水分胁迫和氮素形态对不同基因型水稻生长和氮素吸收的影响及其生理机制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
水分和氮素营养是影响水稻生长发育、养分吸收以及产量形成的两个关键因素。目前,节水稻作、提高氮肥利用效率已成为农业生产研究的热点。随着水稻节水管理措施的实施,各种土壤生态环境发生变化,导致土壤硝态氮含量显著增加,进而改变了土壤中铵态氮和硝态氮这两种矿质氮源的比例,可能使硝态氮成为水稻最重要的氮源形态。因此,开展水分胁迫条件及不同形态氮素对水稻生长发育、氮代谢生理、氮素吸收及利用影响的系统性研究具有重要意义。本研究以不同基因型代表性稻种(冈优527、扬稻6号、中旱3号、农垦57)为材料,采用水培、盆钵土培、微区试验,进行不同水分胁迫程度和不同氮素形态的处理,分析了水分胁迫及氮素形态对不同基因型水稻生长发育、氮素吸收及产量形成的影响及其生理机制。主要结果如下:
     1.种子引发对水分胁迫下不同基因型稻种萌发及幼苗生理特性的影响
     不同基因型稻种经水引发及聚乙二醇(PEG)渗透胁迫引发处理均能降低稻种丙二醛(MDA)含量,促进可溶性总糖的降解,加快稻种内部糖代谢进程,提高稻种内部相溶性溶质脯氨酸(Pro)及可溶性蛋白质(SP)含量,也有利于提高苯丙氨酸解氨酶(PAL)、超氧化物歧化酶(SOD)、过氧化物酶(POD)和过氧化氢酶(CAT)的活性,引发效果较为明显。且适度的PEG引发稻种的效果明显好于水引发处理,杂交籼稻在PEG浓度为20%的条件下引发效果最优,而常规粳型水稻在PEG浓度为10%-15%的引发条件下效果较好,但超出最高PEG引发浓度的阀值,会对稻种产生迫害,影响其正常萌发。引发处理后的稻种对不同程度水分胁迫程度的响应表明,适当强度的引发处理后,在水分胁迫下利于激发稻种物质代谢、利于各水稻品种的萌发、幼苗形态指标及保护性酶等生理指标相对于其他水分胁迫均有显著提高,而严重的水分胁迫环境下均不利于稻种的萌发;表明了引发处理虽能提高水分胁迫条件下种子活力,但稻种激发自身对外界萌发环境的协调能力也是有限的,且不同品种间也存在明显差异,籼稻优于粳稻。
     2.水分胁迫对水稻苗期生长的影响
     适度水分胁迫(PEG≤5%、水势≥-0.05 MPa)不影响氨基酸态氮(AA-N)、可溶性蛋白含量以及硝酸还原酶(NR)、谷氨酰胺合成酶(GS)、谷氨酸合酶(GOGAT)、和谷氨酸脱氢酶(GDH)、谷氨酸草酰乙酸转氨酶(GOT)及谷氨酸丙酮酸转氨酶(GPT)活性;但对硝态氮的吸收和积累有一定刺激作用,并显著降低幼苗净光合速率和干物质累积。相关分析表明,净光合速率的降低对茎叶干物质累积的影响明显大于水稻体内通过代谢抵御外界不良环境的正效应,导致茎叶干物质积累降低。当高水分胁迫强度(PEG≥10%、水势≤-0.15 MPa),不同氮素形态的含量、氮代谢关键酶以及净光合速率显著降低;而且根器官对水分胁迫的敏感程度明显大于叶片。表明水稻幼苗中不同氮素形态的含量、氮代谢关键酶以及净光合速率与水分胁迫强度密切相关;同时也表明了水分胁迫通过对一些氮代谢关键酶--NR、GS、GOGAT、GDH、GOT和GPT活性的影响进而影响氮代谢过程,且氮代谢关键酶活性的强弱与幼苗体内不同形态的氮含量、吸氮量、干物质累积及根系活力等均存在显著相关性。
     3.适度水分胁迫下增硝营养对不同基因型水稻苗期生长及生理特性的影响
     正常水分供应条件下,适当的提高硝态氮肥的比例(铵硝配比为50:50),不影响各营养器官中AA-N、可溶性蛋白含量、净光合速率、氮素吸收以及NR、GS、GOGAT、和GDH、GOT及GPT活性,并能促进水稻叶及根中硝态氮含量增加,但硝态氮肥比例>50%,会导致各生理及代谢指标的显著降低,均不利于不同基因型水稻的生长;而适度的水分胁迫下,适当增加硝态氮比例(铵硝配比为50:50)相对于非水分胁迫、纯铵态氮肥处理,更有利于提高功能叶净光合速率、各种氮代谢酶活性,促进渗透调节物质和氮素的积累,能发挥以水促肥的优势,进而促进水稻的生长。此外,不同基因型水稻生长在适度水分胁迫下对增硝营养的响应程度差异显著,籼稻与粳稻相比,杂交籼稻和常规籼稻相比,常规粳型早稻与常规粳型水稻相比,前者在对硝态氮的吸收、各种氮代谢酶活性、净光合速率、氮素吸收利用上均表现出更为明显的优势,同品种耐旱性规律一致。
     4.不同形态氮肥下结实期水分胁迫对水稻生理特性及产量的影响
     结实期适度土壤水势(Ψsoil=-25 kPa)处理下,铵硝配比50:50处理较纯铵态氮处理产量增加显著,适当增加硝态氮比例可缓解土壤水分不足所造成的对产量的不利影响。各铵硝配比处理下,穗长、一、二次枝梗数及着粒密度随水分胁迫程度的增加均呈先增后降的趋势,且在-25 kPa土水势时最大,二次枝梗数的下降受土壤水势影响最大,因此,适度的水分胁迫下,在确保增加穗长和保持适宜一次枝梗数的基础上,结合适宜的铵硝配比50:50,可增加二次枝梗数,提高高效叶面积率及着粒密度,提高增产潜能。此外,在土壤水势0 kPa--25 kPa适当增加硝态氮肥比例,有利于促进结实期茎鞘物质转运、提高净光合速率、伤流强度、抗衰老酶活性,还有利于促进稻株氮累积量的提高,但与纯铵态氮处理间未达到显著水平,与纯硝态氮处理间均达到显著水平,而Ψsoil≤-50 kPa增硝的优势减弱,相反增加铵态氮肥的比例(本试验铵硝配比100:0处理)更有利于缓解剑叶净光合速率、抗衰老酶活性的显著降低。
     5.不同基因型水稻对氮素形态及结实期适度水分胁迫的反应
     各处理因子对产量及产量构成的影响因素中,不同基因型对其影响最强,氮素形态次之,结实期土壤水势最小。两因素互作对其的交互作用中,不同基因型和氮素形态间的交互作用对其影响最大。不同基因型品种、结实期土壤水势和氮素形态三因素交互作用只对产量存在极显著的交互效应。适度的水分胁迫(Ψsoil=-25 kPa)和适当的增加硝态氮肥比例(铵硝配比为50:50),均有利于不同基因型水稻对铵态氮肥及硝态氮肥的协同吸收与利用,缓解由于水分胁迫所造成的不利影响,能显著促进产量的提高;但也不能过多的提高硝态氮肥的比例,其结果可能抑制水稻对铵态氮肥的吸收,加重水分和氮肥的双重胁迫,导致减产。不同水氮处理下,各品种产量表现为杂交籼稻>常规籼稻,常规粳型水稻>常规粳型早稻(分蘖能力差,有效穗较少)。此外,不同基因型水稻生长在适度土壤水势胁迫下对不同形态氮肥的响应程度差异显著,铵硝配比≥50%处理下,籼稻与粳稻相比,杂交籼稻和常规籼稻相比,常规粳型旱稻与常规粳型水稻,前者在收获指数、氮吸收及利用效率、各种氮代谢酶活性、净光合速率、茎鞘贮藏同化物的运转及提高抗衰老酶活性等方面上均表现出一定的优势,但在适度土壤水势胁迫下,铵硝配比<50%的处理,杂交籼稻和常规粳型旱稻为抵御外界不良生长环境,其体内在对各氮代谢酶及抗衰老酶活性的调控能力上较其他品种更具有优势。
Influences of water and nitrogen nutrition are the principal factors on growth and development, nutrient absorption, yield formation in rice. At present, water-saving rice cultivation, improve nitrogen fertilizer using efficiency have become two hot topics of agricultural production research. With implementation of management measures on water-saving cultivation of rice, may lead to changes in soil ecological environment. Subsequently, soil nitrate nitrogen increases significantly and becomes the most important nitrogen source. Therefore, the systematic research concerning the influence of water stress and nitrogen forms on rice physiological growth, nitrogen metabolism, nitrogen absorption and utilization have important significance. In this paper, different rice genotypic varieties including Gangyou 527, Yangdao 6, Zhonghan 3 and Nongken 57 were used as materials under different water stress and nitrogen forms conditions, and water culture, pot and micro-plot field experiments were conducted. Effects of water stress and nitrogen forms on the grain yield, nitrogen metabolism, nitrogen absorption and utilization, and their physiological mechanism were investigated. The main results are as follows:
     1. Effects of hydropriming and polyethylene glycol (PEG) priming on germination and seedling growth of different genotypic rice under water stress
     The results showed that significant higher levels of proline and soluble protein (SP) and lower levels of total soluble sugars and the content of malonicdialdehyde (MDA) in primed seeds were observed as compared with control (nonprimed seeds). Priming accelerated the process of glucose metabolism, improved the activities of phenylalanine ammonia lyase (PAL), superoxide (SOD), catalase (CAT) and peroxidase (POD) in stressed different genotypic rice seeds, moreover, priming effects was relatively significant. Rice seeds could be initiated significantly better by the priming of proper PEG concentration than hydropriming. The results showed that the best reaction conditions was 20%PEG content of hybrid indica rice seeds, but the best reaction conditions was 10%-15%PEG content of conventional japonica rice seeds. It can be damaged by permeability stress and inhibited normal germination of rice seeds if it beyond the threshold value of PEG content, respective. Response of hydroprimed seeds or PEG primed seeds on seedlings growth of different genotypic rice under different water stress. The results showed that, water stress could excite material metabolism, make against rice seeds germination, beneficial to significantly increase kinds of physiological index of seedlings in different genotypic rice, such as morphological index and protective enzymes after the treatment of proper PEG content. But it went against and inhibited germination in serious water stress treatment of rice seedlings. It showed that although seed priming treatment can improve activity of rice seedlings, but the coordination ability of the reaction external germinating environment excited by self-regulation were limited. It also indicated that indica rice had greater PEG tolerance than conventional japonica rice, but better priming effects were observed in hybrid indica rice.
     2. Effects of water stress on seedling growth of rice and its physiological basis
     Water stress was caused by adding PEG-6000 into the solution. Slight water stress (PEG≤5%, Water potential≥-0.05 MPa) has little effects on contents of amino acid nitrogen, soluble protein and activities of nitrate reductase (NR), glutamine synthetase (GS), glutamate synthase (GOGAT), glutamate dehydrogenase(GDH), glutamic-oxalacetic transaminase (GOT) and glutamic-pyruvic transaminase (GPT), and moreover the absorption and accumulation of nitrate nitrogen are stimulated. However, photosynthetic rate and dry matter accumulation are significantly inhibited. The dry matter accumulation change is significantly correlated with the regulation of photosynthetic rate more than that positive effect of resisting badness effect from environment. Therefore, photosynthetic rate has much more effect on dry matter accumulation than metabolism in vivo of rice. When PEG concentration≥10%(Water Potential≤-0.15 MPa), the concentrations of different nitrogen forms, some key enzymes of nitrogen metabolism and photosynthetic rate are significantly decreased. These effects on roots under the water stress are significantly larger than those on leaves. The above results indicate concentrations of different nitrogen forms and some key enzymes of nitrogen metabolism and photosynthetic rate are closely related to the intensity of water stress.
