分布式视频编解码技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
传统的视频编码标准如MPEG-X和H.26X系列,主要依靠编码器利用编码信号的统计特性来实现压缩编码,从而导致编码器的运算复杂度是解码器的5至10倍以上。近年来,一些新的视频应用如无线视频传感器网络、移动视频电话和无线视频监控等在快速地融入和改变着人们的生活。然而,这些新出现的多媒体应用对视频的编解码系统提出了与以往不同的需求,即编码器因资源有限需要尽可能地简单,而解码器拥有较多资源可进行复杂地解码运算,这对视频编、解码系统的结构设计提出了新的挑战。
     分布式视频编码具有与传统编码标准相反的系统结构,与上述应用需求完全吻合。20世纪70年代,Slepian和Wolf提出了分布式信源无损编码理论,随后Wyner和Ziv提出了有损分布式信源编码,这两个理论奠定了分布式视频编码的理论基础。与传统的视频编码系统结构有很大的不同,分布式视频编码系统将主要的高运算复杂度模块从编码端转移到了解码端,由解码器利用信源的相关性实现高效的压缩编码。分布式视频编码已成为国内外的研究热点,论文主要分析了分布式视频编码的技术特点,对分布式视频编码存在的问题进行了深入地研究并提出相应的解决方案。
     论文的主要工作及取得的研究成果如下:
     1.基于H.264/AVC的帧内编码模式选择、整数变换和量化的特点,提出了一种帧内编码全零块判决算法。该算法根据相邻块的编码信息,使用动态判决门限判决量化后的全零块,避免了变换、量化等复杂过程。与已有算法相比,论文算法的全零块判决率最大可以达到87.8%,提高了编码速度,满足了实时视频通信的要求。
     2.提出了一种改进的边信息插值算法。该算法在关键帧之间的前向运动估计时,设置代价函数阈值来保证目标运动轨迹的线性连续。对于运动平稳区域,采用双向运动补偿插值生成边信息;对于其它区域,在关键帧中确定多个候选块,并选择与待插值块的4个相邻块具有最小边界匹配误差的候选块作为边信息。最后,论文算法利用马尔可夫随机场结合最大后验概率估计对边界不连续的插值块进行空域平滑。实验表明,该算法降低了编码码率,并使得解码图像PSNR最高提高0.28dB。
     3.提出了一种解码端Skip编码模式判决算法。论文算法先在解码端进Skip模式判决,然后将判决信息通过反馈信道传输给编码器。在Wyner-Ziv帧编码时,Skip模式编码块无需编码,在解码端重构时只需要使用边信息填充即可;对于非Skip模式的编码块,论文算法将其按运动强度的大小分为两个集合进行单独编码。实验表明,论文算法在保持PSNR基本不变的条件下,使编码图像的码率最多降低54.29%。
     4.提出了一种双向分布式视频编码系统的码率估计算法。该算法位于解码端,算法利用边信息和差值分布的概率模型以及高位比特对编码比特平面的码率进行估计,并将估计码率通过反馈信道传送到编码器。实验结果表明,论文算法可以有效地提高码率估计的精度,在相同码率条件下,该算法重构图像的PSNR比原算法可以提高了0.2-0.8dB。
     针对上述提出的算法,论文都通过大量的软件仿真、测试及与传统算法的比较来验证其有效性和先进性。
The traditional video coding standards, such as MPEG-x or the H.26x recommendations, rely on the encoder to exploit the statistics of the source signal. So the encoder is typically 5 to 10 times more complex than the decoder. In recent years, the emerging applications, such as wireless sensor network, mobile camera phones, and wireless video surveillance systems, have a significant impact on our lives. It breeds challenge to the coding structure characterized by a significantly lower complex encoder and a higher complex video decoder. However, distributed video coding is ideally meeting this requirement.
     The information-theoretic bases of distributed video coding were established in the 1970s by Slepian and Wolf for distributed lossless coding and by Wyner and Ziv for lossy coding. Compared to the traditional codec, a dramatic change is shifting the majority of complexity to the decoder. The major task of exploiting the source redundancy is partially or wholly placed at the decoder.
