结核分支杆菌Ag85B-ESAT6融合蛋白的表达、纯化及其免疫学特性的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
结核病(Tuberculosis,TB)是由结核分支杆菌(Mycobacterium tuberculosis,MTB)所致以呼吸系统感染为主的慢性传染病。唯一的预防疫苗卡介苗(bacille calmetteguerin, BCG)保护性不完善,需有效的疫苗来控制TB的传播与蔓延。结核分枝杆菌亚单位疫苗的研究有望解决卡介苗预防结核效果不稳定的问题。研究发现MTB培养上清滤液蛋白(culture filtrate protein, CFP)中Ag85B和ESAT6均能刺激机体产生保护性免疫反应,是机体抗结核感染的有效靶抗原。因此,本试验通过构建融合表达Ag85B-ESAT6的原核表达载体,获得Ag85B-ESAT6融合蛋白,测定分析该蛋白在小鼠体内的免疫学特性和抵抗MTB感染的保护力。
     1.采用PCR方法分别从MTB H37Rv株DNA基因组中扩增Ag85B和ESAT6基因,在ESAT6基因上游引入48bp的柔性linker结构,确保两蛋白的正确折叠。将各目的片段克隆至pMD18-T载体中进行测序。鉴定阳性重组质粒pMD18-T-Ag85B和pMD18-T-ESAT6,经测序证实与Genebank公布的基因序列完全一致。将Ag85B和ESAT6基因亚克隆入pPROEXHTa原核表达载体,酶切鉴定阳性重组质粒pPROEXHTa-Ag85B-ESAT6,并用IPTG进行诱导表达。SDS-PAGE检测和Western-blot鉴定表明,在相对分子量为45 kD的位置有特异性目的蛋白表达。采用Ni-NTA亲和色谱柱在变性条件下纯化得到了Ag85B-ESAT6融合蛋白。
     2.用Ag85B-ESAT6原核表达融合蛋白免疫BALB/c小鼠,用ELISA检测证明,免疫小鼠血清中的特异性抗体滴度达到1∶12 800。将BALB/c小鼠用MTB毒株H37Rv经尾静脉注射感染。4周后,脱颈处死小鼠,无菌条件下进行脾脏和肺脏匀浆,倍比稀释后接种于7H10平板,37℃培养3~4周,计数细菌菌落形成单位(cloning forming units,CFU),以观察免疫小鼠对MTB毒株攻击的抵抗作用。结果表明,与生理盐水组相比,试验组和BCG组对MTB在脾脏和肺脏中的增殖均有抵抗作用(P <0.05);但与BCG组相比,试验组对MTB在脾脏和肺脏中增殖的抵抗作用不如BCG组(P >0.05)。
     在大肠杆菌表达系统中成功表达并纯化出Ag85B-ESAT6融合蛋白,该蛋白能够分别与Ag85B和ESAT6的mAb发生特异性反应,表明具有一定的生物活性。小鼠免疫结果显示:Ag85B-ESAT6能诱发一定水平的细胞免疫应答和体液免疫应答,并产生一定的免疫保护力,可以抵御MTB的感染。为进一步研究Ag85B-ESAT6疫苗的免疫学特性及与其他疫苗的优势组合,用于TB新型疫苗的开发提供了实验数据和物质基础。
Tuberculosis (TB) is a chronic infectious disease caused by the pathogen Mycobacterium tuberculosis (MTB). BCG is currently the only vaccine against TB, but it shows little efficacy on the pulmonary TB of adults. So, developing an efficient new kind of vaccine is important to against TB. The study about subunit vaccine of MTB may solve the problem that using BCG to prevent TB is unstable. Both Ag85B and ESAT6 in CFP of MTB were reported efficient targent antigen against TB, that could stimulate protective immune response. In our study, we have constructed prokaryotic recombinant plasmid expressing Ag85B and ESAT6 fusion protein of MTB and obtained pure protein. After immunize mice, the immunological properties and protective efficacy of fusion protein against MTB infection are evaluateed. The results shown as follows:
     1. Ag85B and ESAT6 genes were amplified by polymerase chain reaction(PCR) from DNA genome of Mycobacterium tuberculosis H37Rv strain of MTB, and a flexible chain with 48bp was linked between Ag85B and ESAT6 genes, in order to ensure the correct folding of the fusion protein. The two genes were further cloned into pMD18-T respectively to analysis the DNA sequence. Identified the positive recombinant plasmid pMD18-T-Ag85B and pMD18-T-ESAT6, then we analyzed the DNA sequence which were identical with that reported by GenBank. The results confirmed that we had inserted the right sequence of linker successfully. Subsequently, Ag85B and ESAT6 genes were subcloned into the prokaryotic expression vector pPRO-EXHTa. The positive recombinant plasmid pPROEXHTa -Ag85B-ESAT6 was digested with restrictive enzyme and induced with IPTG. The analysis of SDS-PAGE showed that there was a specific protein expression brand at 45kD molecular mass, and the fusion protein was further identified by Western-blot. It mainly existed in inclusion body, and the fusion protein was purified by affinity chromatograph of Ni-NTA column.
