SDF-1/CXCR4在糖尿病肾组织中的表达及其与微血管异常的关系
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:观察基质细胞衍生因子-1(SDF-1)及其受体(CXCR4)在糖尿病鼠肾组织中的表达变化,并探讨与肾脏局部微血管异常的关系。
     方法:将SD大鼠随机分为正常对照组(n=24)和糖尿病肾病组(n=24),构建链脲佐菌素(STZ)诱导的糖尿病肾病模型。采用免疫组化、实时定量聚合酶链反应(real-time PCR)方法,分别于8、12、20、28周,检测肾组织中SDF-1/CXCR4蛋白及mRNA表达水平,并与尿蛋白排泄、血管生成素(Angiopoietin,Ang)、内皮细胞标志物(CD133、TM-1)行相关性分析。
     结果:(1)免疫组化显示正常对照组可见肾小管轻度SDF-1和CXCR4表达;糖尿病肾病组SDF-1/CXCR4明显上调(P<0.01),峰值均在20周,SDF-1主要在肾小管表达,于12周时小管间质也可见着染;CXCR4突出地表达于肾小管间质,20周时肾小管也明显染色。(2)正常对照组不同时点均有SDF-、CXCR4 mRNA的表达;糖尿病肾病组SDF-mRNA的表达仅在8周、28周时出现上调(P<0.05,P<0.01);CXCR4 mRNA的表达与同时点正常对照组差异无统计学意义(p>0.05)。(3)糖尿病肾脏SDF-1和CXCR4蛋白表达呈显著的正相关(r=0.767, P<0.01); SDF-1或CXCR4的表达与尿蛋白排泄、Ang-2、CD133、TM-1表达水平明显相关。
     结论:糖尿病大鼠肾组织存在SDF-1/CXCR4异常表达,且可能与肾脏局部微血管病变相关联;SDF-1/CXCR4的异常表达参与了糖尿病肾损害进程。
Objective:To observe the renal expressions of SDF-1 and CXCR4, and analyze its relationship with renal microvascular abnormalities in the kidney of diabetic rats.
     Methods:The SD rats were divided into the diabetic group (n=24) and control group (n=24). The diabetic group was treated with a single intraperitoneal injection of streptozotocin (55mg/kg). The expression of SDF-1/CXCR4 in renal tissue were respectively detected by immunohisochemistry method and real-time polymerase chain reaction (real-time PCR) at 8,12,20 and 28 weeks. The relationship between SDF-1/CXCR4 and urinary protein, angiopoietin(Ang-1, Ang-2), endothelial cell markers (CD133, thrombomodulin-1) were analyzed.
     Results:Compared with control group, the expression of SDF-1 and CXCR4 in diabetic kidney were significantly up-regulated after operation from 8 weeks to 28 weeks with the peak level at 20 weeks (P<0.01), and SDF-1/CXCR4 immunostaining were mainly found in renal tubular interstitium. SDF-and CXCR4 mRNA were detected at every time point in control group. The expression of SDF-mRNA in diabetic kidney was significantly up-regulated only at 8 and 28 weeks (P<0.05, P<0.01), but difference in expression of CXCR4 mRNA between the diabetic group and the control group was not found (P>0.05). The level of SDF-1 was positively correlated with CXCR4 (r=0.767, P<0.01). The level of SDF-1 or CXCR4 was positively correlated with urinary protein excretion, Ang-2, CD133 and TM-1 in diabetic group, respectively.
     Conclusion:The abnormal expression of SDF-1/CXCR4 exist in the kidney of diabetic rats, and may be significantly associated with renal microvascular changes. The changes of SDF-1/CXCR4 is partly connected with the development of diabetic nephropathy.
引文
[1]Liu Y, Freedman BI. Genetics of progressive renal failure in diabetic kidney disease. Kidney Int,2005,68(99):S94-S97.
