沙门菌OmpD介导的rBCG口服疫苗的制备与鉴定
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
背景
     重组活菌疫苗是以某些减毒或者无毒力的活菌为载体,将病原体的保护性抗原基因插入细菌的基因组或者质粒DNA中并使之高效表达的一种新型疫苗。重组卡介苗(Recombinant Bacillus Calmette-Guerin,rBCG)就是重组活菌疫苗中具有代表性的新型疫苗。它是以BCG为工程菌,借助分子生物学技术对其进行基因改造,利用其活疫苗特性,在机体内表达各种疾病的相关抗原,从而达到预防和治疗多种疾病的目的。本研究小组曾成功将屋尘螨抗原Der p2基因转入BCG中表达,制备出抗原Der p2-rBCG。经静脉和腹腔注射接种后,在小鼠体内诱导了Der p2特异性的Th1优势应答。因此我们推测可以通过抗原rBCG疫苗来治疗对某些特定抗原过敏的疾病。
     目前分枝杆菌几乎全部是以皮下注射的方式接种。但是研究发现,如果短期内重复皮下注射接种rBCG会引起局部严重的迟发性变态反应(DTH),因此我们考虑采用口服途径接种rBCG。而且,我们前期的研究发现给小鼠口服Der p2-rBCG,同样可以诱导抗原特异性的Th1应答[1, 2]。然而,BCG分枝杆菌并不是肠道定植菌,与肠黏膜的亲和力低,大量口服还会引起肠道正常菌群失调及口咽部感染,从而影响免疫效果。文献回顾发现,沙门菌外膜蛋白Omp D介导了沙门菌与肠黏膜上皮的黏附,因此我们设想此外膜蛋白能够介导rBCG与肠道黏膜的高亲和力结合,从而制备出具有肠道高亲和力的rBCG口服疫苗。
     目的
     利用分子生物学及基因工程技术,构建能以串联和并联形式、在细菌表面表达Der p2和Omp D抗原的两种rBCG口服疫苗,为体外实验和临床应用提供基础。
     实验方法和结果
     1. Omp D蛋白的表达及纯化
     以鼠伤寒沙门菌Salmonella typhimurium基因组为模板,通过PCR来扩增Omp D基因,与pMD-18T克隆载体连接后测序,结果与Genbank公布的Omp D基因序列完全一致。将Omp D基因克隆入原核表达载体pET-28a(+),经PCR和酶切鉴定后,阳性质粒命名为pET28a(+)-Omp D,并经IPTG进行诱导表达。SDS-PAGE分析证实成功表达了与预期分子量一致的Omp D蛋白。Western-blot证实该蛋白可与抗6×His-mAb发生特异性反应。可溶性分析显示该蛋白以包涵体形式存在于沉淀中,经Ni+-NTA亲和色谱法纯化获得了目的蛋白,且纯度达90%以上。
     2.兔Omp D多克隆抗体的制备及鉴定
     重组蛋白经变性、复性后,按100μg/kg的纯化蛋白加等量弗氏完全佐剂(FCA)乳化后接种于兔颈背部皮内,间隔2w后再进行第二、三次免疫;第三次免疫结束2w后以等量重组蛋白追加免疫1次,1w后收集血液,分离血清后ELISA检测特异性抗体效价达到1:10 000以上。Western-blot检测表明,该抗体能与Omp D蛋白发生特异性结合,其特异性与敏感性均较好。
     3.两种rBCG口服疫苗的构建与鉴定
     为了获得Der p2-Omp D融合基因,我们重新设计引物,经PCR法分别扩增获得新的Der p2和Omp D基因,测序正确后将两者克隆入原核表达载体pProEX HTb,获得pProEX HTb-Der p2-Omp D质粒。①串联表达:将Der p2-Omp D融合基因亚克隆入穿梭胞壁表达载体pCW,经酶切鉴定阳性命名为pCW-Der p2-Omp D质粒。将此重组质粒电穿导入BCG感受态细胞,构建可胞壁串联表达Der p2-Omp D融合蛋白的rBCG;②并联表达:构建pCW-Der p2与pCW-Omp D两种质粒,并将二者同时电穿导入BCG感受态细胞,以构建胞壁并联表达Der p2和Omp D蛋白的rBCG。经潮霉素抗性筛选的阳性克隆,均采用以下三种方式进行鉴定:PCR特异性扩增目的基因片段;用兔抗Der p2多克隆抗体与兔抗Omp D多克隆抗体对阳性克隆分别进行斑点免疫杂交法和间接免疫荧光法鉴定。证实两种rBCG口服疫苗构建成功,并能与特异性抗体发生反应。
     结论
     1.在E.coli表达系统中成功表达并纯化出Omp D蛋白。该蛋白能够与6×His-mAb发生特异性反应,免疫新西兰兔后获得Omp D多克隆抗体,通过ELISA检测抗体效价达到1:10 000以上。该抗体能与Omp D蛋白发生特异性结合,其特异性与敏感性均较好。
     2.采用基因工程手段制备出以胞壁形式串联和并联表达Der p2和Omp D蛋白的两种rBCG口服疫苗,并通过PCR、斑点免疫杂交法及间接免疫荧光法分别进行鉴定。证实了两种rBCG口服疫苗构建成功。
BACKGROUUND:
     Live recombinant vaccines are based on the use of a live microorganism (virus or bacteria) that acts as a vector for the expression of genes from another organism. The new recombinant microorganism can be used as a vaccine for both organisms. Recombinant Bacillus Calmette-Guerin (BCG) is a typical vaccine of live recombinant vaccines, that insets foreign genes into BCG to construct multivalent vaccines by using molecular biology techniques, then induces long-term cellular and humoral immune responses. Recombinant BCG (rBCG) can prevent and cure many kinds of diseases by expressing associated antigens in vivo. We have constructed rBCG by transferring Dermatophagoides pteronyssinus antigen Der p2 into BCG in our lab. The recombinant Der p2-BCG could stimulate Th1 predominant immune response in mice when injected intraperitoneally or subcutaneously. The results indicated that rBCG vaccines could be used to treat some diseases which were hypersensitive to some specific antigens.
