in vivo.
     The experimental chicken were divided into 7 groups, the S group inoculated with the pcDNA3.1-IBV S, S1 group inoculated with the pcDNA3.1-IBV S1, the S+IL-15 group inoculated with the pcDNA3.1-IBV S and pcDNA3.1-Ch IL-15, the S1+IL-15 group inoculated with the pcDNA3.1-IBV S1 and pcDNA3.1- Ch IL-15, the S1-IL-15 group inoculated wiht the pcDNA3.1-IBV S1-linker-ChIL-15, the S-IL-15 group inoculate with the pcDNA3.1-IBV S-linker-ChIL-15 and the control group with empty pcDNA3.1 vetor. Thereafter, lymphocyte proliferative assay, enzyme linkered immunosorbent assay, Real Time RT-PCR and flow cytometric technique were used to detect the immune response of different groups. Finally chickens in different treatment groups were challenged with IBV Beaudette strain to compare the difference of the protection rate.
     The results showed that most of immune response of six inoculated groups are higher than the control group, especially, the S+IL-15, S1+IL-15, S-IL-15 and S1-IL-15 group which involved ChIL-15. The details were as follows: the T, B lymphocyte proliferative function; the number of CD4+, CD8+, TCRαβ+ and TCRγδ+T cell; the levels of special anti-IBV antibody in peripheral blood and IL-2 mRNA expression in thymus and spleen of immune groups were all higher than those of C group. And the S1-IL-15 group was the most significant among those groups. Meanwhile, when the S group was compared with the S1 group, the most obvious predominance of the S1 group was that S1 gene could induce cellular immunity and humoral immunity earlier than the S gene.
     The histopathological change of IBV target organs of each group were analyzed after challenge and the immunoprotection rates were compared among every group. The results proved that ChIL-15 could enhance the immunoprotection of the host to resist the virus infection. It also showd that the fusion genes could well display their bioactivities, and ChIL-15 could effectively reveal its immunologic enhancement with the help of the“linker”.
     Above all, the results of this experiment showed that when the antigen genes of IBV were inoculated with ChIL-15, it could improve the host immune response and higher protection rate could be observed against the IBV chanllenge. Furthermore, IBV antigen genes and ChIL-15 fusion plasmid was first constructed in this experiment and the results observe here could provide solid scientific ground to the further study of ChIL-15 bioactivities, and the theoretical basis to the dicovery of new type immune-enhancing vaccine to virual diseases.
引文
步志高,江国托,刘思国,等. 1997.传染性支气管炎病毒中国地方分离株RFLP基因分型的训究.中国兽医学报.17(6):530-534
    曹素芳,黄青云. 2007.鸡IL-18对禽多杀性巴氏杆菌DNA疫苗的免疫佐剂作用.中国兽医科学. 37(12):1058-1061
    陈德胜,潘杰彦,曹瑞兵,等. 2003.传染性支气管炎病毒(IBV)国内分离毒株的分子流行病学分析.病毒学报. 19(2):149-153
    陈福勇. 1998.鸡传染性支气管炎病原学研究.中国兽医杂志. 24(1):8-l0
    步志高,江国托,杨奇伟,等. 1998.传染性支气管炎病毒S1基因DNA免疫质粒的构建及其免疫原性.中国兽医学报. 18(6):527-530
    陈洪岩,江国托,杨奇伟,等. 1999.鸡传染性支气管炎病毒S1基因免疫对鸡的保护作用.中国预防兽医学报. 21(4):250-253
    陈化兰,于康振,田国斌,等.1998. DNA免疫诱导鸡对禽流感病毒的免疫保护作用.中国农业科学. 1998,31(5):63-68
    陈全,朱道银,骆旭东,等. 2003.结核分枝杆菌lhp-esat6融合基囚原核表达载体的构建和表达.重庆医科大学学报. 28(3):284-333
    费聿锋,钱建飞,凌雯,等. 2004.重组鸡IL-2增强鸡四联火活苗免疫效果的研究.畜牧与兽医.26(4):9-11
    甘孟侯. 1999.中国禽病学.北京:中国农业出版社. 750-756
    郭明明. 2006.鸡白细胞介素15对鸡新城疫F基因DNA疫苗免疫增强作用的研究.哈尔滨:东北农业大学.研究生学位论文
    江国托,刘思国,康丽娟,等. 1998.中国鸡传染性支气管炎病毒的变异.中国畜禽传染病. 20 (6):321-323
    姜永厚,陈奖励,宋秀龙,等. 2001.鸡新城疫病毒F基因和鸡IL-2重组DNA疫苗的构建.中国预防兽医学报. 23(2):81-84
    康佐文,杨增歧,赵余放,等. 2000.鸡传染性支气管炎地方分离株血清型的研究.中国兽医科技.(5):8-10
    来鲁华. 1993.蛋白质的结构预测与分子设计.北京:北京大学出版社.