     2. BALB/c mice were immunized subcutaneously three times at 2-week interval, by embedded in fold groin with recombinant fused protein loaded to nitrocellulose filter. The control groups were given BCG and saline respectively. The specific antibody titers in immune groups were detected by ELISA. The results showed that the antibody titers of Ag85B-ESAT6 increased up to 1:12800. BALB/c mice were challenged i.v. with H37Rv of MTB strain. Four weeks later, separated the lung and spleens from the mice aseptically. The tissue were homogenated and multiple diluted, then inoculated into 7H10 plate. They were cultivated 3 to 4 weeks at 37℃. Subsequently, we counted the cloning forming units (CFU) to observe the resist of MTB strain for immuned mice. The results indicated that than experimental group and the BCG group resisted the proliferative of MTB in spleens and lungs compared with the saline group(P <0.05). Nevertheless, the BCG group was better the experimental group in resisting the proliferative of MTB in spleens and lungs(P >0.05).
     Ag85B-ESAT6 fusion protein was expressed and purified in coli successfully. This protein can develop specific reaction with mAb of Ag85B and ESAT6. It indicated that this protein had some biological activity. Ag85B-ESAT6 fusion protein could induce cellular immunologic response and humoral immunoresponse in the mice, and resisted MTB proliferation in the lungs and spleens effectively. It provides some new clues for researching prevention and treatment of tuberculosis.
引文
[1] WHO report 2007. Global tuberculosis control: surveillance, planning, financing. World Health Organization.
    [2] I.M. Orme. Current progress in tuberculosis vaccine development[J]. Vaccine 2005,23:2105-2108.
    [3]全国TB流行病学抽样调查技术指导组.第四次全国TB流行病学抽样调查报告[J].中华结核病和呼吸杂志,2002,25(1):3-7.
    [4]全球结核病控制和患者治疗耐多药/广泛耐药结核病高负担国家部长级会议.北京,2009年4月1-3日.
    [5]刘剑君,幺鸿雁.我国结核病的流行现状和防治对策.预防医学论坛, 2006, 12(5): 638-640.
    [6]龚真莉,陈国栋,刘光远.结核分枝杆菌的分子生物学特点[J].畜牧兽医杂志,2007,27(3):19-21.
    [7] van Crevel R, Ottenhoff THM, van der Meer JWM. Innate immunity to Mycobacterium tuberculosis. Clin. Microbiol. Rev, 2002,15: 294 - 309.
    [8] Kusner, D.J. Mechanisms of mycobacterial persistence in tuberculosis. Clin Immunol, 2005,114(3): 239-247.
    [9] Schorey JS, Carroll MC, Brown EJ. A macrophage invasion mechanism of pathogenic mycobacteria[J]. Science, 1997,277:1091–1093.