     However, if rBCG vaccines were injected repeatedly in the short term, serious local delayed-type hypersensitivity could be induced. Then, we considered that oral vaccines were administered to mice, and results showed that it could also induce antigen specific Th1 predominant immune response. Nevertheless, BCG doesn’t inhabit in the intestinal tract because of its low affinity to intestinal epithelia. Furthermore, a large dosis of BCG could cause dysbacteria and oropharynx adenitis, thus the immune efficacy is limited. Therefore, in order to improve the affinity of rBCG to intestinal epithelia, the protein Omp D, one of the major adhesion molecules, was used to prepare the rBCG oral vaccine.
     AIM:
     To construct two oral rBCG vaccines expressing Der p2 and Omp D (in form of series connection and parallel connection) antigens on its cell wall.
     METHODS AND RESULTS:
     1. Expression and purification of Omp D protein The Omp D gene amplification was encoded by PCR from genomic DNA of Salmonella Typhimurium, and cloned into vector pMD-18T. The DNA sequence of Omp D was identical with that of Genbank reported. After confirmed by sequencing, the target gene was inserted into expression plasmid pET-28a (+) to construct recombinant plasmid pET28a (+)-Omp D, which was identified by PCR and restrictive enzyme digestion. The recombinant plasmid was transformed into E. coli BL21(DE3) which then expressed Omp D under IPTG induction. The analysis of SDS-PAGE showed that there was a specific protein expression at 40 kDa molecular marker, and the protein was further identified by Western-blot using anti-6×His mAb. Then, it was purified by Ni+-NTA purification system under denaturing condition and its purity was about ninety percent.
     2. Preparation of Omp D polyclonal antibody in rabbit
     A rabbit was immunized with Omp D protein according to the following procedure. The reannealed Omp D protein dissolved in PBS was emulsified with an equal volume of Freund's complete adjuvant. On days 0, 14 and 28, 2 ml of the prepared mixture was intracutaneously injected into the rabbit. On days 42, 2 ml of the Omp D protein dissolved in PBS was injected into the rabbit. On days 49, antibody titers of Omp D protein was measured by ELISA and attained to 1: 10 000. The specificity and sensitivity of Omp D antibody were also analyzed by Western-blot.