    李翠,王在时,关孚时,等. 2008.鸡新城疫高免血清的制备.中国兽药杂志. 42(2):30-31
    李宏梅,郭慧君,李祥瑞. 2005.重组鸡IL-2作为传染性法氏囊病疫苗免疫增强剂对鸡细胞免疫水平的影响.中国兽医杂志. 41(6):16-17
    刘胜旺,贺秀缓,孔宪刚,等. 2001.鸡传染性支气管炎病毒中国分离株M基因的分子特征.中国兽医学报. 23(6):404-407
    刘思国,康丽娟,江国托,等. 2001.鸡传染性支气管炎病毒核蛋白基因重组真核表达载体的构建.中国兽医学报. 21(1):14-16
    鲁凤良,庄辉. 1995.核酸疫苗研究进展.中华预防医学杂志. 29(5):303-304
    骆旭东,朱道银,陈全蒋,等. 2003.结核分支杆菌Ag85 R MPT64融合基因疫苗的构建及其在小鼠体内的表达.中华结核和呼吸杂志. 10(26):646-648
    马德星. 2008.鸡堆型艾美尔球虫病免疫增强型核酸疫苗构建与免疫保护机理.哈尔滨:东北农业大学.博士研究生学位论文
    磨美兰,李康然,韦平. 2001. RT-PCR及RFLP分析对鸡传染性支气管炎病毒的诊断和SI基因分型的研究.中国预防兽医学报. 23(4):277-281
    磨美兰,韦正吉,韦平,等. 2006.传染性支气管炎病毒的分离及其S1基因高变I的遗传变异性分析.中国兽医杂志. 42(8):13-15
    潘杰彦,陈德胜,戴亚斌,等. 2002.传染性支气管炎病毒青岛腺胃分离株(SD/97/02)基质蛋白、Sa、Sb蛋白基因的克隆和序列分析.中国兽医学报. 22(2):108-110
    齐新永,朱坤熹. 2006.肾病-肾炎型鸡传染性支气管炎的病理学研究.中国兽医科学. 36(1):52-56
    卿玉玲,赵嘉将,任红. 2003.乙型肝炎HBsAg和GM-CSF融合表达质粒的构建及表达. 免疫学杂志. 19(3):201-207
    任涛,廖明,曹伟胜,等. 2002.鸡传染性支气管炎病毒中国地方分离株膜蛋白基因的克隆与序列分析.中国畜牧兽医学会禽病学分会第十一次学术研讨会论文集.成都:258-261
    任涛,廖明,曹伟胜,等. 2006.鸡传染性支管炎病毒中国地方分离株膜蛋自基因的克隆及序列分析.中国兽医杂志. 42(8):3-6
    孙强明,戴长柏,李洪钊,等. 2002. huIL-6-GM-CSF( 9-127)融合蛋自的表达及活性测定.免疫学杂志. 18(4):253-157
    唐梦君,王红宁,周生,等. 2007. IBV Sl基因和IL-2基因双顺反子DNA疫苗的免疫原性研究.微生物学报. 47(6):1055-1059
    唐梦君,王红宁,周生,等. 2008. IBV M基因与IL-18基因共表达DNA疫苗的免疫原性.中国兽医学报. 28(7):757-761
    万旺军,谢荣辉,李龙,等. 2006.传染性法氏囊病病毒VP2/4/3-ChIL-2融合基因DNA疫苗免疫原性研究.病毒学报. 2(22):137-143
    王栋,王禾,武国军,等. 2001.人IgG3上游铰链区/p53四价功能域融合基因的构建及空间构象分析.细胞与分子免疫学杂志. 17(4):381-383
    王红宁,钟妮娜. 1994.中国畜牧兽医学会家畜传染病分会教学专业委员会论文集. 84-88,峨眉
    武志强,杨奇伟,付朝阳,等. 1997.单抗EIISA在鸡传染性支气管炎病毒分型中的应用. 中国畜禽传染病. 19(3):48-50
    夏荣,林来兴妹,周宏伟,等. 2001. hIL-2/mGM-CSF融合蛋白的构建及表达.中国免疫学杂志. 10(17):534-537
    谢昆,李祥瑞. 2006.重组鸡IL-2的抗球虫作用.中国兽医杂志. 8(42):7-9
    叶亦见. 2003.鸡IL-18cDNA基因的克隆表达及其对柔嫩艾美耳球虫DNA疫苗的免疫增强作用.南京:南京农业大学研究生论文
    殷震,刘景华. 1997.动物病毒学.北京:科学出版社,675-681
    尹燕博,邹勇,邰友华,等. 1996. RT-PCR和RFLP对我国部分传染性支气管炎病毒分离株分型.中国兽医学报. 1996(6):535-538
    张春杰,程相朝,李银聚,等. 2004.鸡IL-18真核表达载体的构建及其对IBD灭活疫苗免疫增强作用的研究.中国免疫学杂志. 20(9):617-621
    张联盟,邱礼珍. 1994.中国畜牧兽医学会家畜传染病分会教学专业委员会论文集. 111,峨眉
    张明富,陈汉阳,彭博,等. 2008.鸡传染支支气管炎病毒S1基因与猪IgG Fc基因在HeLa细胞中的融合表达.中国兽医学报.28(10):1145-1149
    张明明,洪理泉,卢仁泉,等. 2007. cTnI-linker-TnC融合蛋白基因的构建、表达及鉴定. 现代检验医学杂志. 22(1):10-14
    周继勇. 2000.传染性支气管炎病毒嗜腺胃毒株(ZJ 971毒株)结构蛋自和S1基因的结构分析.中国兽医学报. 20(5):428-433
    Baric R S, Nelson G W, Fleming J O, et al. 1988. Interactions between coronavirus nucleocapsid protein and viral RNAs: implications for viral transcription. J. Viro1. 62: 4280-4287
