甘蓝型油菜新型黄籽种质资源创新与鉴定
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
甘蓝型油菜是我国油菜主要栽培品种,但其作为异源双二倍体种起源发生的历史较短,遗传背景也较狭窄,加之我国甘蓝型油菜引自国外,遗传基础更为单一,开展甘蓝型油菜种质资源创新工作显得十分必要。
     甘蓝型油菜没有天然的黄籽种质资源,目前培育出的黄籽甘蓝型油菜均来自芸苔属内种间杂交,还未见通过属间杂交获得黄籽甘蓝型油菜的报道,且现有的甘蓝型油菜黄籽性状有一个共同特点,它们的种皮色泽既不象白菜型油菜那样呈鲜黄色,也不象芥菜型油菜那样呈橙黄色,而是姜黄或土黄色,并且种皮上有黑色的斑点、斑块和褐色的环状带纹。同时种皮色泽的遗传不稳定,长期自交不能纯合,仍有少数单株出现黑籽,育种上应用较为困难。因此,开展甘蓝型油菜黄籽种质资源创新工作,对拓宽甘蓝型油菜黄籽性状遗传基础,丰富黄籽遗传资源,具有非常重要的意义。
     远缘杂交可以把不同种间、属间甚至亲缘关系更远的物种进行杂交,突破种属界限,扩大遗传变异,从而创造新的变异类型或新物种,是种质资源创新的重要手段;同时所获得的杂种不存在生物安全性问题,可直接应用于育种和生产。本研究以白芥和甘蓝型油菜属间杂种为基础材料,通过不断回交获得包括黄籽性状在内的大量甘蓝型油菜新种质,并对新型黄籽新种质进行较为深入的研究和鉴定工作,为在育种中的应用奠定基础。本研究取得的主要研究结果如下:
     1、通过对白芥和甘蓝型油菜原生质体融合后代不断回交,获得多个具有白芥优良性状和变异类型的后代,如结角密度高、黄籽和抗病等优良性状,同时部分后代也表现出长角果、多籽粒等变异类型。这些后代的获得,为丰富油菜种质资源提供了可能,并为培育高产、优质和抗病油菜新品种提供丰富的育种材料。同时,本试验首次通过属间杂交,获得新的黄籽甘蓝型油菜新种质,为研究黄籽性状的分子机理以及获得色泽稳定、纯合的黄籽性状提供了可能。
     2、通过对获得的黄籽新种质种子解剖学比较观察发现,所获的回交后代黄籽株系的种子解剖结构基本上与甘蓝型油菜相似,但也表现出黄籽亲本(白芥)的部分特征。如种皮色泽主要分布在栅栏层,甘蓝型油菜和部分后代株系中有色泽分布,而白芥和部分黄籽后代株系中没有色泽分布。栅栏层在甘蓝型油菜中最厚,在白芥中最薄,而后代株系介于两者之间。回交后代株系和甘蓝型油菜种皮表面纹饰为网-穴状,白芥为沟槽状或水疱状。回交后代株系胚子叶细胞面积和蛋白体面积指数介于两亲本之间,油体有大、小两种,其大小在亲本和后代间存在差异。说明白芥外源染色体或染色体片段的导入,改变了回交后代株系种子结构性状。
     3、用白芥基因组作探针,对回交后代减数分裂进行GISH分析,结果发现,甘蓝型油菜的染色体在回交各个世代中均能正常配对和分离,而白芥染色体多以单价体形式存在,部分白芥染色体会与甘蓝型油菜染色体形成三价体,在杂种后代减数分裂过程中可能会发生白芥与甘蓝型油菜的染色体重组,为易位系的产生奠定了基础。BC3F1黄籽材料根尖细胞和减数分裂细胞进行GISH结果显示,获得的黄籽材料染色体数目与正常甘蓝型油菜相同,且未获得杂交信号,排除获得的黄籽材料是异附加系或置换系的可能性。微卫星核心序列引物33.6扩增结果证明,在黄籽后代的基因组中存在与白芥相同的特异序列。TT2-2引物及根据TT2-2扩增特异产物测序结果设计的引物Sa1在白芥和黄籽后代中扩增的特异产物一致性,进一步确定了黄籽后代中具有白芥的DNA序列,结合细胞学鉴定结果,可以确认获得的黄籽回交后代株系是带有白芥DNA序列的易位系。同时获得黄籽特异性分子标记Sa1,为分子标记辅助育种奠定了基础。
     4、通过对6个黄籽回交后代株系的农艺性状、产量性状、品质性状及抗病性分析,结果表明,黄籽株系D244-18黄籽显性度、一致性高,成熟期早,籽粒大,单株产量较高,含油量较高,品质接近国家双低标准,抗菌核病能力中等,具有较高的育种利用价值。黄籽株系D244-6成熟期较早,一次有效分枝数多,结角密度较高,全株角果数多,单株产量高,含油量高,品质指标接近国家标准,抗菌核病能力强,但黄籽显性度、一致性较差。单从高产、优质、抗病品种选育角度看,也是一个不可多得的优良株系,但黄籽性状、双低品质性状需进一步改良。
The genetic basis of Brassica napus L. (2n=38,AACC), one of the most important oilseed crops worldwide, is quite narrow. As an allopolyploid with a short phylogeny, the specie was originated in Europe and then introduced into China, thus it is important to improve B.napus germplasm.