    [10] Boom WH, Chervenal KA, Mincek MA, et al. Role of the mononuclear phagocyte as an antigen- presenting cell for human cells activated by live mycobacterium tuberculosis[J]. Infect Immun, 1992,60(9):3480-3488.
    [11] Steffen Stenger, Modlin RL. T cell mediated immunity to Mycobacterium tuberculosis[J].Curr Opin in Microbiol,1999, 2(1):89-93.
    [12] Flynn JL, Ernst JD. Immune responses in tuberculosis[J]. Curr Opin Immunol, 2000, 12(4):432-436.
    [13] Kurts C, Carbone FR, Barnden M, et al. CD4+T Cell Help Impairs CD8+T Cell Deletion Induced by Cross-presentation of Self-Antigens and Favors Autoimmunity[J]. Exp Med, 1997, 186(12): 2057-2062.
    [14] Lazarevic V, Flynn J. CD8+T Cells in Tuberculosis[J]. Am J Respir Crit Care Med, 2002, 166(8): 1116-1121.
    [15] Doi T, Yamada H, Yajima T, et al. H2-M3-restricted CD8+T cells induced by peptide-pulsed dendritic cells confer protection against Mycobacterium tuberculosis[J]. Immunol, 2007, 178: 3806-3813.
    [16] Bukowski JF, Morita CT, Tanaka Y, et al. V gamma 2V delta 2 TCR-dependent recognition of non-peptide antigens and Daudi cells analyzed by TCR gene transfer[J].Immunol,1995, 154(3): 998-1006.
    [17] Johnson BJ, Ress SR, Willcox P, et al. Clinical and immune responses of tuberculosis patients treated with low-dose IL-2 and multidrug therapy[J]. Cytokines Mol Ther, 1995, 1(3):185-196.
    [18] Shingo H, Naoyuki N, Takeshi K, et al. Preliminary evaluation of soluble IL-2 receptor and type III procollagen N-terminal aminopeptide in pleural fluid for differentiating tuberculous, carcinomatous and parapneumonic pleural effusions[J]. Respirology, 2002, 7(4):311-315.
    [19] Flynn JL, Chan J. Tuberculosis: latency and reactivation[J]. Infect Immun,2001, 69(7):4195-4201.
    [20] Gazzinell RT, Wysocka M, Hayashi S, et al. Parasite-induced IL-12 stimulates early synthesis and resistance during acute infection with Toxoplasma gondii[J]. Immunol, 1994, 153(6):2533-2543.
    [21] Rhoades ER, Goopper AM, Omne IM. Chemokine response in mice infected with Mycobacterium tuberculosis[J].Infect Immun,1995,63(10):3871-3877.
    [22] Cooper AM, Magram J, Ferrante J, et al. Interleukin-12 (IL-12) is crucial to the development of protective immunity in mice intravenously infected with Mycobacterium tuberculosis[J]. Exp Med, 1997, 186(1):39-45.
    [23] Flynn JL, Goldstein MM, Triebold KJ, et al. IL-12 increases resistance of BALB/c mice to Mycobacterium tuberculosis infection[J]. Immunol, 1995,155(5):2515-2524.
    [24] Das G, Sheridan S, Janeway CA. The Source of Early IFN-γThat Plays a Role in Th1 Priming[J]. Immunol, 2001, 167(4): 2004-2010.
    [25] Syed Ahamed Kabeer B, Sikhamani R, Swaminathan S, et al. Role of Interferon Gamma Release Assay in Active TB Diagnosis among HIV Infected Individuals[J]. PLoS ONE,2009, 4(5):e5718.
    [26] Cooper AM, Dalton DK, Stewart TA, et al. Disseminated tuberculosis in IFN-γgene-disrupted mice[J]. Exp Med, 1993,178(6): 2243-2248.
    [27] Hovav, A.H., Y. Fishman, and H. Bercovier. Gamma interferon and monophosphoryl lipid A-trehalose dicorynomycolate are efficient adjuvants for Mycobacterium tuberculosis multivalent acellular vaccine[J]. Infect Immun, 2005, 73(1): 250-257.