     The main contributions and innovation points of the thesis are as follows:
     1.On analysis of the characters of intra mode selection, integer transform and quantization, an efficient algorithm is proposed to detect all-zero blocks of the encoding intra frame in H.264. In the proposed method, dynamic selection of the threshold is used to examine the all-zero blocks in order to avoid the integer transform and quantization. Compared with the previous methods, the maximum percent of the all zero-blocks detected by the proposed algorithm in the intra macroblocks is 87.8%. It provides significant improvement of coding speed and can meet the needs of the video communication in real time.
     2.An improved algorithm is proposed for the side information generation process. For the blocks with low motion, the side information is interpolated by bi-directional motion compensation. For other blocks, it is replaced by a candidate block from the key frame which has minimum border error with four adjacent blocks. And the Markov random field (MRF)-Maximum a Posteriori (MAP) is used to smooth the blocks with high border error to the adjacent blocks. Simulations results show the proposed scheme can achieve 0.28 dB gains on PSNR with declining bitrate.
     3.A skip mode is introduced in the Wyner-Ziv frame coding process, as well as a theoretical analysis on the benefits of the block partition to the coding efficiency. The skip mode decision is introduced at the decoder on a block-by-block basis. In the proposed scheme, a mode decision process is performed to determine whether to apply skip mode to the blocks with low motion first. With the skip-mode, the block is reconstructed from the side information in the decoder. In addition, the non-skip mode blocks are divided into two parts by motion activity. The encoding bitplane is extracted within each set and encoded independently. Simulations show the proposed scheme can achieve up to 54.29% bitrate savings without visible PSNR sacrifice.
     4.With a comparison on a few rate estimation algorithms, a proposed algorithm for the bi-directional distributed video coding codec is proposed in the thesis. The proposed algorithm estimates the rate of each bitplane with the side information and the Laplacian distribution of difference between the source and the side information. And the result is transmitted to the encoder via a feedback channel. The simulation result indicates that the algorithm shows an efficient improvement in the precision of rate. And the complexity of the decoder is further declined.
     All of the proposed algorithms in this thesis are simulated and examined, then compared with conventional schemes in order to prove their validities and advantages.
引文
[1]吴成柯,戴善荣,陆心如.图像通信,西安电子科技大学出版, 1990.
    [2]沈兰荪.图像编码与异步传输,人民邮电出版社, 1998.
    [3]肖嵩.无线信道中的联合信源信道编码研究.西安电子科技大学博士学位论文, 2004.
    [4] Shannon. A Mathematical Theory of Communication. Bell System Technical Journal 1948, 27.
    [5] D A. Huffman. A method for the construction of minimum redundancy codes. IRE, 1952: 1098- 1101.
    [6] T.A.WELCH. A technique for high-performance data compression. IEEE computer. 1984, 17(6): 8-19.
    [7]胡征,杨有为.矢量量化原理与应用,西安电子科技大学出版社, 1988.
    [8] Barnsley M F, Jacquin AE. Application of recurrent iterated function systems to images. Proceedings of SPIE 1988: 122-131.
    [9]高文,王强,马思伟. AVS数字音视频编解码标准. ZTE COMMUNICATIONS. 2006, 7(12): 6-10.
    [10] ISO/IEC 14496-10 and ITU-T Rec. H.264, Advanced video coding. 2003.
    [11] Zixiang Xiong, Angelos D. Liveris, Samuel Cheng. Distributed source coding for sensor networks. IEEE Signal Processing Magazine. 2004, 21(5): 80-94.
    [12] David Slepian, Jack K. Wolf. Noiseless Coding of correlated Information Sources. IEEE Transactions on Information Theory. 1973, IT-19(4): 471-480.
    [13] Aaron D. Wyner, Jacob Ziv. Rate-Distortion Function for Source Coding with Side Information at the Decoder. IEEE Transactions on Information Theory. 1976, IT-22(1): 1-10.
    [14] Anne Aaron, Bernd Girod. Wyner-ziv video coding with low encoder complexity. Proceeding of Picture Coding Symposium 2004, Beaverton, OR 97007, United States, 2004: 429-433.
    [15] Anne Aaron, Prashant Ramanathan, Bernd Girod. Wyner-ziv coding of light fields for random access. Proceedings of IEEE 6th Workshop on Multimedia Signal Processing, New York, NY 10016-5997, United States, 2004: 323-326.
    [16] Anne Aaron, Shantanu Rane, Bernd Girod. Wyner-Ziv video coding with hash-based motion compensation at the receiver. Proceedings of International Conference on Image Processing, Piscataway, NJ 08855-1331, United States,2004: 3097-3100.