     3. Preparation and identification of rBCG oral vaccine
     The genes of Der p2 and Omp D were first amplified by PCR, and then were ligated into pProEX HTb vector respectively, and gained Der p2-Omp D fused gene.①Expressing in form of series connection: The Der p2-Omp D fused gene was subcloned into the shuttle plasmid pCW. The positive recombinant plasmid was named pCW-Der p2-Omp D, and was transformed into BCG competent cells to construct rBCG oral vaccine , which could express the Der p2-Omp D fused protein on its cell wall in the form of series connection.②Expressing in form of parallel connection: The pCW-Der p2 and pCW-Omp D plasmids were transformed into BCG competent cells together to construct the another rBCG oral vaccine, which could express Der p2 and Omp D proteins on its cell wall in the form of parallel connection. The two rBCG oral vaccines were selected by hygromycine, and the positive rBCG were identified by PCR, spot immunifaction and indirect immunofluorescence. The PCR result showed that there was specific amplification of the target gene. Spot immunifaction showed that specific banding of rBCG expressing product with Omp D pAb and Der p2 pAb was observed, indicating that rBCG possesses immunological function. Indirect immunofluorescence showed that specifc green immunofluorescences were observed, indicating that rBCG could express the goal protein on its surface.
     CONCLUSIONS:
     1. Omp D protein was purified successfully in E.coli DH5α. Omp D polyclonal antibody in rabbit was obtained, whose antibody titer attained to 1: 10 000 detected by ELISA. Its high specificity and sensitivity were analyzed by Western-blot.
     2. The two rBCG oral vaccines expressing Der p2 and Omp D proteins on its cell wall in the forms of series connection and parallel connection were preparated by genetic engineering, and then identified by PCR, spot immunifaction and indirect immunofluorescence successfully.
引文
[1]史皆然,师长宏,吴昌归,张金山.口咽胃肠道环境对Der p2-rBCG行为的影响.世界华人消化杂志, 2005,13(5):600-3.
    [2]史皆然,张金山,师长宏,吴昌归.胞壁型rBCG经口服免疫可以诱导BALB/c小鼠产生抗原特异性Th1应答.中华微生物和免疫学杂志, 2007,2(72):107-10.
    [3]张兆山,杨正时,刘纯杰.病原细菌生物学研究与应用.北京:化学工业出版社,2007. 225.
    [4]史皆然,李元,戚好文,李别虎,范雄林. Der p2重组胞壁型E.coli-BCG穿梭表达载体的构建和鉴定,细胞与分子免疫学杂志. 2003,19(2):132-5.
    [5]史皆然,师长宏,吴昌归,李元,戚好文,李别虎,范雄林.分泌表达Der p2的重组BCG的构建与鉴定,解放军医学杂志. 2006,31(8):767-9.
    [6]史皆然,李元,戚好文,李别虎,柏银兰,范雄林,薛莹.屋尘螨抗原Der p2的克隆和表达.第四军医大学学报, 2002,23(13):1161-5.
    [7]史皆然,张新海,师长宏,曹云新,吴昌归,李元,范雄林,戚好文.胞壁表达Der p2的重组BCG对BALB/c小鼠Th细胞免疫应答的影响.细胞与分子免疫学杂志, 2005,2(13):287-9.
    [8]王丽鸳,朱成钢,张耀洲.沙门菌属外膜蛋白(OMP)的分子免疫学研究进展.中国人兽共患病杂志, 2003,19 (4):106-8.
    [9] Nikaido, H. Molecular basis of bacterial outer membrane permeability revisited. Microbiol Mol Biol Rev, 2003, 67(4): 593-656.
    [10] Isibasi A, Ortiz V, Vargas M, Paniagua J, González C, Moreno J, Kumate J. Protection against Salmonella typhi infection in mice after immunizationwith outer membrane proteins isolated from Salmonella typhi 9, 12, d, Vi. Infect Immun, 1988, 56(11):2953-9.
    [11] Puente JL, Alvarez-Scherer V, Gosset G, Calva E.Comparative analysis of the Salmonella typhi and Escherichia coli ompC genes. Gene, 1989, 83(2): 197-206.
    [12] Puente JL, Flores V, Fernández M, Fuchs Y, Calva E.Isolation of an ompC-like outer membrane protein gene from Salmonella typhi. Gene, 1987, 61(1): 75-83.
    [13] Singh SP, Miller S, Williams YU, Rudd KE, Nikaido H. Immunochemical structure of the Omp D porin from Salmonella typhimurium. Microbiology, 1996, 142 (Pt 11): 3201-10.