    Bijlenga G, Cook J K A, Gelb J, et al. 2004. Development and use of the H strain of avian infectious bronchitis virus from The Netherlands as a vaccine: a review. Avian Pathol. 33:550-557.
    Boots A M, Benaissa-Trouw B J, Hesselink W, et al. 1992. Induction of antiwiral immune responses by immunization with recombinant-DNA encoded avian coronavirus nucleocapsid protein. Vaccine. 10(2): 119-124.
    Boots A M, Kusters J G,Van-Norst J M, et al. 1991. Localization of a T cell epitope within the nucleocapsid protein of avian coron-avirus. Immunology. 74:813.
    Boursnell M E G, Brown T D K, Binns M M. 1984. Sequence of the membrane protein gene from avian coronavirus IBV. Virus Research. 1:303-313
    Box P G, Beresford A W, Roberts B. 1980. Protection of laying hens against infectious bronchitis with inactivated emulsion vaccines. Vet. Rec. 106:264-268.
    Brierley I, Boursnell M G, Binns M M, et al. 1987. An efficient ribosomal frame-shifting signal in the polymerase-encoding region of the coronavirus IBV. EMBO J. 6: 3779-3785
    Butterwith S C, Griffin H D. 1989. The effects of macrophage-derived cytokines on lipid metabolism in chicken (Gallus domesticus) hepatocytes and adipocytes. Comparative Biochemistry Physiology. 97B: 721-724.
    Byrnes S, Eaton R, Kogut M. 1993a. In vitro interleukin-1 and tumor necrosis factor-a production by macrophages from chickens infected with either Eimeria maxima or Eimeria tenella. International Journal of Parasitology. 23: 639-645.
    Callison S A, Jackwood M W and Hilt D A.1999. Infectious Bronchitis Virus S2 Gene Sequence Variability May Affect S1 Subnit Specific Antibody Binding. Virus Genes. 19(2): 143-151
    Cavanagh D, Darbyshire J H, Davis P J, et al. 1984. Induction of humoral neutralizing and haemagglutination-inhibiting antibody by the spike protein of avian infectious bronchitis virus. Avian Pathology. 13:573-583
    Cavanagh D, Davis P J, Darbyshire J H, et al. 1986. Coronavirus IBV: virus retaining spike glycopolypeptide S2 but not S1 is unable to induce virus-neutralizing or haemagglutination- ininhabiting antibody or induce chicken tracheal protection. Journal of Ceneral birology. 67: 1435-1442
    Cavanagh D, Davis P J. 1986. urea abolishes infectivity Coronavirus IBV: removal of spike glycopolypeptide S1 by and haemagglutination but not attachment to cells. J Gen Virol. 67:1443-1448
    Cavanagh D, Ellis M M, Cook J K A. 1997. Relationship between sequence variation in the S1 spike protein of infectious bronchitis virus and the extent of cross-protection in vivo. Avian Pathol. 26:63-74.