    [17] Anne Aaron, Shantanu Rane, David Rebollo-Monedero, Bernd Girod. Systematic lossy forward error protection for video waveforms. Proceedings of IEEE International Conference on Image Processing, Barcelona, Spain, 2003: 609-612.
    [18] Anne Aaron, Shantanu Rane, Eric Setton, Bernd Girod. Transform-domain wyner-ziv codec for video. Proceedings of SPIE, Bellingham, WA 98227-0010, United States, 2004: 520-528.
    [19] Anne Aaron, Eric Setton, Bernd Girod. Towards practical Wyner-Ziv coding of video. Proceedings of IEEE International Conference on Image Processing, Barcelona, Spain, 2003: 869-872.
    [20] Anne Aaron, David Varodayan, Bernd Girod. Wyner-Ziv residual coding of video. Proceedings of 25th PCS Proceedings: Picture Coding Symposium 2006, Le Chesnay Cedex, 78153, France, 2006: 5.
    [21] Anne Aaron, Rui Zhang, Bernd Girod. Wyner-Ziv coding of motion video. Proceedings of The Thirty-Sixth Asilomar Conference on Signals Systems and Computers, Pacific Groove, CA, United states, 2002: 240-244.
    [22] Bernd Girod, Anne Margot Aaron, Shantanu Rane, David Rebollo-Monedero. Distributed video coding. Proceedings of the IEEE. 2005, 93(1): 71-83.
    [23] Rohit Puri, Abhik Majumdar, Kannan Ramchandran. PRISM: A video coding paradigm with motion estimation at the decoder. IEEE Transactions on Image Processing. 2007, 16(10): 2436-2448.
    [24] Rohit Puri, Kannan Ramchandran. PRISM: A "reversed" multimedia coding paradigm. Proceeding of IEEE International Conference on Image Processing, Barcelona, Spain, 2003: 617-620.
    [25] W.A.C. Fernando A.B.B. Adikari, H. Kodikara Arachchi, W.A.R.J. Weerakkody. Multiple side information streams for distributed video coding. Electronics Letters. 7th December 2006, 42(25).
    [26] A. B. B. Adikari, W. A. C. Fernando, W. A. R. J. Weerakkody. Independent key frame coding using correlated pixels in distributed video coding. Electronics Letters. 2007, 43(7): 387-388.
    [27] C. Brites. Advances on Distributed Video Coding. Technical University of Lisbon P.h.D thesis, 2005.
    [28] Catarina Brites, Joao Ascenso, Fernando Pereira. Modeling correlation noise statistics at decoder for pixel based Wyner-Ziv video coding. Proceedings of Picture Coding Symposium, Le Chesnay Cedex, France, 2006: 612-618.
    [29] Catarina Brites, Fernando Pereira. Correlation noise modeling for efficient pixel and transform domain Wyner-Ziv video coding. IEEE Transactions on Circuits and Systems for Video Technology. 2008, 18(9): 1177-1190.
    [30] Fernando Pereira, Joao Ascenso, Catarina Brites. Studying the GOP size impact on the performance of a feedback channel-based Wyner-Ziv video codec. Proceedings of Lecture Notes in Computer Science, Heidelberg, D-69121, Germany, 2007: 801-815.
    [31] Fernando Pereira, Catarina Brites, Joao Ascenso, Marco Tagliasacchi. Wyner-Ziv video coding: A review of the early architectures and further developments. Proceedings of IEEE International Conference on Multimedia and Expo, Piscataway, NJ 08855-1331, United States, 2008: 625-628.
    [32] Fernando Pereira, Luis Torres, Christine Guillemot, Touradj Ebrahimi, Riccardo Leonardi, Sven Klomp. Distributed Video Coding: Selecting the most promising application scenarios. Signal Processing: Image Communication. 2008, 23(5): 339-352.
    [33] Cristian Perra, Daniele D. Giusto. Video coding based on distributed source coding. Proceedings of 8th International Workshop on Image Analysis for Multimedia Interactive Services, Piscataway, NJ 08855-1331, United States, 2007: 4279159.
    [34]陈爽文.分布式视频编码.中国传媒大学学报自然科学版. 2007, 14(2): 63-66.