    [28] Flynn JL, Chan J, Triebold KJ, et al. An essential role for Interferon-γin resistance to Mycobacterium tuberculosis infection[J]. Exp Med,1993,178(6):2249-2254.
    [29] Lalvani A, Brookes R, Wilkinson RJ, et al. Human cytolytic and interferon gamma- secreting CD8 T lymphocytes specific for Mycobacterium tuberculosis[J]. PNAS, 1998, 95(1):270-275.
    [30] Ottenhoff TH, Kumararatne D, Casanova JL. Noval human immunodeficiencies reveal the essential role of type-1 cytokines in immunity to intracellular bacteria[J]. Immunol Today, 1998,19(11): 491-494.
    [31] Ladel CH, Szalay G, Reidel D, et al. Interleukin-12 secretion by Mycobacterium tuberculosis infected macrophages[J].Infect Immun,1997,65(5): 1936-1938.
    [32] Henderson RA, Watkins SC, Flynn JL. Activation of human dendritic cells following infection with Mycobacterium tuberculosis[J]. Immunol, 1997, 159 (2):635-643.
    [33] Flynn JL, Goldstein MM, Chan J, et al. Tumor necrosis factor is required in the protective immune response against M.tuberculosis in mice[J].Immunity,1995, 2(6):561-572.
    [34] Bean AGD, Roach DR, Briscoe H, et al. Structural deficiencies in granuloma formation in TNF gene targeted mice underlie the heightened susceptibility to aerosol Mycobacterium tuberculosis infection ,which is not compensated for by lymphotoxin[J]. Immunol, 1999,162(6):3504-3511.
    [35] Moreira AL, Tsenova L, Wang J, et al. Effect of cytokine modulation by thalidomide on the gramomatous response in murine tuberculosis[J].Tubercle Lung Disease, 1997,78(1):47-55.
    [36] Hodge DJ, Marino MW, Horton MR, et al. Inhibition of interferon induced interleukin 12 production:a potential mechanism for the anti-inflammatory activities of tumor necrosis factor[J].PNAS, 1998,95(23): 13806-13811.
    [37] Fenhalls G, Wong A, Bezuidenhout J, et al. In situ production of gamma interferon, interleukin-4, and tumor necrosis factor alpha mRNA in human lung tuberculous granuloma[J].Infect Immun, 2000, 68(5):2827- 2836.
    [38] Johnson BJ, Ress SR, Willcox P, et al. Clinical and immune responses of tuberculosis patients treatedwith low-dose IL-2 and multidrug therapy[J]. Cytokines Mol Ther, 1995, 1(3):185-196.
    [39] Ladel R, Miyajima A, Mee PJ, et al. Lethal tuberculosis in interleukin-6-deficient mutant mice[J]. Blood, 1996, 88(7):2458-2464.
    [40] Reed JA, Ikegami M, Robb L, et al. Cytokine gene expression by cultures of human lymphocytes with autologous Mycobacterium tuberculosis-infected monocytes[J].AmJ Physiol Lung Cell Mol Physiol, 2000, 278(6):1164-1171.
    [41] Gong J, Zhang M, Modlin R, et al. Interleukin-10 downregulates Mycobacterium tuberculosis-induced Th1 responses and CTLA4 expression[J]. Infect Immun, 1996, 64(3):913-918.
    [42] Rojas M, Olivier M, Gros P, et al. TNFαand IL-10 modulate the induction of apoptosis by virulent Mycobacterium tuberculosis in murine macrophages[J].Immunol, 1999, 162(10): 6122-6131.
    [43] Cole ST, Brosch R, Parkhill J, et al. Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence[J]. Nature, 1998,11: 537-544.
    [44] Bukowski JF, Morita CT, Tanaka Y, et al. V gamma 2V delta 2 TCR-dependent recognition of non-peptide antigens and Daudi cells analyzed by TCR gene transfer[J]. Immunol,1995,154(3): 998-1006.