    [2]Gartner V, Eigentler TK. Pathogenesis of diabetic macro- and microangiopathy. Clin Nephrol,2008,70(1):1-9.
    [3]Orasanu G, Plutzky J. The continuum of diabetic vascular disease:from macro-to micro-. J Am Coll Cardiol,2009,53(5):S35-S42.
    [4]Calles-Escandon J, Cipolla M. Diabetes and endothelial dysfunction:a clinical perspec- tive. Endocr Rev,2001,22(1):36-52.
    [5]Nyengarrd JR, Rasch R. The impact of experimental diabetes mellitus in rats on glomerular capillary number and sizes. Diabetologia,1993,36(3):189-194.
    [6]Guo M, Ricardo SD, Deane JA, et al. A stereological study of the renal glomerular vasculature in the db/db mouse model of diabetic nephropathy. J Anat,2005,207 (6):813-821.
    [7]陈泽君,杨亦彬,柳飞,等.Ang-2和TM-1与糖尿病鼠肾新生血管生成关系的初步研究.中国中西医结合肾病杂志,2008,2(9):109-113.
    [8]黄颂敏,陈泽君,杨亦彬,等.血管生成素及其受体、血管内皮生长因子与糖尿病肾脏微血管病变的关系.中华肾脏病杂志,2006,22(9):521-527.
    [9]Xiao Q, Zeng J. Advance in research on SDF-1/CXCR4 axis and angiogenesis. Int J Ophthalmol,2007,7(5):1384-1386.
    [10]Imai H, Sunaga N, Shimizu Y, et al. Clinicopathological and therapeutic significance of CXCL12 expression in lung cancer. Int J Immunopathol Pharmacol,2010,23(1):153-164.
    [11]Huang F, Geng XP. Chemokines and hepatocellular carcinoma. World J Gastroenterol,2010,16(15):1832-1836.
    [12]Takahashi M. Role of the SDF-1/CXCR4 system in myocardial infarction. Circ J, 2010,74(3):418-423.
    [13]Pan J, Mestas J, Burdick MD, et al. Stromal derived factor-1 (SDF-1/CXCL12) and CXCR4 in renal cell carcinoma metastasis. Molecular Cancer,2006,5(1):56.
    [14]Lotan D, Sheinberg N, Kopolovic J, et al. Expression of SDF-1/CXCR4 in injured human kidneys. Pediatr Nephrol,2008,23(1):71-77.
    [15]林安华,雷闽湘,谢晓云,等.基质细胞衍生因子-及其受体在糖尿病大鼠心肌病变中的表达及意义.中西医结合心脑血管病杂志,2007,5(7):601-603.
    [16]Chen L, Lu L, Li Y, et al. Vitreous levels of stromal cell-derived factor-1 and vascular endothelial growth factor in diabetic retinopathy. Yan Ke Xue Bao, 2008,24(1):6-8.
    [17]Gholami SS, Rogers R, Chang J, et al. The effect of vascular endothelial growth factor and adeno-associated virus mediated brain derived neurotrophic factor on neurogenic and vasculogenic erectile dysfunction induced by hyperlipidemia. J Urol,2003,169 (4):1577-1581.
    [18]Pollock JS, Carmines PK. Diabetic nephropathy:nitric oxide and renal medullary hypoxia. Am J Physiol Renal Physiol,2008,294(1):F28-F29.
    [19]黄贤珍,杨亦彬.缺氧诱导因子-在糖尿病肾病大鼠肾组织的表达及意义.湖北民族学院学报·医学版,2009,26(1):5-7.
    [20]Takahiko N, Tomoki K, Masakazu H, et al. Abnormal angiogenesis in diabetic nephro-pathy. Diabetes,2009,7(58):1471-1478.
    [21]Costa F, Soares R. Nicotine:a pro-angiogenic factor. Life Sci,2009,84(23-24): 785-790.