    [14] Faundez G, Aron L, Cabello FC. Chromosomal DNA, iron-transport systems, outer membrane proteins, and enterotoxin (heat labile) production in Salmonella typhi strains. J Clin Microbiol, 1990, 28(5): 894-7.
    [15] Contreras I, Mu?oz L, Toro CS, Mora GC. Heterogous expression of Escherichia coli porin genes in Salmonella typhi Ty2: regulation by medium osmolarity temperature and oxygen availability. FEMS Microbiol Lett, 1995, 133(1-2): 105-11.
    [16] Alurkar V, Kamat R.Immunomodulatory properties of porins of some members of the family Enterobacteriaceae. Infect Immun, 1997, 65(6): 2382-8.
    [17] Weinberg JB, Ribi E, Wheat RW. Enhancement of macrophage -mediated tumor cell killing by bacterial outer membrane proteins (porins). Infect Immun, 1983, 42(1): 219-23.
    [18] R Singh, A K Shasany, A Aggarwal, S Sinha, B S Sisodia, S P S Khanuja, R Misra Low molecular weight proteins of outer membrane of Salmonella typhimurium are immunogenic in Salmonella induced reactive arthritis revealed by proteomics. Clin Exp Immunol, 2007, 148(3): 486-93.
    [19] Nikaido H. Molecular basis of bacterial outer membrane permeability revisited. Microbiol Mol Biol Rev, 2003, 67(4): 593-656.
    [20] Santiviago CA, Toro CS, Hidalgo AA, Youderian P, Mora GC. Global regulation of the Salmonella enterica serovar typhimurium major porin, Omp D. J Bacteriol, 2003, 185(19): 5901-5.
    [21] Bossi L, Maloriol D, Figueroa-Bossi N. Porin biogenesis activates the sigma(E) response in Salmonella hfq mutants. Biochimie, 2008, 90(10): 1539-44.
    [22] Oropeza R, Sampieri CL, Puente JL, Calva E. Negative and positive regulation of the non-osmoregulated ompS1 porin gene in Salmonella typhi: a novel regulatory mechanism that involves OmpR. Mol Microbiol, 1999, 32(2): 243-52.
    [23] Hara-Kaonga B, Pistole TG. OmpD but not OmpC is involved in adherence of Salmonella enterica serovar typhimurium to human cells. Can J Microbiol, 2004, 50(9): 719-27.
    [24] cClelland M, Sanderson KE,Spieth J, Clifton SW,Latreille P, Courtney L,Porwollik S, Ali J, Dante M, Du F,Hou S, Layman D, Leonard S, Nguyen C, Scott K, Holmes A,Grewal N, Mulvaney E, Ryan E,Sun H, Florea L, Miller W,Stoneking T, Nhan M,Waterston R and Wilson RK. Complete genome sequence of Salmonella enterica serovar Typhimurium LT2. Nature, 2001, 413(6858): 852-6.
    [25] Arockiasamy A, Krishnaswamy S. Purification of integral outer-membrane protein Omp C, a surface antigen from Salmonella typhi for structure-function studies: a method applicable to enterobacterial major outer-membrane protein. Anal Biochem, 2000, 283(1): 64-70.
    [26] Kim S, Kim H, Reuhs BL, Mauer LJ. Differentiation of outer membrane proteins from Salmonellaenterica serotypes using Fourier transform infrared spectroscopy and chemometrics. Lett Appl Microbiol, 2006, 42(3): 229-34.
    [27] Lobos SR, Mora GC. Alteration in the electrophoretic mobility of Omp C due to variations in the ammonium persulfate concentration in sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Electrophoresis, 1991, 12(6): 448-50.
    [28] Kwang J, Littledike ET, Keen JE. Use of the polymerase chain reaction for Salmonella detection. Lett Appl Microbiol, 1996, 22(1): 46-51.
    [29] Nandakumar KS, Palanivel V, Muthukkaruppan V. Diagnosis of typhoid fever: detection of Salmonella typhi porins-specific antibodies by inhibition ELISA. Clin Exp Immunol, 1993, 94(2): 317-21.
    [30] Verdugo-Rodriguez A, Gam LH, Devi S, Koh CL, Puthucheary SD, Calva E, Pang T. Detection of antibodies against Salmonella typhi outer membrane protein (OMP) preparation in typhoid fever patients. Asian Pac J Allergy Immunol, 1993, 11(1): 45-52.