    [45] Fine PE. Variation in protection by BCG: implications of and for heterologous immunity[J]. Lancet,1995,346(8986):1339-1345.
    [46] P. Andersen, T.M. Doherty, TB subunit vaccines-putting the pieces together[J]. Micro Infect, 2005, 7:911-921
    [47] Rook GA, Dheda K, ZumLa A. Immune responses to tuberculosis in developing countries: implications for new vaccines[J]. Nat Rev Immunol 2005, 5(8):661-667.
    [48] Lewis KN, Liao R, Guinn KM, et al. Deletion of RD1 from Mycobacterium tuberculosis mimics bacille Calmette-Guerin attenuation[J]. Infect Dis, 2003, 187(1):117-123.
    [49] Kaufmann SH. Tuberculosis: back on the immunologists’agenda[J]. Immunity, 2006, 24:351-357.
    [50] Andersen P, Doherty TM. The success and failure of BCG– implications for a novel tuberculosis vaccine[J]. Nat Rev,2005,3:656–662.
    [51] Andersen P, Andersen AB, Sorensen AL, et al. Recall of long-lived immunity to Mycobacterium tuberculosis infection in mice[J]. Immunol, 1995, 154(7):3359-3372.
    [52] Dietrich J, Aagaard C, Leah R,et al. Exchanging ESAT6 with TB10.4 in an Ag85B fusion molecule based tuberculosis subunit vaccine: efficient protection and ESAT6-based sensitive monitoring of vaccine efficacy[J]. Immunol 2005;174:6332-6339.
    [53] Li ZM, Howard A, Kelley C, et al. Immunogenicity of DNA vaccines expressing tuberculosis proteins fused to tissue plasminogen activator signal sequences[J]. Infect Immun, 1999,67(9):4780-4786.
    [54] Castan?on-Arreola M, Lo′pez-Vidal Y, Espitia-Pinzo′n C. A new vaccine against tuberculosis shows greater protection in a mouse model with progressive pulmonary tuberculosis[J]. Tuberculosis 2005,85:115-126.
    [55] Erb KJ, Kirman J, Woodfield L, et al. Identification of potential CD8+T-cell epitopes of the 19kua and AhpC proteins from Mycobacterium tuberculosis. No evidence for CD8+ T-cell priming against the identified peptides after DNA-vaccination of mice[J]. Vaccine, 1998, 16(7):692-697.
    [56] Anderson P, Askgaard D, Gottschau A, et al. Identification of immunodominant antigens during infection with Mycobacterium tuberculosis[J]. Scand J Immunol, 1992, 36(6):823-831.
    [57] Olsen AW, Laurens AH, Pinxteren V, et al. Protection of Mice with a Tuberculosis Subunit Vaccine Based on a Fusion Protein of Antigen 85B and ESAT-6[J]. Infect Immun, 2001, 69(5):2773-2778.
    [58] Langermans Jan AM, Doherty TM, Vervenne RAW et al. Protection of macaques against Mycobacterium tuberculosis infection by a subunit vaccine based on a fusion protein of antigen 85B and ESAT-6[J]. Vaccine 2005;23:2740–2750.
    [59] Orme IM. Preclinical testing of new vaccines for tuberculosis: A comprehensive review[J]. Vaccine, 2006, 24:2-19.
    [60] Agger EM, Rosenkrands I, Hansen J et al. Cationic liposomes formulated with synthetic mycobacterial cordfactor (CAF01): a versatile adjuvant for vaccines with different immunological requirements[J]. PLoS ONE, 2008,3(9):e3116.
    [61] Stenger S. An antimicrobial activity of cytolytic T cells mediated by granulysin[J]. Science, 1998, 282(5386):121-125.
    [62] Lowrie DB, Silva CL. Enhancement of immunocompetence in tuberculosis by DNA vaccination[J]. Vaccine, 2000(18):1712-1716.