    [22]Reinders ME, Rabelink TJ, Briscoe DM. Angiogenesis and endothelial cell repair in renal disease and allograft rejection. J Am Soc Nephrol,2006,17(4):932-942.
    [23]Tanaka T, Nangaku M. Drug discovery for overcoming chronic kidney disease (CKD):prolyl-hydroxylase inhibitors to activate hypoxia-inducible factor (HIF) as a novel therapeutic approach in CKD. J Pharmacol Sci,2009,109(1):24-31.
    [24]Aiuti A, Webb IJ, Bleul C, et al. The chemokine SDF-1 is a chemoattractant for human CD34+ hematopoietic progenitor cells and provides a new mechanism to explain the mobilization of CD34+ progenitors to peripheral blood. J Exp Med, 1997,185(1):111-120.
    [25]Wells TN, Power CA, Lusti-Narasimhan M, et al. Selectivity and antagonism of chemokine receptors. J Leukoc Biol,1996,59(1):53-60.
    [26]Takabatake Y, Sugiyama T, Kohara H et al. The CXCL12 (SDF-1)/CXCR4 axis is essential for the development of renal vasculature. J Am Soc Nephrol,2009, 20(8):1714-1723.
    [27]尹扬光,黄岚,赵晓辉,等.基质细胞衍生因子介导小鼠内皮祖细胞修复损伤血管内膜.中国动脉硬化杂志,2007,15(1):6-10.
    [28]Shao H, Tan Y, Eton D, et al. Statin and stromal cell derived factor-1 additively promote angiogenesis by enhancement of progenitor cells incorporation into new vessels. Stem Cells,2008,26(5):1376-1384.
    [29]Yamanguchi J, Kusano KF, Masuo O, et al. Stromal cell-derived factor-1 effects on exvivo expanded endothelial progenitor cell recruitment for ischemic neovasculari-zation. Circulation,2003,107(9):1322-1328.
    [30]Kijowski J, Baj-Krzyworzeka M, Majka M, et al. The SDF-1/CXCR4 axis stimulates VEGF secretion and activates integrins but does not affect proliferation and survival in lympho-hematopoietic cells. Stem Cells,2001, 19(5):453-466.
    [31]NeuhausT, Stier S, Totzke G, et al. Stromal cell-derived factor 1 alpha (SDF-lalpha) induces gene-expression of early growth response-1 (Egr-1) and VEGF in human arterial endothelial cells and enhances VEGF induced cell proliferation. Cell Prolif,2003,36(2):75-86.
    [32]韦玉和,罗春媛,周斌,等.2型糖尿病患者外周血中SDF-1水平和内皮祖细CXCR4表达率的变化.江苏大学学报(医学版),2009,19(5):413-416.
    [33]李盛国,曾军,刘可.SDF-1在增生性糖尿病视网膜病变中的表达及意义.眼科新进展,2008,28(6):434-437.
    [34]Ceradini DJ, Yao D, Grogan RH, et al. Decreasing intracellular superoxide corrects defective ischemia-induced new vessel formation in diabetic mice. J Biol Chem,2008,283(16):10930-10938.
    [35]Yang Q, Xie RJ, Yang T, et al. Transforming growth factor-betal and Smad4 signaling pathway down-regulates renal extracellular matrix degradation in diabetic rats. Chin Med Sci J,2007,22(4):243-249.
    [36]邹杨,樊均明.转化生长因子β1对大鼠肾小管上皮细胞中基质细胞衍生因子1表达的影响.中国组织工程研究与临床康复,2008,12(11):2029-2033.
    [37]Thurston C, Suri C, Smith K, et al. Leakage-resistant blood vessels in mice transgenically overexpressing angiopoietin-1. Science,1999,286(5449):2511-2514.
    [38]Woolf AS, Gnudi L, Long DA. Roles of Angiopoietins in kidney development and disease. J Am Soc Nephrol,2009,20(2):239-244.
    [39]Yancopoulos GD, Davis S, Gale NW, et al. Vascular-specific growth factors and blood vessel formation. Nature,2000,407(6801):242-248.