    [35]史萍.分布式视频编码在视频压缩和容错视频传输中的应用.中国传媒大学学报自然科学版. 2007, 14(3): 39-46.
    [36]李深远,房胜,王琼.基于像素域的Wyner-Ziv编码技术分析.系统仿真学报. 2006,8, 18(1): 442-444.
    [37] Fernando Pereira, Joao Ascenso, Catarina Brites. Studying the GOP size impact on the performance of a feedback channel-based Wyner-Ziv video codec. Heidelberg, D-69121, Germany, 2007: 801-815.
    [38] Xun Guo, Yan Lu, Feng Wu, Wen Gao. Distributed video coding using wavelet. Proceedings of IEEE International Symposium on Circuits and Systems, Piscataway, NJ 08855-1331, United States, 2006: 5427-5430.
    [39] Bo Wu, Xiangyang Ji, Debin Zhao, Wen Gao. Wavelet based distributed video coding with spatial scalability. Piscataway, NJ 08855-1331, United States, 2008: 3458-3461.
    [40] Yoshihide Tonomura, Daisuke Shirai, Takayuki Nakachi, Tetsuro Fujii. Optimal bit allocation for wavelet-based distributed video coding. Proceeding of 8th IEEEInternational Symposium on Multimedia, Piscataway, NJ 08855-1331, United States, 2006: 442-448.
    [41] S. Sandeep Pradhan, Kannan Ramchandran. Distributed source coding: symmetric rates and applications to sensor networks. Piscataway, NJ, USA, 2000: 363-372.
    [42] Julius Kusuma, Kannan Ramchandran, S. Sandeep Pradhan. Distributed compression in a dense microsensor network. IEEE Signal Processing Magazine. 2002, 19(2): 51-60.
    [43] Xun Guo, Yan Lu, Feng Wu, Debin Zhao, Wen Gao. Wyner-Ziv-based multiview video coding. IEEE Transactions on Circuits and Systems for Video Technology. 2008, 18(6): 713-724.
    [44] Christine Guillemot, Fernando Pereira, Luis Torres, Touradj Ebrahimi, Riccardo Leonardi, J. Ostermann, ern. Distributed monoview and multiview video coding. IEEE Signal Processing Magazine. 2007, 24(5): 67-76.
    [45] Charles D. Creusere, Ivan Mecimore. Bitstream-based correlation detector for multi-view distributed video coding applications. Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing Las Vegas, NV, United states, 2008: 1001-1004.
    [46] Shuiming Ye, Mourad Ouaret, Frederic Dufaux, Michael Ansorge, Touradj Ebrahimi. Error resiliency of distributed video coding in wireless video communication. Bellingham WA, WA 98227-0010, United States, 2008: 70730.
    [47] A. Sehgal, N. Ahuja. Robust predictive coding and the Wyner-Ziv Problem. Proceedings of IEEE Data Compression Conference, Snowbird, 2003: 103–112.
    [48] Qian Xu, Zixiang Xion. Layered Wyner-Ziv video coding. IEEE Transactions on Image Processing. 2006, 15(12): 3791-3803.
    [49] Andres Albanese, Johannes Blomer, Jeff Edmonds, Michael Luby, Madhu Sudan. Priority encoding transmission. IEEE Transactions on Information Theory. 1996, 42(6 pt 1): 1737-1744.
    [50] M. Andronico, A. Lombardo, S. Palazzo, G. Schembra. Performance analysis of priority encoding transmission of MPEG video streams. Conference Record / IEEE Global Telecommunications Conference, Piscataway, NJ, USA, 1996: 267-271.
    [51] Stephane Boucheron, Mohammad Reza Salamatian. About priority encoding transmission. IEEE Transactions on Information Theory. 2000, 46(2): 699-704.
    [52] Cheng Huang, Ramaprabhu Janakiraman, Lihao Xu. Loss-resilient on-demand media streaming using priority encoding. Proceedings of the 12th ACMInternational Conference on Multimedia, New York, NY 10036-5701, United States, 2004: 152-159.
    [53] Shantanu Rane, Bernd Girod. Systematic lossy error protection of video based on H.264/AVC redundant slices. Proceedings of SPIE, Bellingham WA, WA 98227-0010, United States, 2006: 60770.
    [54] DISCOVER. Distributed coding for video services. 2007.
    [55]陶丹.视频传感器网络覆盖控制及协作处理方法研究.北京邮电大学博士学位论文, 2007.