    [63]范雄林,李元,徐志凯.结核分支杆菌基因疫苗研究进展[J].细胞与分子免疫学杂志, 2001, 17(4):121-123.
    [64] Morris S, Kelley C, Howard A, et al. The immunogenicity of single and combination DNA vaccines against tuberculosis[J]. Vaccine, 2000,18(20): 2155-2163.
    [65] Kamath AT, Feng CG, Macdonald M, et al. Differential Protective Efficacy of DNA Vaccines Expressing Secreted Proteins of Mycobacterium tuberculosis[J]. Infect Immun, 1999, 67(4): 1702-1707.
    [66]师长宏,范雄林,徐志凯,等.结核分支杆菌分泌蛋白Ag85B-ESAT-6的融合表达及纯化[J].中华结核和呼吸杂志,2004,(2): 89-92.
    [67]师长宏,范雄林,徐志凯,等.融合表达Ag85B-ESAT-6的结核分支杆菌真核表达载体的构建及其免疫原性[J].第四军医大学学报,2004,25(2):121-124.
    [68]师长宏,徐志凯,朱德生,等.分泌表达Ag85B与ESAT6融合蛋白的重组卡介苗菌株的筛选[J].中华结核和呼吸杂志, 2005,28:254-257.
    [69] Ha SJ, Jeon BY, Kim SC, et al. Therapeutic effect of DNA vaccines combined with chemotherapy in a latent infection model after aerosol infection of mice with Mycobacterium tuberculosis[J]. Gene Ther 2003,10(18):1592-1599.
    [70] Ha SJ, Jeon BY, Youn JI, et al. Protective effect of DNA vaccine during chemotherapy on reactivation and reinfection of Mycobacterium tuberculosis[J]. Gene Ther 2005, 12(7):634–638.
    [71] Nuermberger E, Tyagi S, Williams KN, et al. Rifapentine, Moxifloxacin, or DNA Vaccine Improves Treatment of Latent Tuberculosis in a Mouse Model[J]. Respir Crit Care Med, 2005, 172(11): 1452-1456.
    [72] Hess J, Grode L, Hellwig J, et al. Protection against murine tuberculosis by an attenuated recombinant Salmonella typhimurium vaccine strain that secretes the 30-kua antigen of Mycobacterium bovis BCG[J]. FEMS Immunol Med Microbiol, 2000, 27(4):283-289.
    [73] Chan J, Kaufmann S. Immune mechanisms of protection in tuberculosis pathogenesis, protection and control.Ed[A]. American Society of Microbiology[C]. Washington, D.C: BR Bloom, 1994,9389-9415.
    [74] Demangel C, Garnier T, Rosenkrands I, et al. Differential effects of prior exposure to environmentalmycobacteria on vaccination with Mycobacterium bovis BCG or a recombinant BCG strain expressing RD1 antigens[J]. Infect Immun, 2005, 73:2190-2196.
    [75] Horwitz MA, Harth G, Dillon BJ, et al. Recombinant bacillus Calmette-Guerin(BCG) vaccines expressing the Mycobacterium tuberculosis 30-kua major secretory protein induce greater protective immunity against tuberculosis than conventional BCG vaccines in a highly susceptible animal model[J].PNAS,2000,97(25):13853-13858.
    [76] Bao L, Chen W, Zhang H, et al. Virulence, immunogenicity, and protective efficacy of two recombinant Mycobacterium bovis Bacillus Calmette-Guerin strains expressing the antigen ESAT6 from Mycobacterium tuberculosis[J]. Infect Immun, 2003, 71(4): 1656-1661.
    [77] Hess J, Miko D, Catic A, et al. Mycobacterium bovis Bacille Calmette Guerin strains secreting listeriolysin of Listeria monocytogenes[J].PNAS,1998,95(9):5299-5304.
    [78]赵宝华,张莉,石振华.基因重组卡介苗的优点及应用[J].生物学通报. 2002,37(1):18-20.