    [40]Holash J, Maisonpierre PC, Compton D, et al. Vessel cooption, repression, and growth in tumors mediated by angiopoietins and VEGF. Science,1999,284 (5422):1944-1998.
    [41]Rosenzweig A. Circulating endothelial progenitors--cells as biomarkers. N Engl J Med,2005,353(10):1055-1057.
    [42]杨亦彬,陈泽君,柳飞,等.Angiopoietin-1在糖尿病鼠肾脏中的表达及意义.四川大学学报(医学版),2007,38(1):93-96.
    [43]Sayyed SG, Hagele H, Kulkarni OP, et al. Podocytes produce homeostatic chemokine stromal cell-derived factor-1/CXCL12, which contributes to glomerulosclerosis, podocyte loss and albuminuria in a mouse model of type 2 diabetes. Diabetologia,2009,52(11):2445-2454.
    [44]Temm C, Dominguez JH. Microcirculation:nexus of comorbidities in diabetes. Am J Physiol Renal Physiol,2007,293(2):F486-493.
    [45]Ries M, Basseau F, Tyndal B et al. Renal diffusion and BOLD MRI in experimental diabetic nephropathy. J Magn Reson Imaging,2003,17(1):104-113.
    [46]Ceradini DJ, Kulkarni AR, Callaghan MJ, et al. Progenitor cell trafficking is regulated by hypoxic gradients through HIF-1 induction of SDF-1. Nat Med, 2004,10(8):858-864.
    [47]Togel F, Isaac J, Hu ZM, et al. Renal SDF-1 signals mobilization and homing of CXCR4 positive cells to the kidney after ischemic injury. Kidney Int,2005, 67(5):1772-1784.
    [1]Liu Y, Freedman BI. Genetics of progressive renal failure in diabetic kidney disease. Kidney Int,2005,68(99):S94-S97.
    [2]高国丽,车光升,董瑶,等.糖尿病肾病发病机制的研究进展.中国老年学杂志,2007,27(22):2254-2256.
    [3]刁亚丽,陈梅,程雪娟,等.糖尿病肾病研究进展——第43届欧洲糖尿病协会(EASD)年会侧记.实用糖尿病杂志,2008,3(4):6-7.
    [4]Takahiko N, Tomoki K, Masakazu H, et al. Abnormal angiogenesis in diabetic nephropathy. Diabetes,2009,7(58):1471-1478.
    [5]Costa F, Soares R. Nicotine:a pro-angiogenic factor. Life Sci,2009,84(23-24): 785-790.
    [6]黄颂敏,陈泽君,杨亦彬,等.血管生成素及其受体、血管内皮生长因子与糖尿病肾脏微血管病变的关系.中华肾脏病杂志,2006,22(9):521-527.
    [7]Nyengarrd JR, Rasch R. The impact of experimental diabetes mellitus in rats on glomerular capillary number and sizes. Diabetologia,1993,36(3):189-194.
    [8]Guo M, Ricardo SD, Deane JA, et al. A stereological study of the renal glomerular vasculature in the db/db mouse model of diabetic nephropathy.J Anat, 2005,207(6):813-821.
    [9]Yamamoto Y, Maeshima Y, Kitayama H, et al. Tumstatin peptide, an inhibitor of angiogenesis, prevents glomerular hypertrophy in the early stage of diabetic nephropathy. Diabetes,2004,53 (7):1831-1840.
    [10](?)sterby R, Asplund J, Bangstad HJ, et al. Neovascularization at the vascular pole region in diabetic glomerulopathy. Nephrol Dial Transplant,1999,14(2):348-352.
    [11]Kanesaki Y, Suzuki D, Uehara G, et al. Vascular endothelial growth factor gene expression is correlated with glomerular neovascularization in human diabetic nephropathy. Am J Kidney Dis,2005,45(2):288-294.