     3. Effect of partial replacement of ammonium by nitrate on some physiological characteristics by genotypes of rice at the seedlings stage under moderate water stress
     Under normal water condition, moderate reduce the ratio of ammonium/nitrate nitrogen (ammonium/nitrate ratio is 50:50), had little effects on contents of amino acid nitrogen (AA-N), soluble protein, photosynthetic rate, nitrogen uptake, and activities of NR, GS, GOGAT, GDH, GOT and GPT, and could promoted nitrate nitrogen content in leaves and roots. But if nitrate nitrogen content> 50%, it could significantly decreased physiological and metabolism indexes and inhibited the growth of different genotypic rice seedlings. It was more beneficial to improve photosynthetic rate of function leaves, improved the activities of nitrogen metabolism key enzymes, promoted accumulation of osmotic adjustment materials and nitrogen uptake, could full play advantage of promoting fertilizer by proper water stress and promoted the growth in rice of moderate reduce the ammonium/nitrate ratio is 50:50 than 100:0 and normal water condition. In addition, the response extent of different genotypic rice was significant differences under proper water stress. Compared with indica rice and japonica, hybrid indica rice and conventional indica rice, conventional japonica upland rice and conventional japonica rice, the former is much obviously better than the latter of nitrate absorption, the activities of nitrogen metabolism key enzymes, photosynthetic rate, nitrogen absorption and utilization was consistent with drought tolerance of different genotypic rice.
     4. Effect of status of soil moisture on the physiological characteristics and yield components under different nitrogen forms during grain filling in rice
     Proper soil moisture (Ψsoil=-25 kPa) during grain filling and ammonium/nitrate ratio 50:50, yield significantly increased than ammonium/nitrate ratio 100:0, and could alleviate adverse effects of yield in short of water. Kinds of ammonium/nitrate ratio treatment, panicle length, primary branch number, secondary branch number and spikelet density were all first and then decreased during water stress increased, and the biggest was-25 kPa soil moisture treatment. Effects most influential of secondary branch number on soil moisture. Therefore, proper soil moisture could make sure improve panicle length and keeping suitable primary branch number, combined with suitable ammonium/nitrate ratio 50:50 could increase secondary branch number, efficient leaf area ratio and spikelet density, improve the potentiality of increase yield. Furthermore, soil moisture 0 kPa--25 kPa and proper significantly increased with ammonium/nitrate ratio, benefit to promote redistribution of reserves in stem and sheath, photosynthetic rate, bleeding intensity, anti-aging enzymes activities and nitrogen cumulate during grain filling in rice. But there were not reached significant level compared with ammonium nitrogen and significant level compared with nitrate nitrogen. But when soil moisture (Ψsoil≤-50 kPa), advantage decreased ammonium nitrogen ratio (ammonium/nitrate ratio is 100:0), is more beneficial to relief significantly decreased photosynthetic rate and anti-aging enzymes activities.
     5. Effect of status of proper soil moisture under different nitrogen forms during grain filling in different genotypic rice
     Effect treatment factors of yield and yield compositions, influence of different genotypic, nitrogen forms took second place, soil moisture was the least. Two factors toxicity interaction effect, the interaction of different genotypic and nitrogen forms was the biggest one. There was an extremely significantly interaction effect to yield among different genotypic rice, soil moisture and nitrogen forms. Proper soil moisture (Ψsoil≤=-25 kPa) and proper increased nitrate nitrogen ratio (ammonium/nitrate ratio is 50:50), were all beneficial to increase absorb and utilization ammonium and nitrate nitrogen, could relief adverse effect of water stress, significantly promoted increase yield. But could not improve the rate of excessive nitrate nitrogen ratio, because it would inhibited the absorption of ammonium nitrogen, aggravated double stress of water and nitrogen fertilizer, finally lead to yield reduction. Under different water and nitrogen treatments, kinds of rice variety were all manifested as hybrid indica rice> conventional indica rice, conventional japonica rice>conventional japonica upland rice (tillering ability is so poor and effective panicles are less). Furthermore, different nitrogen forms under proper soil moisture in different genotypic rice were significant differences. Under ammonium nitrogen ratio≥50%, compared with indica rice and japonica, hybrid indica rice and conventional indica rice, conventional japonica upland rice and conventional japonica rice, the former is much obviously better than the latter of harvest index, nitrogen absorption and utilization, the activities of nitrogen metabolism key enzymes, photosynthetic rate, material transport in stem-sheath and improve anti-aging enzymes activities. But under proper soil moisture and ammonium nitrogen ratio< 50%, two varieties which have stronger drought tolerance: hybrid indica rice and conventional japonica upland rice have more advantages of the activities of nitrogen metabolism key enzymes and anti-aging enzymes than other rice varieties.
引文
[1]廖显辉.话说“节水农业”[J].农业考古,2002,(1):44-47.
    [2]邱福林,张伟平.水分胁迫对水稻生长影响的研究进展[J].垦殖与稻作,2000,(2):7-13.
    [3]刘翰朝.我国21世纪水资源挑战与节水型社会经济模式的探讨[J].水利与建筑工程学报,2006,4(2):73-77.
    [4]刘定辉,庞良玉,朱钟麟,等.四川省季节性干旱综合防控技术研究[J].四川农业科技,2009,8:48-49.
    [5]罗怀良.四川水资源可持续利用与水质保护研究[J].四川环境,2003,22(3):38-41.
    [6]薛金义,荆宇,华玉凡.略论我国旱稻的生产及发展[J].中国稻米,2002,(4):5-7.
    [7]程建平,曹凑贵,蔡明历,等.不同灌溉方式对水稻生物学特性与水分利用效率的影响[J].应用生态学报,2006,17(10):1859-1865.
    [8]张晓宇,窦世卿.我国水资源管理现状及对策[J].自然灾害学报,2006,15(3):91-95.
    [9]石玉林.中国农业需求与高校农业建设[J].北京:中国水利水电出版社,2001:11-23.
    [10]康绍忠.新的农业科技革命21世纪我国节水农业的发展[J].干旱地区农业研究,1998,16(1):11-17.
    [11]梁永超,胡峰,杨茂成,等.水稻覆膜旱作高产机理研究[J].中国农业科学,1999,32(1):26-32.
    [12]董淑喜,徐淑琴.水分胁迫对寒区水稻生长特性及产量的影响[J].灌溉排水学报,2008,27(6):63-65.
    [13]李自超,刘文欣,赵笃乐.PEG胁迫下水、陆稻幼苗生长势比较研究[J].中国农业大学学报,2001,6(3):16-20.
    [14]Blum A L. An evaluation of seed and seedling drought tolerance screening tests in wheat [J]. Euphytica,1980,29:727-736.
    [15]薛慧勤,甘信民,顾淑媛.花生种子萌发特性和抗旱性关系的高渗溶液法[J].中国油料作 物学报,1997,19(3):30-33.
    [16]惠红霞,李树华,许兴.高渗溶液鉴定小麦抗旱性的方法[J].宁夏农学院学报,2000,21(3):28-32.
    [17]Bhupinder SJJ, Deveshwar MS, Kaim S R, et al. Water stress induced physiological changes in germinating grains of drought tolerant and susceptible wheat cultivars [J]. Plant Physiology and Biochemistry,1998,25(2):130-136.
    [18]Hohl M. Peter S. Water relations of growing maize coleoptiles. Comparison between mannitol and polyethylene glycol 6000 as external osmotica for adjusting turgor pressure [J]. Plant Physiology, 1991,95:716-722.
    [19]Kaufmann M R, Eckard A N. Evaluation of water stress control with polyethylene glycols by analysis of guttation [J]. Plant Physiology,1971,47:453-456.
    [20]Michel B E. Further comparisons between Carbowax 6000 and mannitol as suppressants of cucumber hypocotyl elongation [J]. Plant Physiology,1971,48:513-516.
    [21]景蕊莲,昌小平.用渗透胁迫鉴定小麦种子萌发期抗旱性的方法分析[J].植物遗传资源学报,2003,4(4):292-296.
    [22]廖祥儒,朱新产.种子引发提高小麦抗渗透胁迫能力的效应[J].植物学通报,1997,14(2):36-40.
    [23]周毅,郭世伟,陈贵,等.胁迫萌发与不同水分胁迫强度下水稻对供氮形态的响应[J].南京农业大学学报,2006,29(1):57-62.
    [24]张明炷,李远华,崔远来,等.非充分灌溉条件下水稻生长发育及生理机制研究[J].灌溉排水,1994,13(4):6-10.
    [25]S Ramanjulu, N Sreenivasalu, S Giridhara Kumar et al. Photosynthetic characteristics of mulberry during water stress and rewatering [J]. Photosynthetica,1998,35(2):259-263.
    [26]张忠学,于贵瑞.不同灌水处理对冬小麦生长及水分利用效率的影响[J].灌溉排水学报,2003,22(2):1-4.
    [27]宋凤斌,戴俊英.玉米茎叶和根系生长对干旱胁迫的反应和适应性[J].干旱区研究,2005,22(2):256-258.
    [28]郝树荣,郭相平,王为木,等.胁迫后复水对水稻叶面积的补偿效应[J].灌溉排水学报,2005,24(4):19-22.
    [29]刘德林,刘贤赵.控制性分根交替滴灌对玉米蒸腾日变化和WUE的影响[J].节水灌溉,2006,(1): 9-12.
    [30]廖建雄,王根轩.干旱、CO2和温度升高对春小麦光合、蒸腾及水分利用效率的影响[J].应用生态学报,2002,13(5):547-550.
    [31]罗明珠,梁计南.苗期甘蔗对干旱胁迫的反应[J].热带作物学报,2005,26(4):38--41.
    [32]肖冬梅,王淼,姬兰柱.水分胁迫对长白山阔叶红松林主要树种生长及生物量分配的影响[J].生态学杂志,2004,23(5):93-97.
    [33]林贤青,周伟军,朱德峰,等.稻田水分管理方式对水稻光合速率和水分利用效率的影响[J].中国水稻科学,2004,18(4):333-338.
    [34]孙宏勇,张喜英,陈素英,等.水分胁迫对冬小麦冠层结构及光合特性的研究[J].灌溉排水学报,2005,24(2):31-34.
    [35]廖观容,钟继洪,郭庆荣,等.土壤水分对幼龄桉树蒸腾和生长的影响[J].土壤与环境,2001,10(4):285-288.
    [36]刘凤丽.控制灌溉对水稻冠层结构和干物质增长影响研究[D].博士学位论文.南京:河海大学,2005.
    [37]Seginer I, Elster R T. Plant Wilt Detection by Computer Vision Tracking of Leaf Tips [J]. Transaction of the ASAE,1992,35(5):1563-1567.
    [38]黄红霞,李萍萍,张迎春,等.从生理变化诊断作物缺水的方法[J].农机化研究,2004,(5):101-105.
    [39]Lilley J M, Fukai S. Effect of timing and severity of water deficit on four diverse rice Cultivars. Ⅱ. Physiological responses to soil water deficit [J]. Field Crops Research,1994,37:215-223.
    [40]Lilley J M, Ludlow M M. Expression of osmotic adjustment and dehydration tolerance in diverse rice lines [J]. Field Crops Research,1996,48:185-197.
    [41]李粉茹.水分胁迫对棉花叶片的影响[J].农业与技术,2005,25(6):61-63.
    [42]彭世彰.农业高效节水灌溉模式研究[D].博士学位论文.南京:河海大学,2002.
    [43]徐金祥,王学礼,徐宁红.高产水稻节水控灌技术应用研究[J].土壤肥科,2001,(2):24-27.
    [44]李霞,侯平,杨鹏年.塔里木河下游胡杨对水分条件变化的响应[J].干旱区研究,2006,23(1):26-30.
    [45]Molz F J, Kleper B. On the mechanism of water-stress-iaduced stem deformation [J]. Agronomy Journal,1973,65:304-306.
    [46]孟兆江,段爱旺,刘祖贵,等.根据植株茎直径变化诊断作物水分状况研究进展[J].农业工程学报,2005,21(2):30-33.
    [47]Molz F J, Kleper B. Radial propagation of water potential in stems [J]. Agronomy Journal,1972, 64:469-473.
    [48]孟兆江,段爱旺,刘祖贵,等.辣椒植株茎直径微变化与作物体内水分状况的关系[J].中国农村水利水电,2004,(2):28-30.