     Previous studies showed that yellow seed resource does not exist in natural B.napus, amounts of yellow-seed B.napus obtained were derived from interspecific gene flow between B.napus and B.rapa, B.juncea, B. carinata , whereas yellow-seed related gene introgression from relative genus have never been found. Furthermore, B.napus with yellow seed character obtained by conventional methods behaves common feature—khaki or ginger seed capsule with black spots and brown circular fringe, which is genetically instable and hard to pure by selfling, unlike the delicate yellow of B.rapa and orange yellow of B.juncea. Thus, it is important to carry out germplasm enhancement and expand genetic basis of B.napus, which is significant to broaden yellow seed resources.
     Distant hybridization, as a valuable measure to germplasm reformation, may overcome genus boundary, enlarge genetic variation, and ultimately resulting the creation of new variants and species. On the other hand, the progenies of hybrids are exempt of bio-safety and available for B.napus breeding and production. In this study, somatic hybrids obtained by protoplast fusion of B.napus and S.alba were applied for meaningful creation of new B.napus germplasm. Through successive backcrossing with B.napus, several progeny lines with advantageous agronomic characters were received, such as yellow-seeded germ, which were taken for further identification and of great value to B.napus breeding. The major findings of this research are as follows:
     1、Progenies with improved characters from S.alba, such as high pod density, yellow seed, disease resistance, longer silique, multi-seed, were obtained through successive backcrossing, which may greatly contribute to enrichment of B.napus germplasm and act as materials for B.napus breeding of high output, quality and resistance varieties. Our research firstly obtained novel rapeseed with yellow seed color via intergeneric hybridization, which is interested for mechanism discussion of B.napus seed color and yellow seed breeding.
     2、Comparative anatomy analysis of novel yellow seed resulted that seeds of yellow seed progenies not only resemble to B.napus in anatomic structure, but behave some characters of S.alba. The seed coat pigments were mainly distributed in the palisade layer, the highest quantity of seed coat pigmentation was observed in B.napus and some backcross lines. On the other hand, the seeds of S. alba and several backcross progenies exhibited nearly no pigmentation. The thickness of palisade layer was highest in B.napus, thinnest in S.alba and intermediate in the hybrid progenies. Ornamentation characters of progeny seed surface is reticulation-carve shaped, the same as B.napus, whereas S.alba seed coat manifests the appearance of groove or blister. Cellular area and protein body area of scutellum from backcrossing progeny lines are intermediate of the parents. Oil body exists as two forms—big or small oil body, and its discrepancy is obvious between progenies and parents. These results indicate that introgression of S.alba chromosome or gene fragment is the cause of seed structural mutations in progeny lines.
     3、GISH analysis with S.alba genome as probe showed that chromosome of B.napus behaves normal pairing and segregation in every generation. While S.alba chromosome mostly exists as univalents, and occasionally form trivalents with B.napus chromosomes, making it possible for chromosome recombination between B.napus and S.alba. GISH of both meiotic and mitotic chromosomes from BC3F1 showed normal chromosome number and no hybrid signal was detected, demonstrating these materials are not addition lines or substitution lines. In addition, we used minisatellite core sequence 33.6 as primer also obtained a specific band of S.alba. Primers TT2-2 designed according to flavonoid biosynthetic genes of Arabidopsis thaliana and Sal resulted from specific product of TT2-2 resulted same sequences between S.alba and yellow seed progenies, illuminating our yellow seed germplasm possess DNA sequences of S.alba. The developed molecular marker Sal of yellow seed may contribute to B.napus breeding.