    Cavanagh D, Naqi S. 2003. Infectious bronchitis, in: Saif Y M, Barnes H J, Glisson J R, Fadly A M, McDougald L R, Swayne D E (Eds.), Diseases of poultry, Iowa, 11th edition, Ames, Iowa State University Press. 101-119.
    Cavanagh D, Davis P J, Cook J K A. 1992a. Infectious bronchitis virus: evidence for recombination within the Massachusetts serotype. Avian Pathology. 21:401-408
    Cavanagh D. 1983. Coronavirus IBV: structural characterization of the spike protein. J Gen Virol. 64: 2577-2583
    Cavanagh D. 2003. Severe acute respiratory syndrome vaccine development: experiences of vaccination against avian infectious bronchitis coronavirus. Avian Pathol. 32:567-582.
    Cavanagh D. 2007. Coronavirus avian infectious bronchitis virus. Vet. Res. 38: 281-297.
    Cavanagh D, Davis P J, Cook J K A, et al. 1992b. Location of the amino acids differences in the S1 spike glycoprotein subunit of closely related serotypes of infectious bronchitis virus. Avian Pathology. 21: 33-43
    Cavangh D, Mawditi K, Shaw K, et a1. 1997. Towards the rountine application 0f nucleic acid technology for avian disease diagnosis. Acta Veterinaria hungarica. 45(3): 281-298.
    Choi K D, Lillehoj H S. 2000. Role of chicken IL-2 on gd T-cells and Eimeria acervulina-induced changes in intestinal IL-2 mRNA expression and gd T-cells. Veterinary Immunology and Immunopathology. 73: 309-321.
    Collisson E W, Pei J, Dzielawa J, et al. 2000. Cytotoxic T lymphocytes are critical in the control of infectious bronchitis virus in poultry. Dev. Comp. Immunol. 24(2-3): 187-200
    Cook J K A, Orbell S J, Woods M A, et al. 1999. Breadth of protection of the respiratory tract provided by different liveattenuated infectious bronchitis vaccines against challenge with infectious bronchitis viruses of heterologous types. Avian Pathol. 28: 471-479.
    Darbyshire J H, Peters R W.1984. Sequential development of humoral immunity and assessment of protection in chickens following vaccination and challenge with avian infectiousbronchitis virus, Res. Vet. Sci. 37:77-86.
    Davis H L, Whalen R G, Demeneix B A. 1993. Direct gene transfer into skeletal muscle in vivo, factors affecting efficiency of transfer and stability of expression. Hum Gene Ther. (4): 151-159.
    De Mayer E M, De Mayer-Guinard J.1998. Interferons. In: AW Thomson (editor). The Cytokine Handbook 3rd edition.. Academic Press, San Diego. 491-515.
    Digby M R, Lowenthal J W. 1995. Cloning and expression of the chicken interferon-g gene. Journal of Interferon Cytokine Research. 15, 939-945.
    Dinarello C A. 1998. Interleukin-1. In: AW Thomson (editor). The Cytokine Handbook. 3rd edition. Academic Press, San Diego. 35-71.
    EI-Houadfi M D, Jone R C, Cook J A, et al. 1986. The isolation and characterization of six avian infectious bronchitis virus isolated in Morocco. Avian pathol. 15: 93-105
    Ellen W C, Jianwu Pei, Jennifer Dzielawa, et al. 2000. Cytotoxic T lymphocytes are critical in the control of infectious bronchitis virus in poultry. Developmental and Comparative immunology. 24: 187-200
    Fynan E F, Webster R G, Fuller D H, et al. 1993. DNA vaccines: Protective immuni-zations by parental, mucosaland gene-gun inoculations. Proc Natl Acad Sci USA. 90: 11478-11482
    Gaffen S L, Goldsmith M A, Greene W C. 1998. Interleukin-2 and the Interleukin-2 receptor. In: AW Thomson (editor).The Cytokine Handbook 3rd edition. Academic Press, San Diego. 73-131.