    [49]Mcburney T, Costigan P A.The relationship between stem diameter and water potentials in stems of young cabbage plants [J]. Journal of Experimental Botany,1984,35:1787-1793.
    [50]Higgs K H, Jones H G. A microcomputer-based system for continuous measurement and recording fruit diameter relation to environmental factors [J]. Journal of Experimental Botany,1984,35: 1646-1655.
    [51]张寄阳,段爱旺,盂兆江,等.不同水分状况下棉花茎直径变化规律研究[J].农业工程学报,2005,21(5):7-11.
    [52]胡继超,曹卫星,姜东,等.小麦水分胁迫影响因子的定量研究:Ⅰ干旱和渍水胁迫对光合、蒸腾及干物质分配的影响[J].作物学报,2004,30(4):315-320.
    [53]胡继超,曾卫星,姜东,等.短期干旱对水稻叶水势、光合作用及干物质分配的影响[J].应用生态学报,2004b,15(1):63-67.
    [54]Shuwen Li, S Reza Pezeshki, Shirlean, et al. Effects of soil moistures regimes on photosynthesis and growth in Cuttail (Typha latifolia) [J]. Acta Oecologia,2004,25:17-22.
    [55]杨鑫光,傅华,张洪荣,等.水分胁迫对霸王苗叶水势和生物量的影响[J].草业学报,2006,15(2):37-41.
    [56]赵言文,丁艳锋,陈留根,等.水稻旱育秧苗抗旱生理特性研究[J].中国农业科学,2001,34(3):283-291.
    [57]彭世彰,郝树荣.节水灌溉水稻高产优质成因分析[J].灌溉排水,2000,19(3):24-28.
    [58]程建平,曹凑贵,蔡明历,等.不同土壤水势与氮素营养对杂交水稻生理特性和产量的影响[J].植物营养与肥料学报,2008,14(2):199-206.
    [59]Necdet Dagdelen, Ersel Yilmaz, Fuat Sezgin, et al. Water-yield relation and water use efficiency of cotton (Gossypium hirsutum L.) and second crop corn (Zea mays L.) in western Turkey [J]. Agriculture-water management,2006,82:63-85.
    [60]彭世彰,俞双恩,张汉松,等.水稻节水灌溉技术[M].北京:中国水利水电出版社,1998.
    [61]程旺大.水稻节水高效栽培的生理生态效应及对产量与品质的影响[D].博士学位论文.杭州:浙江大学,2001.
    [62]郭相平,张烈君,王琴,等.作物水分胁迫补偿效应研究进展[J].河海大学学报(自然科学版),2005,33(6):634-637.
    [63]郝树荣,郭相平,王为木,等.胁迫后复水对水稻叶面积的补偿效应[J].灌溉排水学报,2005,24(4):19-21.
    [64]冯广龙,罗元培,杨培岭.节水灌溉对小麦干物质分配、灌浆及水分利用效率的影响[J].华北农学报,1998,13(2):11-17.
    [65]郑家国,任光俊,陆贤军,等.花后水分亏缺对水稻产量和品质的影响[J].中国水稻科学,2003,17(3):239-243.
    [66]何宝安,方红军,明万才.水分胁迫对水稻植株性状及产量的影响[J].黑龙江水利科技,2002,(3):44-45.
    [67]Cruz Aguado J A, Rosa R, Isel P P, et al. Morphlogical characteristics and yield components associated with accumulatition and loss of drymass in the intermodes of wheat [J]. Field Crop Research,2006,66:129-139.
    [68]陈晓远,罗远培.土壤水分变动对冬小麦干物质分配及产量的影响[J].中国农业大学学报,2001,6(1):96-103.
    [69]周江明,姜家彪,钱小妹,等.不同肥力稻田晚稻水氮耦合效应研究[J].植物营养与肥料学报,2008,14(1):28-35.
    [70]张卫星,朱德峰,林贤青,等.干旱胁迫对不同穗型超级稻品种产量及穗部性状的影响[J].干旱地区农业研究,2010,28(1):255-260.
    [71]丛建鸥,李宁,许映军.干旱胁迫下冬小麦产量结构与生长、生理、光谱指标的关系[J].中国生态农业学报,2010,18(1):67-71.
    [72]Monteith J L, Szeicz G. Radiative temperature in the heat balance of natural surfaces [J]. Quarterly Journal of the Royal Meteorological Society.1962,88,496-507.
    [73]Idso S B, Jackson R D, Reginato R J. Remote sensing of crop yields [J]. Science,1977,196: 19-25.
    [74]Gardner B R, Blad B L, Garrity D P, et al. Relationships between crop temperature, grain yield, evapotranspiration and phonological development in two hybrids of moisture stressed sorghum [J]. Irrigation Science,1981, (2):213-224.
    [75]Clawson K L, Blad B L. Infrared thermometry for scheduling irrigation of corn [J]. Agronomy Journal,1982,74:311-316.
    [76]袁国富,罗毅,孙晓敏,等.作物冠层表面温度诊断冬小麦水分胁迫的试验研究[J].农业工程学报,2002,18(6):13-17.
    [77]张寄阳,段爱旺,孙景生,等.作物水分状况自动监测与诊断的研究进展[J].农业工程学报,2006,22(1):174-178.
    [78]王秀珍,王人潮,李云梅,等.不同氮素营养水平的水稻冠层光谱红边参数及其应用研究[J].浙江大学学报(农业与生命科学版),2001,27(3):301-306.
    [79]Zhou Qifa, Shen Zhangquan, Wang Renchao. Fourier transform infirared speetml difference of leaf tips in rice related to nitrogen fertilizer rates [J]. Acta Botanica Sinica,2002,44(5):547-550.
    [80]唐延林,黄敬峰,王人潮,等.水稻遥感估产模拟模式比较[J].农业工程学报,2004,20(1):166-171.
    [81]Raymond F k, Roger N C. Spectroscopic determination of leaf biochemistry using band-depth analysis of absorption features and stepwise multiple linear regression [J]. Remote Sens,1999,67: 267-287.
    [82]王纪华,赵春江,郭晓维,等.用光谱反射率诊断小麦叶片水分状况的研究[J].中国农业科学,2001,34(1):104-107.
    [83]田庆久,宫鹏,赵春江,等.用光谱反射率诊断小麦水分状况的可行性分析[J].科学通报,2000,45(24):2045-2050.
    [84]张佳华,王长耀.以气孔导度为显参的遥感-光合水分胁迫作物产量模型研究[J].水利学报,1999,(8):35-39.
    [85]邓世媛,陈建军.干旱胁迫下氮素营养对作物生长及生理代谢的影响[J].河南农业科学,2005,(11):24-26.
    [86]庞士铨.植物逆境生理学基础[M].哈尔滨:东北林业大学出版社,1989:125-126.
    [87]张福锁.环境胁迫与植物营养[M].北京:北京农业大学出版社,1993:127-141.
    [88]严小龙.植物营养遗传学[M].北京:中国农业出版社,1995:33-34.
    [89]康绍忠,蔡焕杰,冯绍元.现代农业与生态节水的理论创新及未来研究重点[J].农业工程学报,2004,20(1):1-4.
    [90]山仑.节水农业与作物高效用水[J].河南大学学报(自然科学版),2003,33(1):1-5.
    [91]李国臣.植物水运移机理分析与温室作物水分亏缺诊断方法的研究[D].博士学位论文.长春:吉林大学,2005.
    [92]范晶.东北东部主要成林树种光合生理生态研究[D].博士学位论文.哈尔滨:东北林业大学,2002.
    [93]关义新,林葆,凌碧莹.光、氮及其互作对玉米幼苗叶片光合和碳、氮代谢的影响[J].作物学报,2000,26(6):806-812.
    [94]王志琴,杨建昌,朱庆森,等.水分胁迫下外源多胺对水稻叶片光合速率与籽粒充实的影响[J].中国水稻科学,1998,12(3):185-188.
    [95]马富裕,李蒙春,张秀英,等.控制供水对棉花叶片的光合生理特性和水分利用率的影响[J].石河子大学学报(自然科学版),1998,(S1):65-70.
    [96]吕金印,山仑,高俊凤,等.干旱对小麦灌浆期旗叶光合等生理特性的影响[J].干旱地区农业研究,2003,21(2):77-81.
    [97]山仑,张岁岐.节水农业及其生物学基础[J].水土保持研究,1999,6(1):1-6.
    [98]Anita lerna, Giovanni Mauromicale. Physiological and growth response to moderate water deficit of off-season potatoes in a Mediterranean environment [J]. Agricultural Water Management.2006, 82,193-209.
    [99]M G Cayon, M A El-sharkawy, L F Cadavid. Leaf gas exchange of Cassava as affected by quality of planting material and water stress [J]. Photosynthetica,1997,34(3):409-418.
    [100]G Arnau, P Monneveux, D This, et al. Photosynthesis of six barley genotypes as affected by water stress [J]. Photosynthetica,1997,34(1):67-76.
    [101]S Ramanjulu, N Sreenivasalu, C Sudhakar. Effect of water stress on photosynthesis in two mulberry genotypes with different drought tolerance [J]. Photosynthetica,1998,35(2):279-283.
    [102]K Palanisamy. The interaction of evaluated CO2 concentration and drought Stress on photosynthesis in Euealyptus. Cladocalyx F Muell [J]. Photosynthetica,1999,36(4):635-638.
    [103]刘祖贵,陈金平,段爱旺,等.水分胁迫和气象因子对冬小麦生理特性的影响[J].灌溉排水学报,2005,24(1):33-37.
    [104]黄占斌,山仑.不同供水条件下作物水分利用效率和光合速率日变化的时段性及其机理研究[J].华北农学报,1999,14(1):47-52.
    [105]杨涛,梁宗锁,薛吉全,等.土壤干旱不同玉米品种水分利用效率差异的生理原因[J].干旱地区农业研究,2002,20(2):68-71.
    [106]康绍忠,史文娟,胡笑涛,等.调亏灌溉对于玉米生理指标及水分利用效率的影响[J].农业工程学报,1998,14(4):82-87.
    [107]高延军,张喜英,陈素英,等.冬小麦叶片水分利用生理机制研究[J].华北农学报,2004,19(4):42-46.
    [108]毛明策,郭东伟,梁银丽.水分处理对油菜叶位光合速率、蒸腾速率及水分利用效率的影响[J].中国生态农业学报,2001,9(1):49-51.
    [109]康绍忠,蔡焕杰,张富仓,等.节水农业中作物水分管理基本理论的探讨[J].水利学报,1996,(5):9-18.
    [110]郑国琦,许兴,徐兆桢,等.盐胁迫对枸杞光合作用的气孔与非气孔限制[J].西北农业学报,2002,11(3):87-90.
    [111]王孝威,段艳红,曹慧,等.水分胁迫对短枝型果树光合作用的非气孔限制[J].西北植物学报,2003,23(9):1609-1613.
    [112]贺军民,佘小平,刘成,等.增强UV-B辐射和NaCl复合胁迫下绿豆光合作用的气孔和非气孔限制[J].植物生理与分子生物学学报,2004,30(1):53-58.
    [113]姚庆群,谢贵水.干旱胁迫下光合作用的气孔与非气孔限制[J].热带农业科学,2005,25(4):80-85.
    [114]Charves, M M. Effects of water deficits on carbon assimilation [J]. Journal of experimental botany,1991,42:1-16.
    [115]Comic G, Ghashgaie J, Genty B, et al. Leaf photosynthesis is resistant to a mild drought stress [J]. Photosynthetica,1992,27:295-309.
    [116]Kumer R J, Gupta P k. Influence of different leaf water potentials on photosynthetical carbon metabolism in sorghum [J]. Photosynthetica,1991,20:391-396.
    [117]Gimenez K, M itchell V, Lawlor D. Regulation of photosynthsis rate of two sunflower hybrids under water stress [J]. Plant Physiology,1992,98:516-524.
    [118]上官周平,邵明安.改善作物水分利用的生理调节机制[J].水利学报,1999,(10):33-36.
    [119]关义新,戴俊英,林艳.水分胁迫下植物叶片光合的气孔和非气孔限制[J].植物生理学通讯,1995,31(4):293-297.