    [12]Kang DH, Kanellis J, Hugo C, et al. Role of the microvascular endothelium in progressive renal disease. J Am Soc Nephrol,2002,13(3):806-816.
    [13]Masaomi Nangaku. Chronic Hypoxia and Tubulointerstitial Injury:A Final Common Pathway to End-Stage Renal Failure. J Am Soc Nephrol,2006,17(1): 17-25.
    [14]Temm C, Dominguez JH. Microcirculation:nexus of comorbidities in diabetes. Am J Physiol Renal Physiol,2007,293(2):F486-493.
    [15]杨亦彬,陈泽君,柳飞,等.Angiopoietin-1在糖尿病鼠肾组织中的表达及意义.四川大学学报(医学版),2007,38(1):93-96.
    [16]陈泽君,杨亦彬,黄颂敏.VEGF在糖尿病大鼠肾脏中表达变化的研究.四川大学学报(医学版),2007,38(4):633-636.
    [17]陈泽君,杨亦彬,柳飞,等.Ang-2和TM-1与糖尿病鼠肾新生血管生成关系的初步研究.中国中西医结合肾病杂志,2008,2(9):109-113.
    [18]王允山,柳方娥,焦波.血管内皮生长因子与糖尿病肾病足细胞损伤的研究进展.中国老年学杂志,2008,28(6):618-621.
    [19]Maharaj AS, Saint-Geniez M, Maldonado AE, et al. Vascular endothelial growth factor localization in the adult. Am J Pathol,2006,168 (2):639-648.
    [20]Cui TG, Foster RR, Saleem M, et al. Differentiated human podocytes endogen-ously express an inhibitory isoform of vascular endothelial growth factor (VEGF165b) mRNA and protein. Am J Physiol Renal Physiol,2004,286(4): 767-731.
    [21]闫睿,林来祥.几种重要生长因子在糖尿病肾病中的作用.中国慢性病预防与控制,2009,17(2):211-213.
    [22]王亚平.2型糖尿病肾病患者血浆ET、血清TGF-β1和VEGF检测的临床意义.放射免疫学杂志,2008,21(6):529-531.
    [23]叶健华,马承红,周斌兵,等.血管内皮生长因子在早期糖尿病微血管病变中的变化及意义.广东药学院学报,2006,22(2):197-198.
    [24]陈泽君,黄颂敏,杨亦彬,等.糖尿病鼠肾小管周围新生血管与促血管生长因子关系研究.中国实用内科杂志,2006,26(15):1173-1175.
    [25]Khamaisi M, Schrijvers BF, De vriese AS, et al. The emerging role of VEGF in diabetic kidney disease. Nephrol Dial Transplant,2003,18:1427-1430.
    [26]Maxwell PH. Hypoxia-inducible factor as a physiological regulator. Exp Physiol, 2005,90 (6):791-797.
    [27]Min JH, Yang H, IvanM, et al. Structure of an HIF-1alpha-pVHL complex: hydroxyproline recognition in signaling. Science,2002,296(5574):1886-1889.
    [28]Chilov D, Camenisch G, Kvietikova I, et al. Induction and nuclear translocation of hypoxia-inducible factor-1 (HIF-1):heterodimerization with ARNT is not necessary for nuclear accumulation of HIF-la. J Cell Sci,1999,112(Pt8):1203-1212.
    [29]刘涛,姚恒臣.低氧诱导因子1与缺血性心脏病的关系.山东医药.2009,49(29):105-106.
    [30]Hirota K. Hypoxia-inducible factor-la master transcription of cellular hypoxic gene expression. Journal of Anesthesia,2002,16(2):150-159.
    [31]Warnecke C, Griethe W, Weidemann A, et al. Activation of the hypoxia-inducible factor pathway and stimulation of angiogenesis by application of prolyl hydroxylase inhibitors. FASEB J,2003,17(9):1186-1188.