    [79]胡佳杰,文学明,肖爱清,等.重组BCG-hsp70疫苗有关毒性实验研究[J].广西预防医学,2002,8(4):233-235.
    [80]忠华,万康林,陈创夫.结核分枝杆菌主要分泌蛋白的研究进展[J].中国人兽共患病学报,2007,23(7):722-724.
    [81] Andersen P, Andersen AB, Sorensen AL, Nagai S.Recall of long-lived immunity to Mycobacterium tuberculosis infection in mice[J]. Immunol, 1995,154: 3359-3372.
    [82] Belisle JT,Vissa VD,Sierert T et al. Role of the major antigen of Mycobacterium tuberculosis in cell wall biogenesis[J].Seience,1997,276:1420-1424
    [83] Lozes E,Huygen K,Content J et al. Immunogenicity and efficacy of a tuberculosis DNA vaccine encoding the components of the secreted antigen 85 complex[J]. Vaccine,1997,15:830-833
    [84] Montgomery DL,Huygen K,Yawman AM et al. Induction of humoral and cellular immune response by vaccination with M.tuberculosis antigen 85 DNA[J].Cell MolBiol.1997,43:285-292
    [85] Harth G, Lee BY, Wang J, et al. Novel insights into the genetics,biochemistry, and immunocytoche- mistry of the 30-kilodalton major extracellular protein of Mycobacterium tuberculosis[J]. Infect Immun, 1999,64(8):3038-3047.
    [86] Huygen K,Content J,Denis O,et al.Immunogenicity and protective efficacy of a tuberculosis DNA vaccine[J].Nat Med,1996,2(8): 857-859.
    [87] Sinha RK,Verma I,Khuller Gk. Immunobiological properties of a 30KD secretory protein of Mycobacterium tuberculosis H37Rv[J]. Vaccine,1997,15:689-699.
    [88] Zhu BD,Qie YQ,Wang JL,et al. Chitosan microspheres enhance the immunogenicity of an ag85b-based fusion protein containing multiple T-cell epitopes of mycobacterium tuberculosis[J].Eur J Pharm Biopharm,2007,66(3):318-326.
    [89]张灵霞.吴雪琼.董恩军.Ag85a-卡介苗重组疫苗的构建及鉴定[J].中囝现代医学杂志,2007,17(8):921.
    [90] Kamath Al,Feng CG,Macdonald M et al.Differential Proteetive efficacy of DNA Vaccines expressing secreted proteins of Mcobacterium tuberculosis[J].Infeetion and Immunity.1999,67:1702-1707
    [91] Doherty TM,Demissie A,Olobo J,et al. Immune responses to the Mycobacterium tuberculosis specific antigen ESAT-6 signal subclinical infection among contacts of tuberculosis patient[J]. Clin Microbiol,2002,40:704-706.
    [92] Harboe M, Oettinger T, Wiker HG, Rosenkrands I, Andersen P.Evidence for occurrence of the ESAT-6protein in Mycobacterium tuberculosis and virulent Mycobacterium bovis and for its absence in Mycobacterium bovis BCG[J]. Infect.,Immun, 1996, 64: 16 - 22.
    [93] Pollock JM, Andersen P.The potential of the ESAT-6 antigen secreted by virulent mycobacteria for specific diagnosis of tuberculosis[J]. Infect Dis, 1997, 175(5): 1251-1254.
    [94] Ulrichs T, Munk ME, Mollenkopf H,et al. Differential T cell responses to Mycobacterium tuberculosis ESAT6 in tuberculosis patients and healthy donors [J].Eur Immunol, 1998, 28(12): 3949-3958.
    [95] Ravn P, Demissie A, Eguale T, et al.T cell responses to the ESAT-6 antigen from Mycobacterium tuberculosis[J]. Infect Dis, 1999, 179(3): 637-645.
    [96] Mustafa AS, Amoudy HA, Wiker HG,et al.Comparison of antigen-specific T-cell responses of tuberculosis patients using complex or single antigens of Mycobacterium tuberculosis [J].Scand Immunol, 1998, 48(5): 535-543.