    [120]李世清,田霄鸿,李生秀.养分对旱地小麦水分胁迫的生理补偿效应[J].西北植物学报,2000,20(1):22-28.
    [121]赵平,孙谷畴,彭少麟.植物氮素营养的生理生态学研究[J].生态科学,1998,17(2):37-42.
    [122]汤章城.植物对水分胁迫的反应和适应性Ⅱ.植物对干旱的反应和适应性[J].植物生理学通讯,1993,(4):1-7.
    [123]孙骏威,杨勇,黄宗安,等.聚乙二醇诱导水分胁迫引起水稻光合下降的原因探讨[J].中国水稻科学,2004,18(6):539-543.
    [124]匡廷云,卢从明,李良璧.作物光能利用效率与调控[M].济南:山东科学技术出版社,2004.
    [125]郑国生,王焘.田间冬小麦叶片光合午休过程中的非气孔限制[J].应用生态学报,2001,12(5):799-800.
    [126]付芳婧,赵致,张卫星.水分胁迫下玉米抗旱性与光合生理指标研究[J].山地农业生物学报,2004,23(6):471-474.
    [127]覃鹏,杨志稳,孔治有,等.干旱对烟草旺长期光合作用的影响[J].亚热带植物科学,2004,33(3):5-7.
    [128]高辉远,邹琦,程炳嵩.甘薯光合活力、羧化效率日变化与光合午体的关系[J].作物学报,1997,23(1):62-65.
    [129]Hirasawa T, Hsiao T C. Some characteristics of reduced photosynthesis at middy in maize grown in the field [J]. Field Crop Research,1997,62:53-62.
    [130]孟庆伟,邹琦,许长成.小麦和大豆叶片的气孔不均匀关闭现象[J].植物生理学报,1997,23(1):53-60.
    [131]许大全,李德耀,沈允钢.田间小麦叶片光合作用“午睡”现象的研究[J].植物生理学报,1984,10(3):269-276.
    [132]Steduto P, Hsiao T C. Maize canopies under two soft water regimes, I. Diurnal patterns of energy balance, carbon dioxide conductance, and canopy conductance [J]. Agricultural and Forest Meteorology,1998,89:169-184.
    [133]孙骏威,杨勇,黄宗安,等.聚乙二醇诱导水分胁迫引起水稻光合下降的原因探讨[J].中国水稻科学,2004,18(6):539-543.
    [134]Asch F, Dingkuhn M, Sow A, et al.Drought-induced changes in rooting patterns and assimilate partitioning between root and shoot in upland rice [J]. Field Crops Res,2005,93:223-236.
    [135]姚素梅,康跃虎,刘海军,等.喷灌与地面灌溉条件下冬小麦光合作用的日变化研究[J].农业工程学报,2005,21(1):16-19.
    [136]李萍萍,陈献,付为国,等.北固山湿地芦苇光合作用及其与环境的关系[J].江苏大学学报,2005,26(4):336-339.
    [137]Hirai G, Chugo H, Tanaka O, et al. Studies on the effect of relative humidity of the atmosphere on growth and physiology of rice plant. IX. Effects of water stresses induced by low humidity and the addition of the polyethyleneglycol to the medium on growth [J]. Jpn J Crop Sci,1994,63: 265-270.
    [138]陈亚新,康绍忠.非充分灌溉原理[M].北京:水利水电出版社,1995.
    [139]Muller, J E, Whitsitt, M S. Plant cellular responses to water deficit [J]. Plant Growth Regulation. 1996,20:41-46.
    [140]翁晓燕,陆庆,蒋德安.水稻Rubisco活化酶在调解Rubisco活性和光合日变化中的作用[J].中国水稻科学,2001,15(1):35-40.
    [141]徐惠风,刘兴土,金研铭,等.沼泽植物泽泻气孔导度日变化的研究[J].生态学报,2003,23(3):218-221.
    [142]王玉辉,何兴元,周广胜.羊草叶气孔导度特征及其数值模拟[J].应用生态学报,2001,12(4):517-521.
    [143]田晶会,贺康宁,王百田,等.黄土半干旱区侧柏气体交换特征和水分利用效率日变化研究[J].北京林业大学学报,2005,27(1):42-46.
    [144]彭世彰,徐俊增,丁加丽.控制灌溉水稻气孔导度变化规律试验研究[J].农业工程学报,2005,21(3):1-5.
    [145]杨建昌,王志琴,朱庆森.水稻品种的抗旱性及其生理特性的研究[J].中国农业科学,1995,28(5):65-72.
    [146]于海秋,武志海,沈秀瑛,等.水分胁迫下玉米叶片气孔密度、大小及显微结构的变化[J].吉林农业大学学报,2003,25:239-242.
    [147]汪天然,张立新,毕玉容,等.水分胁迫对梭梭叶片气孔交换特征的影响[J].兰州大学学报,2001,37(6):57-62.
    [148]W Tezara, M D Fernandez, C Donoso, et al. Seasonal change in photosynthesis and stomatal conductance of five plant species from a semiarid ecosystem [J]. Photosynthetica,1998,35(3): 399-410.
    [149]许振柱,周广胜,李晖.羊草叶片气体交换参数对温度和土壤水分的响应[J].植物生态学报,2004,28(3):300-304.
    [150]张继祥,魏钦平,于强,等.植物光合作用与群体蒸散模拟研究进展[J].山东农业大学学报(自然科学版),2003,34(4):613-618.
    [151]鲍玉海,杨吉华,李红元,等.不同灌木树种蒸腾速率时空变异特征及其影响因子的研究[J].水土保持学报,2005,19(3):184-191.
    [152]冯金朝,江天然,刘新民.C3和C4植物的水分利用效率[J].西北植物学报,1997,17(6):27-30.
    [153]刘静,李风霞,王连喜,等.灌溉对春小麦蒸腾速率的影响及其生理原因[J].麦类作物学报,2005,23(1):58-62.
    [154]彭世彰,丁加丽,徐俊增,等.晚稻蒸腾速率及其影响因索研究[J].节水灌溉,2005,(1):1-4.
    [155]吕爱霞,杨吉华,夏江宝.3种阔叶树气体交化特征及水分利用效率影响因子的研究[J].水土保持学报,2005,19(3):188-192.
    [156]Allen S J, Grime V L. Measurements of transpiration from savannah shrubs using sap flow gauges [J]. Agricultural and Forest Meteorology,1995,75:23-41.
    [157]Nagler P L, Glenn E P, Thompson T L. Comparison of transpiration rates among saltcedar, cottonwood and willow trees by sap flow and canopy temperature methods [J]. Agricultural and Forest Meteorology,2003,116:73-89.
    [158]马福生,康绍忠,胡笑涛,等.不同阶段亏水处理对温室栽培梨枣树茎液流变化影响的研究[J].农业工程学报,2006,22(4):6-10.
    [159]Alaron J J, Domingo R, Green S R, et al. Sap flow as indicator of transpiration and the water status of yong apricot tress [J]. Plant and Soil,2000,227:77-85.
    [160]冯跃华,邹应斌,Roland J B,等.不同耕作方式对杂交水稻根系特性及产量的影响[J].中国农业科学,2006,39(4):693-701.
    [161]张灿军,姚宇卿,王育红,等.早稻抗旱性鉴定方法与指标研究:Ⅰ.鉴定方法与评价指标[J].干旱地区农业研究,2005,23(3):33-36.
    [162]吴伟明,程式华.水稻根系育种的意义与前景[J].中国水稻科学,2005,19(2):174-180.
    [163]张凤翔,周明耀,周春林,等.水肥耦合对水稻根系形态与活力的影响[J].农业工程学报,2006,22(5):197-200.
    [164]王晨阳,马元喜.不同土壤水分条件下小麦根系生态生理效应的研究[J].华北农学报,1992,7(4):1-8.
    [165]山仑,陈培元.旱地农业生理生态基础[M].北京:中国科学出版社,1998.
    [166]李鲁华,李世清,翟军海,等.小麦根系与土壤水分胁迫关系的研究进展[J].西北植物学报,2001,21(1):1-7.
    [167]王晨阳.干旱胁迫对冬小麦根系活性氧代谢的影响[J].华北农学报,1997,18(4):31-36.
    [168]王朝辉,李生秀.不同生育期缺水和补充水对冬小麦氮磷钾吸收及分配影响[J].植物营养与肥料学报,2002,8(3):265-270.
    [169]王喜庆,李生秀,高亚军.土壤水分在提高氮肥肥效中的作用机制[J].西北农业大学学报,1997,25(1):16-19.
    [170]王俊儒,李生秀,李凯丽.冬小麦不同生育时期水分亏缺对叶片保护酶系统的影响[J].西北植物学报,2001,21(1):47-52.
    [171]闫成仕.水分胁迫下植物叶片抗氧化系统的相应研究进展[J].烟台师范学院学报(自然科学版),2002,18(3):220-285.
    [172]黄薇,王薪,赵文明,等.渗透胁迫对青小麦根质膜H+-ATPase活力的影响及其与脯氨酸积累的关系[J].海南大学学报自然科学版,2002,20(1):33-36.
    [173]燕平梅,章艮山.水分胁迫下脯氨酸的累积及其可能的意义[J].太原师范专科学校学报,2000,4:27-28.
    [174]梁芳.水分胁迫下杂交稻幼苗体内脯氨酸积累对膜脂过氧化的影响[J].湘潭师范学院学报(自然科学版),2001,23(3):83-86.
    [175]Yang J C, Zhang J H, Liu K, et al. Involvement of polyamines in the drought resistance of rice[J]. Journal of Experimental Botany,2007,58(6):1545-1555.
    [176]周小梅,赵运林,周朴华,等.水分胁迫下水稻幼苗多胺含量变化与抗旱性的关系[J].湖南农业大学学报(自然科学版),2010,36(1):17-21.
    [177]周小梅.水分胁迫下水稻体内多胺代谢及其生理功能研究[D].博士学位论文,长沙:湖南农业大学,2008.
    [178]王忠.植物生理学[M].北京:中国农业出版社,2000.
    [179]李忠存.土壤水分胁迫对冬小麦的生理效应[J].山东农业大学学报,1991,22(4):384-389.
    [180]刘仁涛,任佳.不同水分条件下翅果油树幼苗生理特性[J].南阳师范学院学报,2005,4(12): 59-62.
    [181]李秋祝,赵宏伟,魏永霞,等.春玉米不同生育时期干旱对主要生理参数的影响[J].东北农业大学学报,2006,37(1):8-11.
    [182]牟筱玲,鲍啸.土壤水分胁迫对棉花叶片水分状况及光合作用的影响[J].中国棉花,2003,30(9):9-10.
    [183]Stricevic R, Caki E. Relationships between available soil water and indicators of plant water status of sweet sorghum to be applied in irrigation scheduling [J]. Irrigation Science,1997,18: 17-21.
    [184]Mastrorilli M, Katerji N, Rana G. Productivity and water use efficiency of sweet sorghum as affected by soil water deficit occurring at different vegetative growth stages [J]. European Journal of Agronomy,1999,11:207-215.
    [185]Takahiro Sato, Osman S Abdalla, Theib Y. Oweis, et al. The validity of predawn leaf water potential as an irrigation-timing indicator for field-grown wheat in northern Syria [J]. Agricultural Water Management,2006,82:223-236.
    [186]何炎红,郭连生,田有亮.白刺叶不同水分状况下光合速率及其叶绿素荧光特性的研究[J].西北植物学报,2005,25(11):2226-2233.
    [187]张英普,何武全,韩键.玉米不同时期水分胁迫指标[J].灌溉排水,2001,20(4):18-20.
    [188]Rana G, Katerji N, Mastrorilli M. Environmental and soil-plant parameters for modeling actual crop evapotranspiration under water stress conditions [J]. Ecological Modelling,1997,101: 363-371.
    [189]王纪华,赵春江,黄文江,等.土壤水分对小麦叶片含水量及生理功能的影响[J].麦类作物学报,2001,21(4):42-47.
    [190]Naor A. Relationship between leaf and stem water potential and stomatal conductance in three field grown woody species [J]. Hort Sci&Biotechnology,1998,73:431-436.