    [32]Pichilue P, Chavez JC, La Manna JC, et al. Hypoxic regulation of angiopoietin-2 expression in endothelial cell. J Biol Chem,2004,279(1):12171-12180.
    [33]Yamakawa M, Liu LX, Date T, et al. Hypoxia-inducible factor-1 mediates activation of cultured vascular endothelial cells by inducing multiple angiogenic factors. Circulation Research,2003,93(7):664-673.
    [34]Palm F. Intrarenal oxygen in diabetes and a possible link to diabetic nephropathy. Clin Exp Pharmacol Physiol,2006,33(10):997-1001.
    [35]Elson DA, Thurston G, Huang LE, et al. Induction of hypervascularity without leakage or inflammation in transgenic mice overexpressing hypoxia-inducible factor-1alpha. Genes Dev,2001,15(19):2520-2532.
    [36]Palm F, Cederberg J, Hansell P, et al. Reactive oxygen species cause diabetes- induced decrease in renal oxygen tension. Diabetologia,2003,46(8):1153-1160.
    [37]Ries M, Basseau F, Tyndal B, et al. Renal diffusion and BOLD MRI in experi-mental diabetic nephropathy. J Magn Reson Imaging,2003,17(1):104-113.
    [38]Shibata R, Ueda S, Yamagishi SI, et al. Involvement of asymmetric dimethylar-ginine (ADMA) in tubulointerstitial ischaemia in the early phase of diabetic nephropathy. Nephrol Dial Transplant,2009,24(4):1162-1169.
    [39]Makino H, Miyamoto Y, Sawai K, et al. Altered gene expression related to glomerulogenesis and podocyte structure in early diabetic nephropathy of db/db mice and its restoration by pioglitazone. Diabetes,2006,55(10):2747-2756.
    [40]黄贤珍,杨亦彬.缺氧诱导因子-在糖尿病肾病大鼠肾组织的表达及意义.湖北民族学院学报·医学版,2009,26(1):5-7.
    [41]Gao X, Xu Z. Mechanisms of action of angiogenin. Acta Biochim Biophys Sin, 2008,40(7):619-624.
    [42]王萍,阮林海.血管生成素及其受体与白血病血管新生的关系.医学综述,2009,15(22):3412-3414.
    [43]罗彦,魏于全.促血管生成素及其受体TEK在血管形成中的调节作用.中华医学遗传学杂志,2006,23(1):63-66.
    [44]Holash J, Maisonp ieire PC, Comp ton D, et al. Vessel cooption, regression, and growth in tumors mediated by angiopoietins and VEGF. Science,1999,284 (5422):1994-1998.
    [45]Matsunaga T, Warltier DC, Tessmer J, et al. Expression of VEGF and angiopoietins-1 and-2 during ischemia-induced coronary angiogenesis. Am J Physiol Heart Circ Physiol,2003,285 (1):H352-H358.
    [46]Satchell SC, Mathieson PW. Angiopoietins:microvascular modulators with potential roles in glomerular pathophysiology. J Nephrol,2003,16(2):168-178.
    [47]Karteris E, Goumenou A, Koumantakis E, et al. Reduced expression of cortico-trop inreleasing hormone receptor type-1 alpha in human preeclamptic and grow threstricted placentas. J Clin Endocrinol Metab,2003,88(1):363-370.
    [48]Io H, Hamada C, Ro Y, et al. Morphologic change of peritoneum and expression of VEGF in encapsulated peritoneal sclerosis rat models. Kidney Int,2004,65 (5):1927-1936.
    [49]张曼,沈乐,周爱儒.缺氧条件下血管活性因子对血管内皮细胞中血管内生长因子表达的影响.中国实用内科杂志,2002,22(7):405-406.
    [50]Aiuti A, Webb IJ, Bleul C, et al. The chemokine SDF-1 is a chemoattractant for human CD34+hematopoietic progenitor cells and provides a new mechanism to explain the mobilization of CD34+ progenitors to peripheral blood. J Exp Med, 1997,185 (1):111-120.