    [56]胡琳.图像阵列的分布式编码研究.浙江大学博士学位论文, 2006.
    [57] ITU-T Recommendation H.263. Video coding for low bitrate communications., May 1996.
    [58] G. J. Sullivan, T. Wiegand, T. Stockhammer. Using the draft H.26L video coding standard for mobile applications. Proceeding of IEEE International Conference on Image Processing, Thessaloniki, Greece, 2001: 573-576.
    [59] ISO/IEC 14496-10 and ITU-T Rec. H.264. Advanced video coding. 2003.
    [60] Thomas Wiegand, Gary J. Sullivan, Gisle Bjontegaard, Ajay Luthra. Overview of the H.264/AVC video coding standard. IEEE Transactions on Circuits and Systems for Video Technology. 2003, 13(7): 560-576.
    [61] Ajay Luthra, Pankaj Topiwala. Overview of the H.264/AVC video coding standard. Proceedings of SPIE, San Diego, CA, United states, 2003: 417-431.
    [62] J. Ostermann, J. Bormans, P. List, et al. Video Coding with H.264/AVC: Tools, Performance, and Complexity. IEEE Circuits and Systems Magazine. 2004, 4(1): 7-28.
    [63] ISO/IEC 13818-2 (MPEG-2 Video). Information technology-generic coding of moving pictures and associated audio information-Part2: Video., Nov. 1995.
    [64] ISO/IEC 14496-2 (MPEG-4 Video). Information technology generic coding of audio-visual objects-Part 2: Visual. Dec. 1999.
    [65] Dragorad Milovanovic, Zoran Bojkovic. Advanced video coding standard H.264/AVC: Performance vs. complexity. WSEAS Transactions and Communications. 2005, 4(1): 1-6.
    [66] Xin-Fu Wang, De-Bin Zhao. Performance comparison of AVS and H.264/AVC video coding standards. Journal of Computer Science and Technology. 2006, 21(3): 310-314.
    [67] Iain E. G. Richardson. H.264 and MPEG-4 video compression: video coding for next-generation multimedia. 2003.
    [68] Chun-Lung Hsu, Mean-Ra Ho, Jian-Jyun Hong. An efficient algorithm for intra-prediction mode selection in H.264. Proceedings of 2007 7th International Conference on ASIC Proceeding, Piscataway, NJ 08855-1331, United States, 2007: 778-781.
    [69] Bojun Meng, Oscar C. Au, Chi-Wah Wong, Hong-Kwai Lam. Efficient Intra-Prediction Algorithm in H.264. Proceedings of IEEE International Conference on Image Processing, 2003: 837-840.
    [70] Chun-Lung Hsu, Mean-Horn Ho, Jian-Jyun Hong. An efficient algorithm for intra-prediction in H.264. Proceedings of IEEE International Conference on Consumer Electronics, Piscataway, NJ 08855-1331, United States, 2006: 35-36.
    [71]欧建平,皇甫堪,楼生强.基于整数变换的全零块判决方法.中国图象图形学报. 2004, 9(5): 626-630.
    [72]宋彬,常义林,周宁兆. H.264整数变换零块的预先判决算法.西安电子科技大学学报(自然科学版). 2005, 32(4): 518-522.
    [73] Yong Ho Moon, Gyu Yeong Kim, Jae Ho Kim. An improved early detection algorithm for all-zero blocks in H.264 video encoding. IEEE Transactions on Circuits and Systems for Video Technology. 2005, 15(8): 1053-1057.
    [74]封颖,吴成柯,石迎波.一种高效的H.264帧内编码全零块判决算法.系统工程与电子技术. 2007, 29(7): 1205-1208.
    [75] Henrique S. Malvar, Antti Hallapuro, Marta Karczewicz, Louis Kerofsky. Low-complexity transform and quantization in H.264/AVC. IEEE Transactions on Circuits and Systems for Video Technology. 2003, 13(7): 598-603.
    [76] Yucel Altunbasak, Nejat Kamaci. An analysis of the DCT coefficient distribution with the H.264 video coder. Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing, Piscataway, NJ 08855-1331, United States, 2004: 177-180.
    [77] JVT Reference Software JM9.6. HHI, July, 2005.