    [191]杨朝选,焦国利,王新峰,等.干旱过程中桃树茎和叶水势的变化[J].果树科学,1999,16(4):267-271.
    [192]梁建生,张建华.根系逆境信号ABA的产生、运输及其对地上部生理过程的调节[J].植物生理学通讯,1998,34(5):329-339.
    [193]李良勇,崔国贤.营养胁迫下植物内源激素变化研究进展[J].作物研究,2002,(5):240-244.
    [194]欧阳琳,洪亚辉,黄丽华,等.不同逆境胁迫信号对超级稻幼苗生理生化影响及植物激素变化的初步研究[J].农业现代化研究,2007,28(1):104-106.
    [195]沈元月,黄丛林,张秀海,等.植物抗旱的分子机制研究[J].中国生态农业学报,2002,10(1):30-34.
    [196]张卫星,朱德峰,林贤青,等.灌浆结实阶段水分逆境对超级稻叶片丙二醛含量的影响[J].浙江农业学报,2008,20(6):420-423.
    [197]Trejo C L, Celphan A L, Davies W J. How do stomata read abscisic acid signals [J]. Plant Physiology,1995,109:803-811.
    [198]Gallardo M, Turner N C, Ludwing C. Water relations, gas exchange and abscisic acid content of lupinus cosentinii leaves in response to drying different proportions of the root system [J]. Journal of Experimental Botany,1994,45:909-918.
    [199]Zhang J H, Jia W S, Zhang D P. Effect of leaf water status and xylem pH on metabolism of xylem transported abscisic acid [J]. Plant Growth Regulation,1997,21:51-58.
    [200]Liu L, Mc Donald A J S. Abscisic acid and stomatal conductance in willow [J]. Journal of Experimental Botany,1998,49:36.
    [201]Munns R, King R W. Abscisic acid is not the only stomatal inhibitor in the transpiration stream of wheat [J]. Plant Physiology,1998,88:703-708.
    [202]张岁岐,李金虎,山仑.干旱下植物气孔运动的调控[J].西北植物学报,2001,21(6):1263-1270.
    [203]范晓荣,沈其荣.ABA. IAA对旱作水稻叶片气孔的调节作用[J].中国农业科学,2003,36(12):1450-1455.
    [204]刘瑞香,杨劫,高丽.中国沙棘和俄罗斯沙辣叶片在不同土壤水分条件下脯氨酸、可溶性糖及内源激素含量的变化[J].水土保持学报,2005,19(3):148-151.
    [205]Chazen O, Neumann PM. Hydraulic signals from the roots and rapid cell-wall hardening in growing maize (Zea maysL.) leaves are primary responses to polyethyleneglycol-induced water deficits [J]. Plant Physiology,1994,104:1385-1392.
    [206]李连朝,王学臣.水分亏缺下细胞延伸生长与细胞膨压和细胞壁特性的关系[J].植物生理学通讯,1998,34(3):161-167.
    [207]丁宝莲,谈宏鹤,朱素琴,等.胁迫与植物细胞壁关系研究进展[J].广西科学院学报,2001,17(2):87-89.
    [208]B Jongdee, D Fukai, M Cooper. Leaf water potential and osmotic adjustment as physiology traits to improve drought tolerance in rice [J]. Field crops research,2002,76:153-163.
    [209]Alfredo A C Alves, Tim L Setter. Abscisic acid accumulation and osmotic adjustment in cassava under water deficit [J]. Environmental and Experimental Botany,2004,51:259-271.
    [210]Juan-Pablo Martinez, Stanley Lutts, Andre Schanck. Is osmotic adjustment required for water stress resistance in the Mediterranean shrub Atriplex halimus L [J]. Journal of Plant Physiology, 2004,161:1041-1051.
    [211]邱福林,张伟平.水分胁迫对水稻生长影响的研究进展[J].栽培技术,2000,(2):7-9.
    [212]刘红霞,武永军,梁宗锁,等.不同pH值缓冲液对玉米叶片蒸腾速率和相对含水量的影响[J].干旱地区农业研究,2004,22(1):44-49.
    [213]赵丽英,邓西平,山仑.水分亏缺下作物补偿效应类型及机制研究概述[J].应用生态学报,2004,15(3):523-526.
    [214]施积炎,袁小凤,丁贵杰.作物水分亏缺补偿与超补偿教虑的研究现状[J].山地农业生物 学报,2000,19(3):226-233.
    [215]黄占斌.干湿变化与作物的补偿效应规律研究[J].生态农业研究,2000,8(1):30-33.
    [216]Culer J M, Shahan K W, Steponkus P L. Alteration of the internal water relations of rice in response to drought hardening [J]. Crop Science,1980,20:307-316.
    [217]陈晓远,罗远培,石元春.作物对水分胁迫的反应[J].生态农业研究,1998,6(4):12-15.
    [218]陆景陵.植物营养学[M].北京:中国农业大学出版社,2002:23-34.
    [219]孙羲.植物营养与肥料[M].北京:农业出版社,1988:42-43.
    [220]徐萌,山仑.无机营养对春小麦抗旱适应性的影响[J].植物生态学与植物学学报,1991,15(1):79-87.
    [221]张立新,吕殿青,王九军,等.渭水旱塬不同水肥配比冬小麦根系效应的研究[J].干旱地区农业研究,1996,14(4):22-28.
    [222]史正军,樊小林,D Klaus,等.根系局部供氮对水稻根系形态的影响及其机理[J].中国水稻科学,2005,19(2):147-151.
    [223]李春俭,张福锁.植物的缺氮胁迫及适应调节[M].北京:中国农业大学出版社,2002:12-24.
    [224]Biswas J C, Ladha J K, Dazzo F B. Rhizobia inoculation improves nutrient uptake and growth of lowland rice [J]. Soil Sci Am J,2000,64(5):1644-1650.
    [225]Marcus S, Boy F, Peter S. Root morphology and nitrogen up take of maize simultaneously supplies with ammonium and nitrate in a split-root system [J]. Annals of Botany,1993,72: 107-115.
    [226]董桂春,王余龙,吴华.水稻主要根系性状对施氮时期反应的品种间差异[J].作物学报,2003,29(6):871-877.
    [227]Asady G H, Smucker A J, A dams M W. Seedling test for the quantitative measurement of root tolerances to compacted soil [J]. Crop Science,1985,25:802-806.
    [228]Eentz M H. Root growth and soil water extraction by w inter and sp ring w heat [J]. Canadian Journal of Plant Science,1992,72 (42):1109-1120.
    [229]Beusichem M L, Vankirkby E A, Baas R. Influence of nitrate and ammonium nutrition on the uptake, assimilation and distribution of nutrients in Ricimus communis [J]. Plant Physiology, 1988,86:914-921.
    [230]Zou Chunqin, Zhang Fusuo. Ammonium improves iron nutrition by decreasing leaf apoplastic pH of sunflower plants (Helianthus annuus L. cv. Frankasol) [J]. Chinese Science Bulletin,2003, 48(20):2215-2220.
    [231]Mengel K, Geurtzen G. Relationship between Fe chlorosis and alkalinity in Zea mays [J]. Physiology Plantarum,1988,72:460-465.
    [232]李宝珍,辛伟杰,徐国华.氮饥饿水稻利用不同形态氮素的差异及其生理机制[J].土壤学报,2007,44(3):273-279.
    [233]曹静,刘小军,汤亮,等.稻麦适宜氮素营养指标动态的模型设计[J].应用生态学报,2010, 21(2):359-364.
    [234]Samonte S O P B, Wilson L T, Medley J C, et al. Nitrogen utilization efficiency:Relationships with grain yield, grain protein, and yield-related traits in rice[J]. Agron J,2006,98:168-176.
    [235]Jing Q, Bouman B A M, Hengsdijk H, et al. Exploring options to combine high yields with high nitrogen use efficiencies in irrigated rice in China[J]. Eur J Agron,2007,26:166-177.
    [236]杨肖娥,孙羲.不同水稻品种对低氮反应的差异及其机制的研究[J].土壤学报,1992,29(1):73-79.
    [237]Ghannoum O, Evans J R, Chow W S. Faster Rubisco is the key to superior nitrogen-use efficiency in NADP-Malic enzyme relative to NAD-Malic enzyme C4 grasses[J]. Plant Physiol,2005, 137:638-650.
    [238]曾建敏,崔克辉,黄见良,等.水稻生理生化特性对氮肥的反应及与氮利用效率的关系[J].作物学报,2007,33(7):1168-1176.
    [239]袁新民,王周琼.环境和土壤中硝态氮的研究[J].干旱地区研究,1997,14(4):52-55.
    [240]Arth I, Frenzel P, Conrad R. Denitrification coupled to nitrification in the rhizosphere of rice [J]. Soil Biology and Biochemistry,1998,30:509-515.
    [241]Kronzucker H J, Kirk G J D, Siddiqi M Y, et al. Effects of hypoxia on 13NH4+flux in rice roots: Kinetics and compartmental analysis[J]. Plant Physiol,1998,116:581-587.
    [242]Kirk G J D. Plant mediated processes to acquire nutrients:Nitrogen uptake by rice plants [J]. Plant and Soil,2001,232:129-134.
    [243]A. Prasertsak, S. Fukai. Nitrogen availability and water stress interaction on rice growth and yield [J]. Field crops Research,1997,52(3):249-260.
    [244]石英,沈其荣,茆泽圣,等.旱作水稻根际土壤铵态氮和硝态氮的时空变异[J].中国农业科学,2002,35(5):520-524.
    [245]肖焱波,李文学,段宗颜,等.植物对硝态氮的吸收及其调控[J].中国农业科技导报,2002,4(2):56-59.
    [246]Kronzucker H.J., A.D.M.Glass, M.Y. Siddiqi, et al. Comparative kinetic analysis of ammonium and nitrate acquisition by tropical lowland rice:implications for rice cultivation and yield potential [J]. New Plytol,2000,145:471-476.
    [247]何文寿,李生秀,李辉桃.水稻对铵态氮和硝态氮吸收特性的研究[J].中国水稻科学,1998,12(4):249-252.
    [248]王娜,陈国祥,邵志广.不同形态氮素配比对水稻光合特性的影响[J].江苏农业学报,2002,18(1):18-22.
    [249]张敬锁,李花粉,张福锁.不同形态氮素对水稻体内镉形态的影响[J].中国农业大学学报,1998,(5):90-94.
    [250]孙静文,陈温福,曾雅琴,等.氮素水平对粳稻根系形态及其活力的影响[J].沈阳农业大学学报,2003,34(5):344-346.
    [251]王余龙,姚庆友,刘宝玉,等.不同生育时期氮素供应水平对杂交水稻根系生长及其生活力的影响[J].作物学报,1997,23(6):699-705.
    [252]王丹英,徐春梅,袁江,等.不同时期三系杂交稻主栽品种对氮肥用量的响应[J].作物学报,2010,36(2):354-360.
    [253]夏文建,周卫,梁国庆,等.优化施氮下稻-麦轮作体系氮肥氨挥发损失研究[J].植物营养与肥料学报,2010,16(1):6-13.
    [254]Alberto S C, Thomas H M, Augusto A, et al. An inhibitor of urease activity effectively reduces ammonia emissions from soil treated with urea under Mediterranean conditions [J]. Agric. Ecosys. Environ.2008,126:243-2491.
    [255]邓美华,尹斌,张绍林,等.不同施氮量和施氮方式对稻田氨挥发损失的影响[J].土壤,2006,38(3):263-2691.
    [256]Li H, Liang X L, Chen Y X, et al. Ammonia volatilization from urea in rice fields with zero drainage water management [J]. Agric. Water Manag.2008,95:887-894.
    [257]Rochette P, Angers D A, Chantigny M H, et al. Ammonia volatilization following surface application of urea to tilled and no-till soils. A laboratory comparison [J]. Soil Till Res.,2009, 103 (2):310-315.
    [258]Hayashi K, Nishimura S, Yagi K. Ammonia volatilization from a paddy field following applications of urea:Rice plants are both an absorber and an emitter for atmospheric ammonia [J]. Sci. Total Environ.,2008,390:485-494.