    Gough R E, Alexander D J. 1979. Comparison of duration of immunity in chickens infected with a live infectious bronchitis vaccine by three different routes. Res. Vet. Sci. 26:329-332.
    Guida S, Heguy A, Melli M. 1992. The chicken IL-1 receptor: differential evolution of the cytoplasmic and extracellular domains. Gene. 111: 239-243.
    Gurunathan S, Klinman D M, Seder R A.2000. DNA vaccines:immunology, application, and optimization. Annu Rev I mmunol. 18: 927-974
    Guttenbach M, Nanda I, Brickell P M,et al. 2000. Chromosomal localisation of the genes encoding ALDH, BMP-2, R-FABP, IFN-g, RXR-g, and VIM in chicken by fluorescence in situ hybridization. Cytogenetics Cell Genetics. 88: 266-271.
    Heggen C L, Qureshi M A, Edens F W, et al. 2000. Alterations in macrophage-produced cytokines and nitrite associated with poult enteritis and mortality syndrome. Avian Diseases. 44: 59-65.
    Henderson S C, Bounous D I, Lee M D.1999. Early events in the pathogenesis of avian salmonellosis. Infection and Immunity. 67: 3580-3586.
    Hirano T. 1998. Interleukin 6. In: AE Thomson (editor).The Cytokine Handbook 3rd edition. Academic Press, San Diego. 197-227.
    Huang A, Scougall C A, Lowenthal J W, et al. 2001. Structural and functional homology between duck and chicken interferon-gamma. Developmental and Comparative Immunology. 25:55-68.
    Hughes S, Bumstead N. 2000. The gene encoding the chicken chemokine K60 maps to chromosome 4. Animal Genetics. 31: 418-419.
    Hughes S, Haynes A, O’Regan M, et al. 2001. Identification, mapping and phylogenetic analysis of three novel chicken CC chemokines. Immunogenetics. 58: 674-683.
    Huston J S, McCartney J, Tai M S, et al. 1993. Medical application of single-chain antibodies. Int Rev Immuno1. 10: 195-217
    Igniatovic J G. 1995. Immune responses to strueturol protein infectiousbronchitis vims. Avian Pathology. 24: 313-332.
    Ignjatovic J, Could G, Sapats S. 2006. Isolation of a variant infectious bronchitis viruus strains Australia that further illustrates diversity among emerging strains. Arch Viro1. 151 (8): 1567-1585
    Ignjatovic J, Galli L. 1994. The S1 glycoprotein but not the N or M proteins of avian infectious bronchitis virus induces protection in vaccinated chickens. Arch Virol. 138:117-134
    Ignjiatovic J, Galli L. 1993. Structural proteins of avian infectious bronchitis virus:role in immunity and protection. Adv Exp Med Biol. 342: 449-453.
    J.萨姆布鲁克,D.W.拉塞尔著,黄培堂等译. 2002.制备和转化感受态大肠杆菌的Inoue方法:制备超级感受态细胞.分子克隆实验指南(第三版). 93-96
    Jia W, Naqi S A. 1997. Sequence analysis of gene 3, gene 4, gene 5 of avian infectious bronchitis virus strain CU-T2. Gene. 189(2): 189-193.
    Johnson M A, Pooley C, Ignjatovic J, et al. 2003. A recombinant fowl adenovirus expressing the S1 gene of infectious bronchitis virus protects against challenge with infectious bronchitis virus. Vaccine. 21: 2730-2736.
    Johnson R B, Marquardt W W. 1975. The neutralizing characteristics of strain of infectious bronchitis virus as measured by the constant virus serum method in chicken tracheal cultrue. Avian Dis. 19: 82-90.
    Kaiser P, Bumstead N, Goodchild M, et al. 2001. Characterising chicken cytokine genes– IL-1b, IL-6, IL-15 and IL-18. In: KA Schat (editor). Current Progress on Avian Immunology Research: Proceedings of the 7th Avian Immunology Research Group, Ithaca, NY. American Association of Avian Pathologists, Inc, Pennsylvania. 27-32.
    Kaiser P, Hughes S, Bumstead N. 1999. The chicken 9E3/CEF4 CXC chemokine is the avian orthologue of IL8 and maps to chicken Chromosome 4 syntenic with genes flanking the mammalian chemokine cluster. Immunogenetics. 49: 673-684.