    [31] Ismail A, Hai OK, Kader ZA. Demonstration of an antigenic protein specific for Salmonella typhi. Biochem Biophys Res Commun, 1991, 181(1): 301-5.
    [32] Kim CJ, Nagaraja KV, Pomeroy BS. Enzyme-linked immunosorbent assay for the detection of Salmonella enteritidis infection in chickens. Am J Vet Res, 1991, 52(7): 1069-74.
    [33] Hopkins SA, Niedergang F, Corthesy-Theulaz IE, Kraehenbuhl JP. A recombinant Salmonella typhimurium vaccine strain is taken up and survives within murine Peyer's patch dendritic cells. Cell Microbiol, 2000, 2(1): 59-68.
    [34] Ordog T, Redelman D, Miller LJ, Horvath VJ, Zhong Q, Almeida-Porada G, Zanjani ED, Horowitz B, Sanders KM. Purification of interstitial cells of Cajal by fluorescence- activated cell sorting. Am J Physiol Cell Physiol, 2004, 286(2): C448-56.
    [35] Gil-Cruz C, Bobat S, Marshall JL, Kingsley RA, Ross EA, Henderson IR, Leyton DL, Coughlan RE, Khan M, Jensen KT, Buckley CD, Dougan G,MacLennan IC, López-Macías C, Cunningham AF. The porin OmpD from nontyphoidal Salmonella is a key target for a protective B1b cell antibody response. Proc Natl Acad Sci USA, 2009, 106(24): 9803-8.
    [36] Singh R, Shasany AK, Aggarwal A, Sinha S, Sisodia BS, Khanuja SP, Misra R. Low molecular weight proteins of outer membrane of Salmonella typhimurium are immunogenic in Salmonella induced reactive arthritis revealed by proteomics. Clin Exp Immunol, 2007, 148(3): 486-93.
    [37] Bloom BR, Jacobs Jr WR.New strategies for leprosy and tuberculosis and for development of bacillus Calmette–Guerin into a multivaccine vehicle. Ann NY Acad Sci, 1989, 569: 155-73.
    [38] Sterne JA, Rodrigues LC, Guedes IN. Does the efficacy of BCG decline with time since vaccination? Int J Tuberc Lung Dis, 1998, 2(3): 200-7.
    [39] Dietrich G, Viret JF, Hess J. Novel vaccination strategies based on recombinant Mycobacterium bovis BCG. Int J Med Microbiol, 2003, 292(7-8): 441-512.
    [40] Jacobs W R, Tuckman M, Bloom B R. Introduction of foreign DNA into mycobacteria using a shuttle plasmid. Nature, 1987, 327(6122): 532-5.
    [41] Stover C K, Bansal G P, Habson M S, et al. Prostective immunity elicited by recombinant bacilli Calmette-Guerin (BCG) expressing outer surface protein A (OspA) lipoprotein: a candidate Lyme disease vaccine. J Exp Med, 1993, 178(1): 197-209.
    [42] Triccas J A, Britton W J, Gicquel B. Isolation of strong expression signals of Mycobacterium tuberculosis. Microbiology, 2001, 147(Pt5): 1253-8.
    [43] Kawahara M, Hashimoto A, Toida I, Honda M.Oral recombinant mycobacterium bovis bacillus calmette-guerin expressing HIV-1 antigens as a freeze-dried vaccine induces long-term, HIV-specific mucosal and systemic immunity. Clin Immunol, 2002, 105(3): 326-31.
    [44] Kawahara M, Matsuo K, Nakasone T, Hiroi T, Kiyono H, Matsumoto S,Yamada T,Yamamoto N, Honda M. Combined intrarectal/intradermal inoculation of recombinant Mycobacterium bovis bacillus Calmette-Guerin (BCG) induces enhanced immune responses against the inserted HIV-1 V3 antigen. Vaccine, 2002, 21(3-4): 158-66.
    [45] Young SL, O’Donnell MA, Buchan GS. IL-2-secreting recombinant bacillus Calmette Guerin can overcome a Type 2 immune response and corticosteroid-induced immunosuppression to elicit a Type 1 immune response. Int Immunol, 2002, 14(7): 793-800.