    [259]田玉华,贺发云,尹斌,等.太湖地区氮磷肥施用对稻田氨挥发的影响[J].土壤学报,2007,44(4):893-900.
    [260]Lin D X, Fan X H, Hu F, et al. Ammonia volatilization and nitrogen utilization efficiency in response to urea application in rice fields of the Taihu lake region [J]. Pedosphere,2007,17 (5): 639-645.
    [261]杜伟,遆超普,姜小三,等.长三角地区典型稻作农业小流域氮素平衡及其污染潜势[J].生态与农村环境学报,2010,26(1):9-14.
    [262]方玉东,封志明,胡业翠,等.基于GIS技术的中国农田氮素养分收支平衡研究[J].农业工程学报,2007,23(7):35-42.
    [263]Xing G, Zhao X, Xiong Z, et al. Nitrous oxide emission from paddy fields in China[J]. Acta Ecologica Sinica,2009,29:45-50.
    [264]王海云,邢光熹.不同施氮水平对稻麦轮作农田氧化亚氮排放的影响[J].农业环境科学学报,2009,28(12):2631-2636.
    [265]李共福.水稻品种对N、K的反应及其与肥料效益的关系[J].土壤肥料,1987,(2):25-27.
    [266]单玉华,王余龙,山本由德,等.常规籼稻与杂交籼稻氮素利用效率的差异[J].江苏农业研究,2001,22(1):12-15.
    [267]张云桥,吴荣生,蒋宁,等.水稻的氮素利用效率与品种类型的关系[J].植物生理学通讯, 1989,(2):45-47.
    [268]单玉华,王余龙,山本由德,等.常规籼稻与杂交籼稻氮素利用效率的差异[J].江苏农业研究,2001,1:12-15.
    [269]江立庚.水稻品种氮素吸收利用效率的生理生态特征及调控研究[D].博士学位论文.南京:南京农业大学,2003.
    [270]李祖章,陶其嚷,刘光荣,等.双季两系杂交稻高产营养特性和施肥技术[J].江苏农业学报,1998,10(4):29-37.
    [271]杨肖娥,孙羲.不同水稻品种对低氮反应的差异及其机理研究[J].土壤学报,1992,(1):73-79.
    [272]张林,熊洪,朱永川,等.杂交中稻植株性状对氮素的响应及其与氮效率的关系[J].中国稻米,2010,16(1):30-35.
    [273]杨肖娥,李华,罗安程.不同氮钾条件下水稻基因型氮、钾积累利用差异[J].中国水稻科学,2002,14(1):87-89.
    [274]Novoa R, Loomis R S. Nitrogen and plant Production [J]. Plant and soil,1981,58:177-204.
    [275]Ericsson T. Growth and shoot:root allocation of seedlings in relation to nutrient availability [J]. Plant and soil,1995,168:205-214.
    [276]Cacco G, Ferrari C, Saccom ani M, et al. Pattem of sulfate uptake during root elongation in maize: its correlation [J]. Physiol Plant,1980,48:375-378.
    [277]Anthony D.M. Glass, Dev T. Britto, Brent N. Kaiser, et al. The regulation of nitrate and ammonium transport system in Plants [J]. Journal of Experimental Botany,2002,53:855-864.
    [278]Howitt S M, Udardi M K. Structure, function and regulation of ammonium transporters in plants [J]. Biochimica et Biophysica Acta.2000,1465:152-171.
    [279]范雪梅,戴廷波,姜东,等.花后干旱与渍水下氮素供应对小麦碳氮运转的影响[J].水土保持学报,2004,18(6):63-67.
    [280]梁银丽,陈培元.水分胁迫和氮素营养对小麦根苗生长及水分利用效率的效应[J].西北植物学报,1995,15(1):21-25.
    [281]汪耀富,孙德梅,李社潮.干旱胁迫对烟叶膜脂过氧化特性影响[J].河南农业科学,1995,(8):12-15.
    [282]杨建昌,王志琴,朱庆森,等.不同土壤水分状况下氮素营养对水稻产量的影响及其生理机制的研究[J].中国农业科学,1996,29(4):58-66.
    [283]李英,陈培元,陈建军.水分胁迫下不同抗旱类型品种对氮素营养反应的比较研究[J].西北植物学报,1991,11(4):309-315.
    [284]邹琦,李德全.作物栽培生理研究[M].北京:中国农业科技出版社,1998.
    [285]张岁岐,山仑.氮素营养对春小麦抗旱适应性及水分利用的影响[J].水土保持研究,1995,2(1): 31-35,55.
    [286]杨建昌,王志琴,朱庆森.水稻在不同土壤水分状况下脯氨酸的累积与抗旱的关系[J].中 国水稻科学,1995,9(2):92-96.
    [287]李荣刚,夏源陵,吴安之,等.太湖地区水稻节水灌溉与氮素淋失[J].河海大学学报,2001,29(3): 21-25.
    [288]王强,卢从明,张其德,等.超高产杂交稻两优培九的光合作用、光抑制和C途径酶特性[J].中国科学(C辑),2002,32(6):481-487.
    [289]钱晓晴,沈其荣,徐国华.配合施用NH4+-N和NO3--N对旱作水稻生长与水分利用效率的影响[J].土壤学报,2003,40(6):894-900.
    [290]钱晓晴,沈其荣,王娟娟,等.模拟水分胁迫条件下水稻的氮素营养特征[J].南京农业大学学报,2003,26(4):9-12.
    [291]周毅,郭世伟,沈其荣.局部根系干旱条件下分蘖期水稻对供氮形态的生物学响应[J].水土保持学报,2005,19(6):169-173.
    [292]周毅,郭世伟,宋娜,等.水分胁迫和供氮形态耦合作用下分蘖期水稻的光合速率、水分与氮素利用[J].中国水稻科学,2006,20(3):313-318.
    [293]吴芳,高迎旭,宋娜,等.氮素形态及水分胁迫对水稻根系生理特性的影响[J].南京农业大学学报,2008,31(1):63-66.
    [294]李勇,周毅,郭世伟,等.铵态氮和硝态氮营养对水、旱稻根系形态及水分吸收的影响[J].中国水稻科学,2007,21(3):294-298.
    [295]段英华,张亚丽,王松伟,等.铵硝比(NH4+/NO3-)对不同氮素利用效率水稻的生理效应[J].南京农业大学学报,2007,30(3):73-77.
    [296]王东升,张亚丽,陈石,等.不同氮效率水稻品种增硝营养下根系生长的响应特征[J].植物营养与肥料学报,2007,13(4):585-590.
    [297]柏彦超,钱晓晴,沈淮东,等.不同水、氮条件对水稻苗生长及伤流液的影响[J].植物营养与肥料学报,2009,15(1):76-81.
    [298]陈晓远,高志红,刘振华.供氮形态和水分胁迫对水稻生长及氮素积累和分配的影响[J].华北农学报,2009,24(6):116-122.
    [299]段英华,张亚丽,王松伟,等.不同氮效率水稻全生育期内对增硝营养的响应及其生理机制[J].生态学报,2007,27(3):1086-1092.
    [300]曹云,范晓荣,孙淑斌,等.增硝营养对不同基因型水稻苗期硝酸还原酶活性及其表达量的影响[J].植物营养与肥料学报,2007,13(1):99-105.
    [301]宋娜,郭世伟,沈其荣.不同氮素形态及水分胁迫对水稻苗期水分吸收、光合作用及生长的影响[J].植物学通报,2007,24(4):477-483.
    [302]王娜,陈国祥,邵志广,等.不同形态氮素配比对水稻光合特性的影响[J].江苏农业学报,2002,18(1):18-22.
    [1]Heydecker W. Germination of an idea:the priming of seeds [J]. University of Nottingham School of Agriculture Report,1973/1974.50-67.
    [2]Heydecker W, Coolbear P. Seed treatments for improved performance survey and attempted prognosis [J]. Seed Sci Technol,1977,5:353-425.
    [3]Harris D, Joshi A K, Sodhi P S. On-farm seed priming in semiarid agriculture development and evaluation in maize, rice, and chickpea in India using participatory methods[J]. Experimental Agriculture,1999,35(1):15-19.
    [4]Bradford K J. Manipulation of seed water relations via osmotic priming to improve germination under stress conditions [J]. HortScience,1986,21 (5):1105-1112.
    [5]吕小红,伏家瑞.聚乙二醇渗透处理提高花生种子活力和抗寒性[J].中山大学学报(自然科学版),1990,(29):63-70.
    [6]廖祥儒,朱新产.种子引发提高小麦抗渗透胁迫能力的效应[J].植物学通报,1997,14(2):36-40.
    [7]王彦荣,张建全,刘慧霞,等.PEG引发紫花苜蓿和沙打旺种子的生理生态效应[J].生态学报,2004,24(3):402-408.
    [8]Sivritepe H O, Eris A, Sivritepe N. The effect of NaCl priming on salt tolerance in melon seedlings [J]. Acta Horticulturae,1999,492:77-84.
    [9]阮松林,薛庆中,王清华.种子引发对杂交水稻幼苗耐盐性的生理效应[J].中国农业科学,2003,36(4):463-468.
    [10]王熹,沈波.多效唑浸种提高稻苗耐旱性[J].植物生理学报,1991,17(1):105-108.
    [11]瘳祥儒,孙群.钴离子抑制种子引发绿豆抗旱性的诱导过程[J].种子,1994(3):29-34.
    [12]Ward F H, Powell A A. Evidence for repair process in onion seeds during storage at high seed moisture contents [J]. JExp Bio,1983,34:277-284.
    [13]Bohnert H J, Shen B. Transformation and compatible solutes [J].Scientia Horticulture,1999,78: 237-260.
    [14]安永平,强爱玲,张媛媛,等.渗透胁迫下水稻种子萌发特性及抗旱性鉴定指标研究[J].植物遗传资源学报,2006,7(4):421-426.
    [15]王贺正,马均,李旭毅,等.水稻种质芽期抗旱性和抗旱性鉴定指标的筛选研究[J].西南农业学报,2004,17(5):594-599.
    [16]李姝晋,朱建清,叶小英,等.干旱和盐胁迫下水稻品种的双重耐性差异[J].西南农业学报,2005,18(2):128-132.
    [17]顾龚平,吴国荣,陆长梅,等.PEG处理对大豆幼苗活力及活性氧代谢的影响[J].中国油 料作物学报,2000,22(2):26-30.
    [18]李季平,古红梅,吴诗光,等.聚乙二醇(PEG)处理对小麦萌发种子生理生化特性的影响[J].河南农业科学,2002,(6):4-6.
    [19]Hydecker, w., j. Higgins, R.L. Gullier. Accelerated germination by osmotic seed treatment [J]. Nature,1973,246:42-44.
    [20]李合生.植物生理生化实验原理和技术[M].北京:高等教育出版社,2000.
    [21]张宪政.作物生理研究法[M].北京:中国农业出版社,1992.
    [22]Zucker M. Induction of phenylalanine deaminase by light and its relation to chlorogenic acid synthesis in potato tuber tissue [J]. Plant Physiol,1965,40(5):779-784.
    [23]Asada K. Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts [J]. Plant Cell Physiol.1981,22:867-880.
    [24]Wakamatsu K, Takahama U. Changes in peroxidase activity and in peroxidsae isozymes in carrot callus [J].Physiol Plant,1993,88:167-171.
    [25]段俊,粱承邺,黄毓文.杂交水稻开花结实期间叶片衰老[J].植物生理学报,1997,23(2):139-144.
    [26]刘杰,刘公社,齐冬梅,等.聚乙二醇处理对羊草种子萌发及活性氧代谢的影响[J].草业学报,2002,11(1):59-64.
    [1]Levitt J. Responses of Plants, Environmental Stress [M]. New York:Academic Press.1980, 365-434.
    [2]陆景陵.植物营养学[M].北京:中国农业大学出版社,2003.23-35.
    [3]Lam H M, Coschigano K T, Oliveira I C, et al. The molecular-genetics of nitrogen assimilation into amino acids in higher plants [J]. Annu Rev Plant Physiol Plant Mol Biol,1996,47:569-593.