    Kaiser P, Mariani P. 1999. Promoter sequence, exonintron structure and synteny of genetic location show that a chicken with T-cell proliferative activity is 1L-2 and not 1L-15. Immunogenetlcs. 49: 26-35
    Kaiser P, Rothwell L, Galyov E E, et al. 2000. Differential cytokine expression in avian cells in response to invasion by Salmonella typhimurium, Salmonella enteritidis and Salmonellagallinarum. Microbiology. 146: 3217-3226.
    Kaiser P, Sonnemans D, Smith LM. 1998a. Avian IFN-γgenes: sequence analysis suggests probable cross-species reactivity among galliforms. Journal of Interferon Cytokine Research. 18: 711-719.
    Kaiser P, Wain H M, Rothwell L. 1998b. Structure of the chicken interferong gene, and comparison to mammalian homologues. Gene. 207: 25-32.
    Karaca K, Sharma J M, Winslow B J,et al.1998.Recombinant fowlpox viruses coexpressing chicken type I IFN and Newcastle disease virus HN and F genes: influence of IFN on protective efficacy and humoral responses of chickens following in ovo or post-hatch ad-ministration of recombinant viruses. Vaccine. 16 (16):1496-1503
    Keeler C L, Reed K L, et al. 1998. Serotype identification of avain infetious bronchitis virus by RT-PCR of the peplomer (S1) gene. Avain Disease. 42: 275-284
    Klasing K C, Peng R K. 2001. Soluble type-I interleukin-1 receptor blocks chicken IL-1 activity. Developmental and Comparative Immunology. 25: 345-352.
    Klumperman J, Locker J K, Meijer A, et al. 1994. Coronavirus M protein accumulation in the Golgi complex beyond the site of viron budding. J. Viro1. 68(10): 6523-6534
    Koch G, Kant A, Cook J K A, et al. 1991. Epitopes of neutralizing antibodies arc localized within three regions of the S1 spike protein of infectious bronchitis virus. World Veterinary Poultry Association. Rauischholzhausen. 154-160
    Kwon H M, Jackwood M W, Jack G J. 1993. Differentiation of ifectious bronchitis virus serotypes using polymerase chain reaction and reaction fragment length polymorphism analysis. Avian Disease. 37: 194-202.
    Lambrecht B, Gonze M, Meulemans G, et al. 2000. Production of antibodies against chicken interferon-g: demonstration of neutralising activity and development of a quantitative ELISA. Veterinary Immunology Immunopathology. 74: 137-144.
    Lambrecht B, Gonze M, Morales D, et al. 1999. Comparison of biological activities of natural and recombinant chicken interferon-g. Veterinary Immunology Immunopathology. 70: 257-267.
    Lang T, Hong-ning W, Dan L, et al. 2008. The immunoreactivity of a chimeric multi-epitope DNA vaccine against IBVin chickens. Biochemical and Biophysical Research Communications. 377: 221-225
    Laurent F, Mancassola R, Lacroix S, et al. 2001. Analysis of chicken mucosal immune response to Eimeria tenella and Eimeria maxima infection by quantitative reverse transcription-PCR. Infection and Immunity. 69: 2527-2534.
    LaVallie E R, McCoy J M. 1995. Gene fusion expression systems in Escherichia coli. Current Opinion of Biotechnology. 6: 501-506
    Lawson S, Rothwell L, Kaiser P. 2000. Turkey and chicken interleukin-2 cross-react in in vitr o proliferation assays despite limited aa sequence identity. Journal of Interferon CytokineResearch. 20: 161-170.
    Lawson S, Rothwell L, Lambrecht B, et al. 2001. Turkey and chicken interferon-g, which share high sequence identity, are biologically cross-reactive. Developmental and Comparative Immunology. 25: 69-82.
    Leibovich S J, Polverini P J, Shepard H M, et al. Macrophage-induced angiogenesis is mediated by tumour necrosis factor-a. Nature. 329: 630-632.
    Li G X, Lillehoj H S, Min W. 2001. Production and characterization of monoclonal antibodies reactive with the chicken interleukin-15 receptor alpha chian. Vet Immunol Immunopathol. 82(1-2): 215-227
    Li J R, Liang X Y, Huang Y W, et al. 2004. Enhancement of the immunogenicity of DNA vaccine against infectious bursal disease virus by co-delivery with plasmid encoding chicken interleukin 2. Virology. 329(1): 89-100.