    [78] S. Sandeep Pradhan, Kannan Ramchandran. Distributed source coding: symmetric rates and applications to sensor networks. Data Compression Conference Proceedings, Piscataway, NJ, USA, 2000: 363-372.
    [79] S. Sandeep Pradhan, Kannan Ramchandran. Distributed source coding using syndromes (DISCUS): Design and construction. IEEE Transactions on Information Theory. 2003, 49(3): 626-643.
    [80] Vladimir Stankovic, Angelos D. Liveris, Zixiang Xiong, Costas N. Georghiades. Design of Slepian-Wolf codes by channel code partitioning. Data CompressionConference Proceedings, 2004: 302-311.
    [81] Aline Roumy, Khaled Lajnef, Christine Guillemot. Rate-adaptive turbo-syndrome scheme for slepian-wolf coding. Conference Record - Asilomar Conference on Signals, Systems and Computers, Piscataway, NJ 08855-1331, United States, 2007: 545-549.
    [82] Chen Hu, Eckehard Steinbach. Wyner-ziv video coding based on turbo codes exploiting perfect knowledge of parity bits. Proceedings of the 2007 IEEE International Conference on Multimedia and Expo, Piscataway, NJ 08855-1331, United States, 2007: 160-163.
    [83] Khaled Lajnef, Christine Guillemot, Pierre Siohan. Wyner-Ziv coding of three correlated Gaussian sources using punctured turbo codes. Proceedings of the Fifth IEEE International Symposium on Signal Processing and Information Technology, Piscataway, NJ 08855-1331, United States, 2005: 352-357.
    [84] J. L. Martinez, W. A. R. J. Weerakkody, P. Cuenca, F. Quiles, W. A. C. Fernando. Transform domain Wyner-Ziv codec based on turbo trellis codes modulation. Heidelberg, D-69121, Germany, 2008: 413-424.
    [85] Wang Yangli, Jeong Jechang, Wu Chengke, Xiao Song. Wyner-Ziv video coding with spatio-temporal side information. Proceedings of the 2007 IEEE International Conference on Multimedia and Expo, Piscataway, NJ 08855-1331, United States, 2007: 132-135.
    [86] Javier Garcia-Frias, Ying Zhao. Compression of correlated binary sources using turbo codes. IEEE Communications Letters. 2001, 5(10): 417-419.
    [87] Samuel Cheng, Zixiang Xiong. Channel symmetry in Slepian-Wolf code design based on LDPC codes with application to the quadratic Gaussian Wyner-Ziv problem. Proceedings of 2004 IEEE Information Theory Workshop, New York, NY 10016-5997, United States, 2004: 129-134.
    [88] Da-Ke He , Jagmohan, Ashish ,Lu, Ligang,Sheinin, Vadim. Wyner-Ziv video compression using rateless LDPC codes. Proceedings of SPIE, Bellingham WA, WA 98227-0010, United States, 2008: 68221.
    [89] Limin Liu, Edward J. Delp. Wyner-Ziv video coding using LDPC codes. Proceedings of the 7th Nordic Signal Processing Symposium, Piscataway, NJ 08855-1331, United States, 2007: 258-261.
    [90] Yang Yang, Samuel Cheng, Zixiang Xiong, Wei Zhao. Wyner-Ziv coding based on TCQ and LDPC codes. Conference Record of the Asilomar Conference on Signals, Systems and Computers, Piscataway, United States, 2003: 825-829.
    [91] Samuel Cheng, Zixiang Xiong. Successive refinement for the Wyner-Ziv problem and layered code design. IEEE Transactions on Signal Processing. 2005, 53(8): 3269-3281.
    [92] R. Zamir. The Rate Loss in the Wyner-Ziv Problem. IEEE Transactions on Information Theory. 1996, 42(6): 2073-2084.
    [93] Fulvio Babich, Guido Montorsi, Francesca Vatta. Design of rate-compatible punctured turbo (RCPT) codes. Proceedings of IEEE International Conference on Communications, New York, NY, United states, 2002: 1701-1705.
    [94] D. N. Rowitch, L. B. Milstein. Rate compatible punctured turbo (RCPT) codes in a hybrid FEC/ARQ system. Proceedings of the 1997 IEEE Global Telecommunications Mini-Conference, Piscataway, NJ, USA, 1997: 55-59.