    [4]李泽松,林清华,张楚富,等.不同氮源对水稻幼苗根氨同化酶的影响[J].武汉大学学报(自然科学版),2000,46:729-732.
    [5]邓江明,宾金华,潘瑞炽.光质对水稻幼苗初级氮同化的影响[J].植物学报,2000,42(3):234-238.
    [6]段英华,张亚丽,沈其荣,等.增硝营养对不同基因型水稻苗期氮素吸收同化的影响[J].植物营养与肥料学报,2005,11(2):160-165.
    [7]赵首萍,赵学强,施卫明.不同铵硝比例对水稻铵吸收代谢基因表达的影响[J].土壤学报,2006,43(3):436-442.
    [8]曹云,范晓荣,孙淑斌,等.增硝营养对不同基因型水稻苗期硝酸还原酶活性及其表达量的影响[J].植物营养与肥料学报,2007,13(1):99-105.
    [9]钱晓晴,沈其荣,王娟娟,等.模拟水分胁迫条件下水稻的氮素营养特征[J].南京农业大学学报,2003,26(4):9-12.
    [10]Zhou W, Sun Q J, Zhang C F, et al. Effect of salt stress on ammonium assimilation enzymes of the roots of rice (Oryza sativa) cultivars differing in salinity resistance [J]. Acta Botanica Sinica,2004, 46 (8):921-927.
    [11]周卫,马敬坤,王志强,等.等渗水分和盐胁迫对水稻幼苗叶片氨同化的影响[J].武汉大学学报(理学版),2005,51(4):521-524.
    [12]Lutts S, Majerus V, Kinet J M. NaCl effects on pro line metabolism in rice (Oryza sativa) seedlings [J]. Physiol. Plant.,1999,105:450-458.
    [13]陆彬彬,周卫,张吉,等.温度对水稻谷氨酰胺合成酶和NADH-谷氨酸合酶表达的影响[J].武汉大学学报(理学版),2002,48(2):239-242.
    [14]周忠新,袁永泽,王云华,等.蔗糖对不同氮源培养下水稻根部氨同化相关酶活性的影响[J].武汉植物学研究,2005,23(6):572-576.
    [15]鲍世颖,袁永泽,周志鹏,等.2-酮戊二酸对水稻根部碳—氮代谢重要酶的活性影响[J].武汉大学学报(理学版),2006,52(6):763-766.
    [16]孙骏威,杨勇,黄宗安,等.聚乙二醇诱导水分胁迫引起水稻光合下降的原因探讨[J].中国水稻科学,2004,18(6):539-543.
    [17]高志红,陈晓远.聚乙二醇造成的水分胁迫对水稻根系生长的影响[J].华北农学报,2009,24(2):128-133.
    [18]曹翠玲,李生秀.水分胁迫下氮素对分蘖期小麦某些生理特性的影响[J].核农学报,2004,18(5):402-405.
    [19]王贺正,李艳,马均,等.水稻苗期抗旱性指标的筛选[J].作物学报,2007,33(9):1523-1529.
    [20]毛达如,申建波.植物营养研究方法(第2版)[M].北京:中国农业大学出版社,2005.16-17.
    [21]Hausler R E, Blackwell R D, Lea P J, et al. Control of photosynthesis in barley leaves with reduced activities of glutamine synthetase or glutamate synthase [J]. Planta.1994,194:406-417.
    [22]李合生.植物生理生化实验原理和技术[M].高等教育出版社,2000.123-127,184-185.
    [23]Lea P J, Blackwell R D, Chen F L. Methods in plant biochemistry [A]. Enzymes of primary metabolism [M]. New York:Academic Press,1990.260-273.
    [24]Singh R D, Srivastava H S. Increase in glutamate synthase (NADH) activity in maize seedlings in response to nitrate and ammonium nitrogen [J]. Physical. Plant,1986,66:413-416.
    [25]Loulakakis K A, Roubdakis-Angelakis K A. Ammonium assimilating genes in Vitis uinifera L [A]. Roubelakis-Angelakis K A. Molecular biology and biotechnology of the grapevine [M]. Dordrecht: Kluwer Academic Publishers,2001:59-108.
    [26]中国科学院上海植物生理研究所,上海市植物生理学会.现代植物生理学实验指南[M].北京:科学出版社,1999:154-156.
    [27]熊庆娥.植物生理学实验教程[M].成都:四川科学技术出版社,2003:28-30.
    [28]钱晓晴,顾竹英,周明耀,等.水分供应和氮素形态对水稻一些水分生理特征的影响[J].作物学报,2007,33(12):2016-2020.
    [29]Munjal N, Sawhney S K, Sawhney V. Activation of nitrate reductase in extracts of water stressed wheat [J]. Photochem,1997,45(4):659-665.
    [30]余让才,李明启,范燕萍.高等植物硝酸还原酶的光调控[J].植物生理学通讯,1997,33(1):61-65.
    [31]应莉萍,柴晓清,刘祥林,等.叶绿体发育和光对小麦谷氨酰胺合成酶基因表达的影响[J].植物学报,1994,36(8):597-602.
    [32]王志琴,杨建昌,朱庆森.土壤水分对水稻光合速率与物质运转的影响[J].中国水稻科学,1996,10(4):235-240.
    [33]卢从明,张其德,匡廷云,等.水分胁迫抑制水稻光合作用的机理[J].作物学报,1994,20(5):601-606.
    [34]柏彦超,王娟娟,倪梅娟,等.水分和氮素营养对水稻吸收氮素的影响[J].植物营养与肥料学报,2008,14(1):184-188.
    [35]陈贵,周毅,郭世伟,等.水分胁迫条件下不同形态氮素营养对水稻叶片光合效率的调控机理研究[J].中国农业科学,2007,40(10):2162-2168.
    [36]张杰,张强,赵建华,等.作物干旱指标对西北半干旱区春小麦缺水特征的反映[J].生态学报,2008,28(4):1646-1654.
    [37]单长卷,吴雪平,刘遵春.水分胁迫对冬小麦水分生理特性和产量构成三因素的影响[J].江苏农业学报,2008,24(1):11-16.
    [38]陈晓远,高志红,刘晓英,等.水分胁迫对冬小麦根、冠生长关系及产量的影响[J].作物学报,2004,30(7):723-728.
    [39]杨贵羽,罗远培,李保国.苗期土壤含水率变化对冬小麦根、冠生物量累积动态的影响[J].农业工程学报,2004,20(2):83-87.
    [40]Zrenner R, Stitt M. Comparison of the effect of rapidly and gradually developing water-stress oncarbohydrate metabolism in spinach leaves [J]. Plant, Cell Environ.1991,14:939-946.
    [1]高迎旭,周毅,郭世伟,等.不同形态氮素营养对水稻抗旱性影响的研究[J].干旱区研究,2006,23(4):598-603.
    [2]宋娜,郭世伟,沈其荣.不同氮素形态及水分胁迫对水稻苗期水分吸收、光合作用及生长的影响[J].植物学通报,2007,24(4):477-483.
    [3]周毅,郭世伟,宋娜,等.水分胁迫和供氮形态耦合作用下分蘖期水稻的光合速率、水分与氮素利用[J].中国水稻科学,2006,20(3):313-318.
    [4]周毅,郭世伟,陈贵,等.胁迫萌发与不同水分胁迫强度下水稻对供氮形态的响应[J].南京农业大学学报,2006,29(1):57-62.
    [5]柏彦超,钱晓晴,沈淮东,等.不同水、氮条件对水稻苗生长及伤流液的影响[J].植物营养与肥料学报,2009,15(1):76-81.
    [6]孙娜.水分胁迫对不同基因型水稻生理及根系蛋白组的影响[D].硕士学位论文.杭州:浙江师范大学,2009.
    [7]段英华,张亚丽,沈其荣.增硝营养对不同基因型水稻苗期氮素吸收同化的影响[J].植物营养与肥料学报,2005,11(2):210-215.
    [8]段英华,张亚丽,沈其荣.增硝营养对不同基因型水稻苗期吸铵和生长的影响[J].土壤学报,2005,42(2):260-265.
    [9]曹云,范晓荣,孙淑斌,等.增硝营养对不同基因型水稻苗期硝酸还原酶活性及其表达量的影响[J].植物营养与肥料学报,2007,13(1):99-105.
    [10]曹云,范晓荣,贾莉君,等.不同水稻品种对N03-同化差异的比较[J].南京农业大学学报,2005,28(1):52-56.
    [11]李勇,周毅,郭世伟,等.铵态氮和硝态氮营养对水、早稻根系形态及水分吸收的影响[J].中国水稻科学,2007,21(3):294-298.
    [12]孙园园,孙永健,吴合洲,等.水分胁迫对水稻幼苗氮素同化酶及光合特性的影响[J].植物营养与肥料学报,2009,15(5):1016-1022.
    [13]毛达如,申建波.植物营养研究方法(第2版)[M].北京:中国农业大学出版社,2005.
    [14]李合生.植物生理生化实验原理和技术[M].北京:高等教育出版社,2000.
    [15]肖凯,张树华,邹定辉,等.不同形态氮素营养对小麦光合特性的影响[J].作物学报,2000,26(1):53-58.
    [16]周毅,郭世伟,宋娜,等.供氮形态和水分胁迫对苗期-分蘖期水稻光合与水分利用效率的影响[J].植物营养与肥料学报,2006,12(3):334-339.
    [17]陈贵,周毅,郭世伟,等.水分胁迫和不同形态氮素营养对苗期水稻光合特性的影响[J].南京农业大学学报,2007,30(4):78-81.
    [18]陈贵,周毅,郭世伟,等.水分胁迫条件下不同形态氮素营养对水稻叶片光合效率的调控机 理研究[J].中国农业科学,2007,40(10):2162-2168.
    [19]王娜,陈国祥,邵志广,等.不同形态氮素配比对水稻光合特性的影响[J].江苏农业学报,2002,18(1):18-22.
    [20]封克,汤炎,张素玲.铵离子对不同基因型水稻吸收硝酸根离子的影响[J].植物生理学通讯,2001,37(3):192-194.
    [21]封克,汪晓丽,陈平,等.水稻苗期不同时段NO3-吸收特点及其受NH4+的影响[J].中国农业科学,2003,36(3):307-312.
    [22]朱维琴,吴良欢,陶勤南.氮营养对干旱逆境下水稻体内可溶性渗透调节物质的影响[J].浙江大学学报(农业与生命科学版),2003,29(5):479-484.
    [23]戴高兴,彭克勤,萧浪涛,等.聚乙二醇模拟干旱对耐低钾水稻幼苗丙二醛、脯氨酸含量和超氧化物歧化酶活性的影响[J].中国水稻科学,2006,20(5):557-559.
    [1]刘定辉,庞良玉,朱钟麟,等.四川省季节性干旱综合防控技术研究[J].四川农业科技,2009,(8):48-49.
    [2]Belder P, Bouman B A M, Cabangon R, et al. Effect of water saving Irrigation on rice yield and water use in typical lowland conditions in Asia [J]. Agric Water Manag,2004,65:193-210.
    [3]Belder P, Spiertz j H J, Bouman B A M, et al. Nitrogen economy and water productivity of lowland rice under water-saving irrigation [J]. Field Crops Res,2005,93:169-185.
    [4]郑桂萍,郭晓红,陈书强,等.水分胁迫对水稻产量和食味品质抗旱系数的影响[J].中国水稻科学,2005,19(2):142-146.
    [5]郑家国,任光俊,陆贤军,等.花后水分亏缺对水稻产量和品质的影响[J].中国水稻科学,2003,17(3):239-243.
    [6]杨建昌,王志琴,朱庆森.不同土壤水分状况下氮素营养对水稻产量的影响及其生理机制的研究[J].中国农业科学,1996,29(4):58-66.
    [7]陈新红,徐国伟,孙华山,等.结实期土壤水分与氮素营养对水稻产量与米质的影响[J].扬州大学学报(农业与生命科学版),2003,24(3):37-41.
    [8]陈新红,刘凯,徐国伟,等.结实期氮素营养和土壤水分对水稻光合特性、产量及品质的影响[J].上海交通大学学报(农业科学版),2004,22(1):48-53.