    Lillehoj H S, Min W,Choi K D, et al. 2001. Molecular, cellular, and functional characterization of chicken cytokines homologous to mammalian IL-15 and IL-2. Vet Immunol Immunopathol. 82(1-2): 229-244
    Lillehoj H S, Choi K D. 1998. Rcoombinant chicken interferon-gamma-mediated inhibition of Eimeria tenella development in vitro and reduction of oocyst production and body weight loss following Eimeria aoervnlina challengc infection. Avian Dis. 42(2): 307-314
    Liu H J, Lee L H, Shih W L, et al. 2003. Detection of infectious bronchitis virus multiplex polymerase chain reaction and squence analysis. Virol Methods. 109(9): 31-37
    Lowenthal J W, Digby M R, York J J. 1995. Production of interferon-g by chicken T cells. Journal of Interferon Cytokine Research. 15: 933-938.
    Lowenthal J W, Lambrecht B, van den Berg T P, et a1. 2000. Avian cytokines-the natural approach to therapcutics. Dev Comp Immunol. 24(2-3): 355-365
    Lynagh G R, Bailey M, Kaiser P. 2000. Interleukin-6 is produced during both murine and avian Eimeria infections. Veterinary Immunology and Immunopathology. 76: 89-102.
    Marcus P I, van der Heide L, Sekellick M J. 1999. Interfenon action on avain viruses. I. Oral administration of chicken interferon-alpha ameliorites Newcastle disease. J Interferon Cytokine Res. 19(8): 881-885
    McDougall J S.1969. Avian infectious bronchitis virus: the protection afforded by an inactivated. Med. Assoc. 90: 51-60
    Miyamoto T, Lillehoj H S, Sohn E J, et al. 2001. Production and characterization of monoclonal antibodies detecting chicken interleukin-2 and the development of an antigen capture enzymelinked immunosorbent assay. Veterinary Immunology and Immunopathology. 80: 245-257.
    Min W, Lillehoj H S, Burnside J, et al. 2001. Adjuvant effects of IL-1 beta, IL-2, IL-8, IL-15, I FN-alpha, IFN-gamma TGF-beta and lymphotactin on DNA vaccination against Eimeria acervulina.Vaccine. 20:267-274
    Muneer M A, Newman J A, Halvorson DA, et al. 1987. Effects of avian infectious bronchitisvirus (Arkansas strain) on vaccinated laying chickens. Avian Dis. 31: 820-828.
    Nix W A, Troeber D S, Kingham B F,et al. 2000. Emergence of subtype strains of the Arkansas serotype of infectious bronchitis virus in Delmarva broiler chickens. Avian Dis. 44:568-581.
    Norihisa Nishimichi, Masayoshi Aosasa, Tsuyoshi Kawashima et al. 2005. Biological activity of recombinant chicken interleukin-6 in chicken hybridoma cells. Veterinary Immunology and Immunopathology. 10(6): 97-105
    Okamura H, Tsutsi H, Komatsu T, et al. 1995. Cloning of a new cytokine that induces IFN-gamma production by T cells. Nature. 378: 88-91.
    Pardoll D M, Beckerleg A M. 1995. Exposing the immunology of naked DNA vaccines. Immunity. 3: 165-169.
    Pei J, Sekellick M J, Marcus P I, et al. 2001. Chicken interferon type I inhibits infectious bronchitis virus replication and associated respiratory illness, J. Interferon Cytokine Res. 21:1071-1077.
    Rothwell L, Hamblin A S, Kaiser P. 2001b. Production and characterisation of monoclonal antibodies specific for chicken interleukin-2. Veterinary Immunology and Immunopathology. 83: 149-160.
    Saif L J. 1993. Coronavirus immunogens. Vet. Microbiol. 37(34):285-297.
    Schalk A F, Hawn M C.1931. An apparently new respiratory disease of baby chicks. J. virus vaccine, Vet. Rec. 85:378-381.
    Schijns V E, Weining K C, Nuijten P, et a1. 2000. Immnnoadjnvant activities of E.coli-and plasmid-expressed recombinant chicken IFN-αI-pha/beta, IFN-gamma and IL-1 beta in 1-day -and 3-week-old chicken. Vaccine. 18(20): 2147-2154
    Schneider K, Klaa R, Kaspers B, et al. 2001. Chicken interleukin-6 cDNA structure and biological properties. European Journal of Biochemistry. 268: 4200-4206.
    Schneider K, Puehler F, Baeuerle D, et al. 2000. cDNA cloning of biologically active chicken interleukin-18. Journal of Interferon Cytokine Research. 20: 879-883.