    [95] Yong Pei, Viraj S. Ambetkar. Packet-by-packet adaptive scheme for video coding and transmission over wireless IP networks using rate-compatible punctured turbo (RCPT) codes. Wireless Personal Communications. 2007, 43(4): 1675-1687.
    [96] Berrou C., Glavieux A., Thitimajshima P. Near Shannon limit error-correcting coding and decoding: Turbo-codes. Proceeding of ICC'93, Geneva, Switzerland 1993: 1064 -1074.
    [97] Panos Nasiopoulos, Lino Coria-Mendoza, Hassan Mansour, Adarsh Golikeri. An Improved Error Concealment Algorithm for Intra-frames in H.264/AVC. Proceedings of IEEE International Symposium on Circuits and Systems, Kobe, Japan, 2005: 320-323.
    [98] Jinghong Zheng, Lap-Pui Chau. Efficient Motion Vector Recovery Algorithm for H.264 Based on a Polynomial Model. IEEE Transactions on Multimedia. June,2005, 7(3): 507-513.
    [99] Jinghong Zheng, Lap-Pui Chau. A Motion Vector Recovery Algorithm for Digital Video Using Lagrange Interpolation. IEEE Transactions on Broadcasting. 2003, 49(4): 383-389.
    [100] X. Artigas, J. Ascenso, M. Dalai, S. Klomp, D. Kubasov, M. Ouaret. The DISCOVER Codec: Architecture, Techniques and Evaluation. 2008.
    [101] Gallager R G. Low Density Parity Check Codes. IRE Transactions on Information Theory. 1962, 8(3): 208-220.
    [102]文红. LDPC码原理与应用,电子科技大学出版社, 2006.
    [103] Angelos D. Liveris, Zixiang Xiong, Costas N. Georghiades. Compression of binary sources with side information at the decoder using LDPC codes. IEEE Communications Letters. 2002, 6(10): 440-442.
    [104] Hossein Pishro-Nik, Faramarz Fekri. Results on punctured LDPC codes. Proceedings of 2004 IEEE Information Theory Workshop, New York, NY 10016-5997, United States, 2004: 215-219.
    [105] Hossein Pishro-Nik, Faramarz Fekri. Results on punctured low-density parity-check codes and improved iterative decoding techniques. IEEE Transactions on Information Theory. 2007, 53(2): 599-614.
    [106] David Varodayan, Anne Aaron, Bernd Girod. Rate-adaptive distributed source coding using low-density parity-check codes. Conference Record - Asilomar Conference on Signals, Systems and Computers, Piscataway, NJ 08855-1331, United States, 2005: 1203-1207.
    [107] Denis Kubasov, Khaled Lajnef, Christine Guillemot. A hybrid encoder/decoder rate control for wyner-ziv video coding with a feedback channel. Proceedings of 2007 IEEE 9Th International Workshop on Multimedia Signal Processing, Piscataway, NJ 08855-1331, United States, 2007: 251-254.
    [108] Yuri Vatis, Sven Klomp, J¨orn Ostermann. Enhanced reconstruction of the quantised transfrom coefficiencts for wyner-ziv coding. Proceedings of ICME'07, Heifei,China, 2007: 172-175.
    [109] Denis Kubasov, Jayanth Nayak, Christine Guillemot. Optimal reconstruction in Wyner-Ziv video coding with multiple side information. Proceedings of 2007 IEEE 9Th International Workshop on Multimedia Signal Processing, Piscataway, NJ 08855-1331, United States, 2007: 183-186.
    [110]干宗良,齐丽娜,朱秀昌.一种空间域Wyner-Ziv视频编码系统的性能改进算法.电子学报. 2007, 35(10): 1024-1028.
    [111] A. Trapanese M. Tagliasacchi, S. Tubaro,J. Ascenso, C. Brites, F Pereira. Exploting Spatial Redundancy in Pixel Domain Wyner-Ziv Video Coding. Proceedings of ICIP'06, Atlanta, USA, 2006: 253-256.
    [112] A. B. B. Adikari, W. A. C. Fernando, H. K. Arachchi, W. A. R.Weerakkody. Wyner-Ziv coding with temporal and spatial correlations for motion video. IEEE CCECE/CCGEI, Ottawa, Canada, May 2006: 1188-1191.
    [113] Chi-Kong Wong, Oscar C. Au. Fast Motion Compensated Temporal Interpolation for Video. Proceedings of SPIE, Taipei, Taiwan, May 1995: 1108-1118.