    [9]蔡一霞,王维,朱智伟,等.结实期水分胁迫对不同氮肥水平下水稻产量及其品质的影响[J].应用生态学报,2006,17(7):1201-1206.
    [10]钱晓晴,沈其荣,王娟娟,等.模拟水分胁迫条件下水稻的氮素营养特征[J].南京农业大学学报,2003,26(4):9-12.
    [11]钱晓晴,顾竹英,周明耀,等.水分供应和氮素形态对水稻一些水分生理特征的影响[J].作物学报,2007,33(12):2016-2020.
    [12]柏彦超,王娟娟,倪梅娟,等.水分和氮素营养对水稻吸收氮素的影响[J].植物营养与肥料学报,2008,14(1):184-188.
    [13]陈贵,周毅,郭世伟,等.水分胁迫条件下不同形态氮素营养对水稻叶片光合效率的调控机理研究[J].中国农业科学,2007,40(10):2162-2168.
    [14]Ta T C. Ohira K. Effect of various environmental and medium conditions on the response of Indicia and Japonica rice plants to ammonium and nitrate nitrogen [J]. Soil Science and Plant Nutrition, 1981,27:347-355.
    [15]杨肖娥,孙羲.杂交稻和常规稻生育后期追施NO3-N和NH4+-N的生理效应[J].作物学报,1991,17(4):283-291.
    [16]朱国辉,黄卓烈.mRNA差异显示技术分离水稻铵态氮营养诱导表达基因[J].中国水稻科学,2008,22(3):261-265.
    [17]邹春琴,范晓云,石荣丽,等.铵态氮和硝态氮对旱稻、水稻生长及铁营养状况的影响[J].中国农业大学学报,2007,12(4):45-49.
    [18]杨建昌,朱庆森,王志琴,等.亚种间杂交稻光合特性及物质积累与运转的研究[J].作物学报,1997,23(1):82-88.
    [19]高玲,叶茂炳,张荣铣,等.小麦旗叶老化期间的内肽酶[J].植物生理学报,1998,24(2):183-188.
    [20]任红旭,陈雄,吴冬秀.CO2浓度升高对干旱胁迫下蚕豆光合作用和抗氧化能力的影响[J].作物学报,2001,27(6):729-736.
    [21]李合生.植物生理生化实验原理和技术[M].北京:高等教育出版社,2000.
    [22]李国生,王志琴,袁莉民,等.结实期土壤水分和氮素营养对水稻产量与品质的交互影响[J].中国水稻科学,2008,22(2):161-166.
    [23]陈新红,徐国伟,王志琴,等.结实期水分与氮素对水稻氮素利用与养分吸收的影响[J].干旱地区农业研究,2004,22(2):35-40.
    [24]周毅,郭世伟,宋娜,等.供氮形态和水分胁迫对苗期-分蘖期水稻光合与水分利用效率的影响[J].植物营养与肥料学报,2006,12(3):334-339.
    [25]何文寿,李生秀,李辉桃.水稻对铵态氮和硝态氮吸收特性的研究[J].中国水稻科学,1998,12(4):249-252.
    [26]温贤芳,张希忠,陈一珠.应用同位素15N和32P研究作物对氮和磷的吸收作用[J].中国核科技报告,1987,(1):1-16.
    [27]朱国辉,黄卓烈.mRNA差异显示技术分离水稻铵态氮营养诱导表达基因[J].中国水稻科学,2008,22(3):261-265.
    [28]曹云,范晓荣,孙淑斌,等.增硝营养对不同基因型水稻苗期硝酸还原酶活性及其表达量的影响[J].植物营养与肥料学报,2007,13(1):99-105.
    [29]段英华,张亚丽,王松伟,等.不同氮效率水稻全生育期内对增硝营养的响应及其生理机制[J].生态学报,2007,27(3):1086-1092.
    [30]刘凯,张耗,张慎凤,等.结实期土壤水分和灌溉方式对水稻产量与品质的影响及其生理原因[J].作物学报,2008,34(2):268-276.
    [31]蔡一霞,王维,朱智伟,等.结实期水分胁迫对不同氮肥水平下水稻产量及其品质的影响[J].应用生态学报,2006,17(7):1201-1206.
    [32]赵步洪,叶玉秀,陈新红,等.结实期水分胁迫对两系杂交稻产量及品质的影响[J].扬州大学学报(农业与生命科学版),2004,25(1):46-50.
    [33]张卫星,周平,朱德峰,等.不同水分条件下水稻籽粒形态及其与粒重的关系[J].作物学报,2008,34(10):1826-1835.
    [34]蔡昆争,吴学祝,骆世明,等.抽穗期不同程度水分胁迫对水稻产量和根叶渗透调节物质的影响[J].生态学报,2008,28(12):6148-6158.
    [35]王笑影,梁文举,闻大中.间歇灌溉对北方水稻生理需水的影响[J].应用生态学报,2004,15(10):1911-1915.
    [36]李亚龙,崔远来,李远华,等.以土水势为灌溉指标的水稻节水灌溉研究[J].灌溉排水学报,2004,23(5):14-16.
    [37]王笑影,梁文举,闻大中.北方稻田蒸散需水分析及其作物系数确定[J].应用生态学报,2005,16(1):69-72.
    [38]王笑影,闻大中,梁文举.不同土壤水分条件下北方稻田耗水规律研究[J].应用生态学报,2003,14(6):925-929.
    [39]蔡一霞,朱庆森,王志琴,等.结实期土壤水分对稻米品质的影响[J].作物学报,2002,28(5):601-608.
    [40]毛达如,申建波.植物营养研究方法(第2版)[M].北京:中国农业大学出版社,2005.
    [1]凌启鸿,张洪程,苏祖芳,等.作物群体质量[M].上海:上海科学技术出版社,2000.
    [2]郭天财,冯伟,赵会杰,等.水氮运筹对干旱年型冬小麦旗叶生理性状及产量的交互效应[J].应用生态学报,2004,15(3):453-457.
    [3]李伏生,康绍忠,张富仓.CO2浓度、氮和水分对春小麦光合、蒸散和水分利用效率的影响[J].应用生态学报,2003,14(3):387-393.
    [4]张璐,沈善敏,宇万太,等.辽西褐土施肥及养分循环再利用中长期试验V.不同降水年景作物产量对施肥的反应和水肥交互作用[J].应用生态学报,2003,14(12):2205-2207.
    [5]张岁岐,山仑.土壤干旱条件下氮素营养对玉米内源激素含量影响[J].应用生态学报,2003,14(9):1503-1506.
    [6]杨建昌,王志琴,朱庆森.不同土壤水分下氮素营养对水稻产量的影响及其机理研究[J].中国农业科学,1996,29(4):58-66.
    [7]Yang J C, Zhang J H, Liu L J. Carbon remobilization and grain filling in Japonica/Indica hybrid rice subjected to postanthesis water deficits [J]. Agron J,2002,94 (1):102-109.
    [8]Nooden L D, Guiamet J J, John I. Senescence mechanisms [J]. Physiol Plantrum,1997,10:746-753.
    [9]朱庆森,张祖建,杨建昌,等.亚种间杂交稻产量源库特征[J].中国农业科学,1997,30(3):52-59.
    [10]王维,张建华,杨建昌,等.水分胁迫对贪青迟熟水稻茎贮藏碳水化合物代谢及产量的影响[J].作物学报,2004,30(3):196-204.
    [11]王维,张建华,杨建昌,等.适度土壤干旱对贪青小麦茎鞘贮藏性糖运转及籽粒充实的影响[J].作物学报,2004,30(10):1019-1025.
    [12]Gan S, Amasino R M. Making sense of senescence [J]. Plant Physiol,1997,37:1812-1818.
    [13]陆建飞,黄丕生,丁艳锋,等.持续土壤水分胁迫对水稻物质积累和运转的影响[J].江苏农业科学,1998,14(3):135-140.
    [14]王维,张建华,杨建昌,等.水分胁迫对贪青迟熟水稻茎贮藏碳水化合物代谢及产量的影响[J].作物学报,2004,30(3):196-204.
    [15]郑家国,任光俊,陆贤军,等.花后水分亏缺对水稻产量和品质的影响[J].中国水稻科学,2003,17(3):239-243.
    [16]邵玺文,张瑞珍,齐春艳,等.拔节孕穗期水分胁迫对水稻生长发育及产量的影响[J].吉林农业大学学报,2004,26(3):237-241.
    [17]王维,蔡一霞,蔡昆争,等.土壤水分亏缺对水稻茎秆贮藏碳水化合物向籽粒运转的调节[J].植物生态学报,2005,29(5):819-828.
    [18]郭相平,张烈君,王琴,等.拔节孕穗期水分胁迫对水稻生理特性的影响[J].干旱地区农业研究,2006,24(2):125-129.
    [19]陈海生,陶龙兴,王熹,等.灌水方式对水稻灌浆期光合物质运转与分配的影响[J].中国农业科学,2005,38(4):678-683.
    [20]蔡一霞,王维,朱智伟,等.结实期水分胁迫对不同氮肥水平下水稻产量及其品质的影响[J].应用生态学报,2006,17(7):1201-1206.
    [21]魏海燕,张洪程,杭杰,等.不同氮素利用效率基因型水稻氮素积累与转移的特性[J].作物学报,2008,34(1):119-125.
    [22]张耀鸿,吴洁,张亚丽,等.不同株高粳稻氮素累积和转运的基因型差异[J].南京农业大学学报,2006,29(2):71-74.
    [23]吕金印,山仑,高俊凤,等.干旱对小麦灌浆期旗叶光合等生理特性的影响[J].干早地区农业研究,2003,21(2):77-81.
    [24]Broadbent F E, Datta S K, Laureles E V. Measurement of nitrogen utilization efficiency in rice genotypes[J]. Agron J,1987,79:786-791.
    [25]方萍,陶勤南,吴平.水稻吸氮能力与氮素利用率的QTLs及其基因效应分析[J].植物营养与肥料学报,2001,7(2):159-165.
    [26]张云桥,吴荣生,蒋宁.水稻的氮肥利用效率与品种类型的关系[J].植物生理学通讯,1989, (2):45-47.
    [27]朴钟泽,韩龙植,高熙宗.水稻不同基因型氮素利用效率差异[J].中国水稻科学,2003,17(3):233-238.
    [28]江立庚,戴廷波,韦善清,等.南方水稻氮素吸收与利用效率的基因型差异及评价[J].植物生态学报,2003,27(4):466-471.
    [29]殷春渊,魏海燕,张庆,等.不同氮肥水平下中熟籼稻和粳稻产量、氮素吸收利用差异及相互关系[J].作物学报,2009,35(2):348-355.
    [30]程建峰,戴廷波,曹卫星,等.不同氮收获指数水稻基因型的氮代谢特征[J].作物学报,2007,33(3):497-502.
    [31]段英华,张亚丽,王松伟,等.不同氮效率水稻全生育期内对增硝营养的响应及其生理机制[J].生态学报,2007,27(3):1086-1092.
    [32]Lain H M, Coschigano K T, Oliveira I C, et al.The molecular-genetics of nitrogen assimilation into amino acids in higher plants [J]. Annu Rev Plant Physiol and Plant Mol Biol,1996,47:569-593.
    [33]Kronzucker H J, Siddiqi M Y, Class A D M, et al. Nitrate ammonium synergism in rice:a subcellular flux analysis [J]. Plant Physiology,1999,119:1041-1045.
    [34]李奕林,张亚丽,贺巍,等.淹水条件下籼稻与粳稻苗期生长及氮素吸收同化差异比较[J].南京农业大学学报,2007,30(3):78-82.
    [35]孙骏威,杨勇,黄宗安,等.聚乙二醇诱导水分胁迫引起水稻光合下降的原因探讨[J].中国水稻科学,2004,18(6):539-543.
    [36]刘少华.水分胁迫对高产杂交稻功能叶光合及抗氧化系统特性的影响[D].硕士学位论文.南京:南京师范大学,2003.
    [37]林贤青,周伟军,朱德峰,等.稻田水分管理方式对水稻光合速率和水分利用效率的影响[J].中国水稻科学,2004,18(4):333-338.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700