    [46] Young S, O’Donnell M, Lockhart E, Buddle B, Slobbe L, Luo Y, De Lisle G, Buchan G. Manipulation of immune responses to Mycobacterium bovis by vaccination with IL-2- and IL-18-secreting recombinant bacillus Calmette Guerin. Immunol Cell Biol, 2002, 80(3): 209-15.
    [47] Zheng C, Xie P, Chen Y. Recombinant Mycobacterium bovis BCG producing the circumsporozoite protein of Plasmodium falciparum FCC-1/HN strain induces strong immune responses in BALB/c mice. Parasitol Int, 2002, 51(1): 1-7.
    [48] Mederle I, Bourguin I, Ensergueix D, Badell E, Moniz-Peireira J, Gicquel B, Winter N. Plasmidic versus insertional cloning of heterologous genes in Mycobacterium bovis BCG: impact on in vivo antigen persistence and immune responses. Infect Immun, 2002, 70(1): 303-14.
    [49] Zheng C, Xie P, Chen Y. Immune response induced by recombinant BCG expressing merozoite surface antigen 2 from Plasmodium falciparum. Vaccine, 2001, 20(5-6): 914-9.
    [50] Chujoh Y, Matsuo K, Yoshizaki H, Nakasatomi T, Someya K, Okamoto Y, Naganawa S, Haga S, Yoshikura H, Yamazaki A, Yamazaki S, Honda M. Cross-clade neutralizing antibody production against human immunodeficiency virus type 1 clade E and B strains by recombinant Mycobacterium bovis BCG-based candidate vaccine. Vaccine, 2001, 20(5-6): 797-804.
    [51] Hiroi T, Goto H, Someya K, Yanagita M, Honda M, Yamanaka N, Kiyono H. HIV mucosal vaccine: nasal immunization with rBCG-V3J1 induces a long term V3J1 peptide-specific neutralizing immunity in Th1-and Th2-deficient conditions. J Immunol, 2001, 167(10): 5862-7.
    [52] Ohara N, Matsuoka M, Nomaguchi H, Naito M, Yamada T. Protective responses against experimental Mycobacterium leprae infection in mice induced by recombinant Bacillus Calmette-Guerin over-producing three putative protective antigen candidates. Vaccine, 2001, 19(15-16): 1906-10.
    [53] Luo Y, Chen X, Szilvasi A, O’Donnell MA. Co-expression of interleukin-2 and green fluorescent protein reporter in mycobacteria: in vivo application for monitoring antimycobacterial immunity. Mol Immunol, 2000, 37(9): 527-36.
    [54] Miyaji EN, Mazzantini RP, Dias WO, Nascimento AL, Marcovistz R, Matos DS, Raw I, Winter N, Gicquel B, Rappuoli R, Leite LC. Induction of neutralizing antibodies against diphtheria toxin by priming with recombinant Mycobacterium bovis BCG expressing CRM(197), a mutant diphtheriatoxin. Infect Immun, 2001, 69(2): 869-74.
    [55] Horwitz MA, Harth G, Dillon BJ, Maslesa-Galic' S. Recombinant bacillus calmette-guerin (BCG) vaccines expressing the Mycobacterium tuberculosis 30-kDa major secretory protein induce greater protective immunity against tuberculosis than conventional BCG vaccines in a highly susceptible animal model. Proc Natl Acad Sci USA, 2000, 97(25): 13853-8.
    [56] Dhar N, Rao V, Tyagi AK. Immunogenicity of recombinant BCG vaccine strains overexpressing components of the antigen 85 complex of Mycobacterium tuberculosis. Med Microbiol Immunol, 2004, 193(1): 19-25.
    [57] Jain R, Dey B, Dhar N, Rao V, Singh R, Gupta UD, Katoch VM, Ramanathan VD, Tyagi AK.Enhanced and Enduring Protection against Tuberculosis by Recombinant BCG-Ag85C and Its Association with Modulation of Cytokine Profile in Lung. PLoS One, 2008, 3(12): 3869.
    [58] Xu Y, Liu W, Shen H, Yan J, Qu D, Wang H. Recombinant Mycobacterium bovis BCG expressing the chimeric protein of antigen 85B and ESAT-6 enhances the Th1 cell-mediated response. Clin Vaccine Immunol, 2009, 16(8): 1121-6.