    [114] J. Ascenso, C. Brites, F. Pereira. Improving Frame Interpolation with Spatial Motion Smoothing for Pixel Domain Distributed Video Coding. Proceedings of 5th EURASIP Conf. on Speech andImage Processing, Multimedia Communications and Services, Smolenice, Slovak Republic, 2005.
    [115] Shuiming Ye, M. Ouaret, F. Dufaux, T Ebrahimi. Hybrid spatial and temporal error concealment for distributed video coding. Proceedings of 2008 IEEE International Conference on Multimedia and Expo, Hanoverian,Germany, 2008: 633–636.
    [116] Koga T, Iinuma K. Motion compensated interframe coding for video conference. Proceeding of NTC 81, New Orleans, 1981: c9.6.1-c9.6.5.
    [117] Li R, Zeng B, Liou M. A New Three-step Search Algorithm for Block Motion Estemation. IEEE Transactions on Circuits and Systems for Video Technology. 1994, 4(4): 438-432.
    [118] L M Po, W C Ma. A novel four-step search algorithm for fast block motion estimation. IEEE Transactions on Circuits and Systems for Video Technology. 1996, 6(3): 313-317.
    [119] Zhu S, Ma K K. A New Diamond Search Algorithm for Fast Block-matching Motion Estimation. IEEE Transactions on Image Processing. 2000, 9(2): 287-290.
    [120] C. Zhu, X. Lin, L.P. Chau. Hexagon-based search pattern for fast block motion estimation. IEEE Transactions on Circuits and Systems for Video Technology. 2002, 12(5): 349-355.
    [121] Shahram Shirani, Faouzi Kossentini, Rabab Ward. A concealment method for video communications in an error-prone environment. IEEE Journal on Selected Areas in Communications. 2000, 18(6): 1122-1128.
    [122]周智恒,谢胜利.新的自适应MRF-MAP视频序列误差掩盖.电子学报. 2006, 34(4): 628-633.
    [123] Li-Wei Kang, Chun-Shien Lu. Wyner-Ziv Video Coding with Coding Mode-Aided Motion Compensation. Proceedings of IEEE International Conference on Image Processing, Atlanta, USA, 2006: 237 - 240.
    [124] J. Zhang, H. Li, Q. Liu, C. Chen. A Transform Domain Classification Based Wyner-Ziv Video Codec. Proceedings of IEEE International Conference on Multimedia and Expo, Hefei,China, 2007:144 -147.
    [125] M. Tagliasacchi, A. Trapanese, S. Tubaro, J. Ascenso, C. Brites, F. Pereira. Intra mode decision based on spatio-temporal cues in pixel domain Wyner-Ziv video coding. Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing Piscataway, NJ 08855-1331, United States, 2006: 57-60.
    [126] Guogang Hua, Chang Wen Chen. Distributed video coding with zero motion skip and efficient DCT coefficient encoding. Proceedings of 2008 IEEE International Conference on Multimedia and Expo, Piscataway, NJ 08855-1331, United States,2008: 777-780.
    [127] Ying Feng, Yunsong Li, Chengke Wu, Rui Song. Coding scheme with skip mode based on motion filed detection for DVC. SPIE'08, 5 September 2008.
    [128]王育民,梁传甲.信息与编码理论.西安,西安电子科技大学出版社, 1985.
    [129] Catarina Brites, Joao Ascenso, Jose Quintas Pedro, Fernando Pereira. Evaluating a feedback channel based transform domain Wyner-Ziv video codec. Signal Processing: Image Communication. 2008, 23(4): 269-297.
    [130] Prades-Nebot J Morbee M, Pizurica. Rate allocation algorithm for pix-domain for distributed video coding without feedback channel. Proceeding of 2007 IEEE International Conference on Acoustics, Speech, and Signal Processing, Hawaii, 2007: I-521-I-524.
    [131] Catarina Brites, Fernando Pereira. Encoder rate control for transform domain Wyner-Ziv video coding. Proceedings of International Conference on Image Processing, Piscataway, NJ 08855-1331, United States, 2006: 5-8.
    [132] Catarina Brites, Joao Ascenso, Fernando Pereira. Modeling correlation noise statistics at decoder for pixel based Wyner-Ziv video coding. Le Chesnay Cedex, 78153, France, 2006: 612-618.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700