    [51]Yu L, Cecil J, Peng SB, et al. Identification and expression of novel isoforms of human stromal cell-derived factor 1. Gene,2006,374 (2):174-179.
    [52]Wells TN, Power CA, Lusti-Narasimhan M, et al. Selectivity and antagonism of chemokine receptors. J Leukoc Biol,1996,59(1):53-60.
    [53]Xiao Q, Zeng J. Advance in research on SDF-1/CXCR4 axis and angiogenesis. Int J Ophthalmol,2007,7(5):1384-1386.
    [54]Gallagher KA, Liu ZJ, Xiao M, et al. Diabetic impairments in NO-mediated endothelial progenitor cell mobilization and homing are reversed by hyperoxia and SDF-1 alpha. J Clin Invest,2007,117(5):1249-1259.
    [55]Ceradini DJ, Kulkarni AR, Callaghan MJ, et al. Progenitor cell trafficking is regulated by hypoxic gradients through HIF-1 induction of SDF-1. Nat Med, 2004,10(8):858-864.
    [56]童中艺,王佐,姜志胜,等.基质细胞衍生因子对大鼠骨髓源内皮祖细胞迁移的影响.中国动脉硬化杂志,2007,15(7):491-493.
    [57]尹扬光,黄岚,赵晓辉,等.基质细胞衍生因子介导小鼠内皮祖细胞修复损伤血管内膜.中国动脉硬化杂志,2007,15(1):6-10.
    [58]Shao H, Tan Y, Eton D, et al. Statin and stromal cell derived factor-1 additively promote angiogenesis by enhancement of progenitor cells incorporation into new vessels. Stem Cells,2008,26(5):1376-1384.
    [59]Tachibana K, Hirota S, Iizasa H, et al. The chemokine receptor CXCR4 is essential for vascularization of the gastrointestinal tract. Nature,1998,393 (6685):591-594.
    [60]Takabatake Y, Sugiyama T, Kohara H, et al. The CXCL12 (SDF-1)/CXCR4 axis is essential for the development of renal vasculature. J Am Soc Nephrol,2009, 20(8):1714-1723.
    [61]Yamanguchi J, Kusano KF, Masuo 0, et al. Stromal cell-derived factor-1 effects on exvivo expanded endothelial progenitor cell recruitment for ischemic neovascularization. Circulation,2003,107(9):1322-1328.
    [62]Abbot JD, Huang Y, Liu DG, et al. Stromal cell-derived factor-la plays a critical role in stem cell recruitment to the heart after myocardial infarction but is not sufficient to induce homing in the absence of injury. Circuration,2004,110 (21):3300-3305.
    [63]Grunewald M, Avraham I, Dor Y, et al. VEGF-induced adult neovascularization: recruitment,retention, and role of accessory cells. Cell,2006,124(1):175-189.
    [64]Kijowski J, Baj-Krzyworzeka M, Majka M, et al. The SDF-1/CXCR4 axis stimu-lates VEGF secretion and activates integrins but does not affect proliferation and survival in lympho-hematopoietic cells. Stem Cells,2001,19(5):453-466.
    [65]Deshane J, Chen S, Caballero S, et al. Stromal cell-derived factor 1 promotes angiogenesis via a heme oxygenase 1-dependent mechanism. J Exp Med,2007, 204(3):605-618.
    [66]Sayyed SG, Hagele H, Kulkarni OP, et al. Podocytes produce homeostatic chem-okine stromal cell-derived factor-1/CXCL12, which contributes to glomerulo-sclerosis, podocyte loss and albuminuria in a mouse model of type 2 diabetes. Diabetologia,2009,52(11):2445-54.
    [67]谷庆阳,彭瑞云,王德文.血管生成过程中促血管生成因子及其在内皮细胞中信号转导途径的研究进展.2001,25(4):280-284.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700