    [59] Sun R, Skeiky YA, Izzo A, Dheenadhayalan V, Imam Z, Penn E, Stagliano K, Haddock S, Mueller S, Fulkerson J, Scanga C, Grover A, Derrick SC, Morris S, Hone DM, Horwitz MA, Kaufmann SH, Sadoff JC. Novel recombinant BCG expressing perfringolysin O and the over-expression of key immunodominant antigens; pre-clinical characterization, safety and protection against challenge with Mycobacterium tuberculosis. Vaccine, 2009, 27(33): 4412-23.
    [60] Qie YQ, Wang JL, Liu W, Shen H, Chen JZ, Zhu BD, Xu Y, Zhang XL, Wang HH. More vaccine efficacy studies on the recombinant Bacille Calmette-Guerin co-expressing Ag85B, Mpt64 and Mtb8.4. Scand J Immunol, 2009, 69(4): 342-50.
    [61] Kawahara M, Hashimoto A, Toida I, Honda M. Oral recombinant Mycobacterium bovis bacillus Calmette-Guérin expressing HIV-1 antigens as a freeze-dried vaccine induces long-term, HIV-specific mucosal and systemic immunity. Clin Immunol, 2002, 105(3): 326-31.
    [62] Yamada H, Kuroda E, Matsumoto S, Matsumoto T, Yamada T, Yamashita U. Prostaglandin E2 down-regulates viable Bacille Calmette-Guérin- induced macrophage cytotoxicity against murine bladder cancer cell MBT-2 in vitro. Clin Exp Immunol, 2002, 128(1): 52-8.
    [63] Streit JA, Recker TJ, Donelson JE, Wilson ME. BCG expressing LCR1 of Leishmania chagasi induces protective immunity in susceptible mice.ExpParasitol, 2000, 94(1):33-41.
    [64] Zheng C, Xie P, Chen Y. Molecular cloning and sequencing of the merozoite surface antigen 2 gene from Plasmodium falciparum strain FCC-1/HN and expression of the gene in mycobacteria. J Eukaryot Microbiol, 2003, 50(2):140-3.
    [65] Zheng C, Xie P, Chen Y. Recombinant Mycobacterium bovis BCG producing the circumsporozoite protein of Plasmodium falciparum FCC-1/HN strain induces strong immune responses in BALB/c mice. Parasitol Int, 2002, 51(1):1-7.
    [66] Aldwell FE, Tucker IG, de Lisle GW, Buddle BM. Oral delivery of Mycobacterium bovis BCG in a lipid formulation induces resistance to pulmonary tuberculosis in mice. Infect Immun, 2003, 71(1): 101-8.
    [67] Aldwell FE, Baird MA, Fitzpatrick CE, McLellan AD, Cross ML, Lambeth MR, Buchan GS. Oral vaccination of mice with lipid-encapsulated Mycobacterium bovis BCG: anatomical sites of bacterial replication and immune activity. Immunol Cell Biol, 2005, 83(5): 549-53.
    [68] Aldwell FE, Cross ML, Fitzpatrick CE, Lambeth MR, de Lisle GW, Buddle BM. Oral delivery of lipid-encapsulated Mycobacterium bovis BCG extends survival of the bacillus in vivo and induces a long-term protective immune response against tuberculosis. Vaccine, 2006, 24(12): 2071-8.
    [69] J.萨姆布鲁克, EF.弗里奇, T.曼尼阿蒂斯.分子克隆实验指南(第二版).北京:科学出版社,1996.
    [70]李燕,张健.细胞与分子生物学常用实验技术.西安:第四军医大学出版社,2009,172-98.
    [71] Goude R, Parish T. Electroporation of mycobacteria. J Vis Exp, 2008, 23 (15): 761.
    [72] Monteiro-Maia R, Ortig?o-de-Sampaio MB, Pinho RT, Castello-BrancoLR. Modulation of humoral immune response to oral BCG vaccination by Mycobacterium bovis BCG Moreau Rio de Janeiro (RDJ) in healthy adults. J Immune Based Ther Vaccines, 2006, 6(4): 4.
    [73]严绍南.口服卡介苗对哮喘患者外周血Th1/Th2平衡的调控作用和疗效观察.实用医学杂志,2009,9(25):1470-2.
    [74]李秋根,张志大,熊国亮,刘乾中,柳喆.口服卡介苗对哮喘患者Th1/Th2平衡的影响.实验与检验医学,2008,2(26):111-4.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700