    [97]师长宏,安家泽,唐小凤等.结核分枝杆菌MPT64-ESAT6融合蛋白在小鼠体内诱导的免疫应答及其保护力[J].第四军医大学学报,2006,27(9):769-771.
    [98] Ganguly N,Giang PH,Basu SK,et a1. Mycobacterium tuberculosis 6-kDa early secreted antigenic target(esat6) protein downregulates lipopolysaccharide-induced c-myc expression by modulating the extracellular signal regulated kinases 1/2[J]. BMC Immunol,2007,8(1):24.
    [99]张翠英.董恩军,朱琳张等. ESAT6重组卡介苗对结核病预防作用的研究[J].传染病信息, 2006, 19(4):194-196.
    [100] Skjot R, Oettinger T, Rosenkrands I, et al. Comparative evaluation of lowmolecularmass proteins from Mycobacterium tuberculosis identifies members of the esat6 family as immunodominant T cell antigens[J]. Infect Immun, 2000,68(1):214-220.
    [101] Pollock JM, Andersen P. The potential of the ESAT-6 antigen secreted by virulent mycobacteria for specific diagnosis of tuberculosis [J]. Infect Dis,l997,175:l25l-l254.
    [102] Morris S,Kelley C,Howard A,et al. The immunogenicity of single and combination DNA vaccines against tuberculosis [J]. Vaccine,2000,18(20):2155-2163.
    [103] Brandt L, Oettinger T, Holm A,et al. Key epitopes on the ESAT-6 antigen recognized in mice during the recall of protective immunity to Mycobacterium tuberculosis[J]. Immunol,1996,157(8):3527- 3533.
    [104] Agger EM, Cassidy JP, Brady J, et al. Adjuvant modulation of the cytokine balance in Mycobacterium tuberculosis subunit vaccines; immunity, pathology and protection[J]. Immunology 2008,124:175-185.
    [105] Cai H, Hu XD, Yu DH, et al. Combined DNA vaccine encapsulated in microspheres enhanced protection efficacy against Mycobacterium tuberculosis infection of mice[J]. Vaccine 2005,23:4167-4174.
    [106] Sable SB, Plikaytis BB, Shinnick TM. Tuberculosis subunit vaccine development: impact of physico- chemical properties of mycobacterial test antigens[J]. Vaccine 2007;25:1553-1566.
    [107] Doherty TM, Dietrich J, Billeskov R. Tuberculosis subunit vaccines: from basic science to clinical testing[J]. Expert Opin Biol Ther, 2007,7:1539-1549.
    [108]张海.融合蛋白ESAT6-CFP10结核分枝杆菌疫苗的构建及其免疫学特性研究[D].第四军医大学博士论文.2005年.
    [109]薛莹.结核分枝杆菌分泌蛋白Ag85B基因的克隆、表达、纯化及免疫学特性的初步研究[D].第四军医大学硕士论文.2002年.
    [110]师长宏.融合表达Ag85B-ESAT6的结核病疫苗的构建及其免疫学特性研究[D].第四军医大学博士论文.2004年.
    [111] Chang-hong S, Xiao-wu W, Hai Z,et al Immune responses and protective efficacy of the gene vaccine expressing Ag85B and ESAT6 fusion protein from Mycobacterium tuberculosis[J].DNA Cell Biol, 2008,7(4):199-207.
    [112] Guy B. The perfect mix: recent progress in adjuvant research[J]. Nature reviews.2007,5: 505–517.
    [113] Wiker HG, Mustafa T, Malen H, Riise AM. Vaccine approaches to prevent tuberculosis[J]. Immunol, 2006,64:243–250.
    [114]范雄林,薛莹,李元,等.结核分枝杆菌分泌蛋白Ag85B基因疫苗保护作用的初步研究[J].细胞与分子免疫学杂志,2003,19:90-92.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700