    Scott T R, Lillehoj H S. 2006. Monoclonal antibodies against chicken interleukin-6. Veterinary Immunology and Immunopathology. 114: 173-177
    Sekellick M J, Ferrandino A F, Hopkins DA, et al. 1994. Chicken interferon gene: cloning, expression, and analysis. Journal of Interferon Cytokine Research. 14: 71-79.
    Sekellick M J, Lowentahl J W, O’Neil T E, et al. 1998. Chicken interferon types I and II enhance synergistically the antiviral state and nitric oxide secretion. Journal of Interferon Cytokine Research. 18: 407-414.
    Seo S H, Collisson E W. 1998. Cytotoxic T lymphocyte responses to infectious bronchitis virus infection. Adv Exp Med Bio1. 440: 456-460.
    Song C S, Lee Y J, Lee C W, et al. 1998. Induction of protective immunity in chickens vaccinated with infectious bronchitis virus S1 glycoprotein expressed by a recombinantbaculovirus. J. Gen. Virol. 79: 719-723.
    Song C S. Lee Y J, Kim J H, et aL. 1998. Epidemiological classitication of infectious bronchitis virus isolated in Korean between 1986 and 1997.Avian Pathology. 27:409-416
    Spaan W, Cavanagh D, Horzinek M C. 1988. Coronaviruses: structure and genome expression. J Gen Virol. 69(Pt 12): 2939-2952
    Stepaniak J A, Shuster J E, Hu W, et al.1999. Production and in vitro characterization of recombinant chicken interleukin-2. Journal of Interferon Cytokine Research. 19: 515-526.
    Stohlman J A, Baric R S, Nelson G N, et al. 1988. Specific interaction between coronavirus leader RNA and nucleocapsid protein. J Viro1. 62: 4288-4295
    Tomai M A, Gibson S J, Imbertson L M, et al. 1995. Immunomodulating and antiviral activities of the imidazoquinoline S-28463. Antiviral Research. 28: 253-264.
    Van Snick J, Cayphas S, Vink A, Uyttenhove C, et al. 1986. Purification and NH2-terminal amino acid sequence of a T-cell-derived lymphokine with growth factor activity for B-cell hybridomas. Proc. Natl. Acad. Sci. U.S.A. 83, 9679-9683.
    Wallis T S, Galyov E E. 2000. Molecular basis of Salmonella-induced enteritis.Molecular Microbiology. 36: 997-1005.
    Wang L, Junker D, Hock L, et al. 1994. Evolutionary implications of genetic variations in the S1 gene of infectious bronchitis virus. Virus Res. 34: 327-338.
    Weining K C, Sick C, Kaspers B, Staeheli P. 1998. A chicken homologue of mammalian interleukin-1b: cDNA cloning and purification of active recombinant protein. European Journal of Biochemistry. 258: 994-1000.
    Wigley P, Berchieri J A, Page K L, et al. 2001. Salmonella enterica serovar Pullorum persists in splenic macrophages and in the reproductive tract during persistent, disease-free carriage in chickens. Infection Immunity. 69: 7873-7879.
    Williams A K, Wang L, Sneed L W, et al. 1992. Comparative analysis of the nucleocapsid genes of several strains of infectious bronchitis virus and other coronavirus. Virus Reserch. 25: 213-222.
    Winerfield R W, Hitchner S B. Etiology of an infectious nephritis-nephrosis syndrome. Am. Vet. Med. Assoc. 78: 413-422
    Wolff J A, Malone R W, Williams P, et al. 1990. Direct gene transfer into mouse muscle in vivol. Science. 247: 1465- 1468.
    Wuyts A, Proost P, Van Damme J. 1998. Interleukin-8 and other CXC chemokines. In: AW Thomson (editor). The Cytokine Handbook 3rd edition. Academic Press, San Diego. 229-269.
    Zhang M, Tracey K J. 1998. Tumor necrosis factor. In: AW Thomson (editor). The Cytokine Handbook 3rd edition. Academic Press, San Diego. 517-547.
    Zhang S P, Lillehoj H S, Ruff M D. 1995. In vivo role of tumor necrosislike factors in Eimeria tenella infection. Avian Diseases. 39: 859-866.
    Zwaagstra K, Zeijst B A M, Kusters J G, et al. 1992. Rapid detection and identifcation of avian infectious bronchitis virus. Journalof Clinical Microbiology. 30(1): 79-84.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700