     4、Analysis of economical characters, yield traits, quantitative characters and disease resistance of six yellow seed progenies showed that, the dominant degree and uniformity of yellow seed line D244-18 is higher, as well as earlier age of maturity, bigger seeds, higher yield per plant, higher oil content, mediate Sclerotinia selerotiorum resistance. This line is proximal to the double-low quality standards and of great utility value. Line D244-6 possess earlier age of maturity, more effective branches, higher pod density, et al, also next to the nation quality standard, high Sclerotinia selerotiorum resistance,but the dominant degree, uniformity of yellow seed is not up to scratch. Further improvement of D244-6 is needed for making it valuable as breeding material.
引文
陈宝元,盂金陵.甘蓝型油菜种皮发育的初步观察.华中农学院学报,1984,2:5-8
    陈雁,饶勇强,孟金陵.转双价广谱抗病基因创造甘蓝型油菜抗菌核病新品种的研究.分子植物育种,2003,1(4) :457- 463
    陈玉萍,高永同,刘后利.甘蓝型黄籽油菜粒色及主要品质性状的动态研究.中国油料,1989 (4):10-15
    谌利,李加纳,唐章林,张学昆,陈云坪,殷家明.甘蓝型黄籽杂交油菜新品种渝黄1号的选育.西南农业大学学报(自然科学版),2002, 24 (1): 45- 47
    戴兴临,程春明,宋来强,汤洁,熊任香,张弢,邹小芬,张建模.油菜×蔊菜远缘杂交创新油菜种质资源研究.植物遗传资源学报,2005 ,6 (2) :242-244
    丁斌,王洪刚,孙海艳,架生,高居荣.小堰麦异附加系的细胞学及分子标记鉴定.山东农业大学学报(自然科学版),2003,34:172-177
    董艳珍,李宇,胥婷,李关荣,李加纳.甘蓝型油菜黄籽基因RAPD标记的初步研究.西南农业大学学报(自然科学版),2004,26(5):529-531
    傅廷栋,杂交油菜的育种与利用,武汉,湖北科学技术出版社,2000
    巩振辉,何玉科,王鸣.白菜×白芥属间杂种黑斑病抗性研究,园艺学报,1994, 21(4):401-403
    胡大有,王爱云.甘蓝型油菜与萝卜属间杂种的获得及分子鉴定.中国油料作物学报,2006,28(4):476-479
    李崇辉,陈文艺.甘蓝型油菜黄籽分布与种皮颜色变化研究.西南农业大学学报, 1998, 20(3): 256–259
    李崇辉,陈文艺.甘蓝型油菜黄籽分布与种皮颜色变化研究,西南农业太学学报,1998,20(3):256-261
    李加纳,张学昆.不同遗传背景的甘蓝型黄籽油菜籽色遗传初步研究.中国油料作物学报,1998,20(4):l6-l9
    李懋学,张赞平.作物染色体及其研究技术.北京:中国农业出版社,1996
    李学宝,毛慧珠.甘蓝型油菜抗虫转基因植株及其抗性分析.遗传学报,1999,26( 3) : 262- 268
    李振声,蒋立训.蓝粒单体小麦研究(一).遗传学报,1982,9:431-439
    李宗芸,栗茂腾,黄荣桂,伍晓明,宋运淳.基因组原位杂交辨别芸薹属异源四倍体AA、BB、CC基因组研究.中国油料作物学报,2002,24:10-14
    梁艳丽,梁颖,李加纳,谌利.甘蓝型黄黑籽油菜种皮特性比较研究.中国油料作物学报,2002,24(4):14-18
    刘后利,甘蓝型黄籽油菜的遗传研究.作物学报1992,l8(4):24l-249
    刘后利,韩继祥.中国黄籽油菜种质资源的现状及其研究和利用前景.见:傅廷栋主编刘后利科学论文集北京:北京农业大学出版社,1994,114
    刘后利.甘蓝型油菜的粒色遗传和高油分育种的研究.刘后利科学论文集.北京;北京农业大学出版社,1994,147
    刘后利.几种芸薹属油菜的起源和进化.作物学报,1984,10(1):9-18
    刘列钊,粟茂腾,王灏,林呐,谌利孟金陵李加纳.利用mRNA差异显示技术寻找甘蓝型油菜黄籽基因.中国农业科学,2004,37(11):1772-1776
    刘润堂,白建荣,温琪汾.簇毛麦抗白粉病基因的导入及AFLP标记.山西农业大学学报,2004,3:222-224
    刘勇,刘红雨,曾正宜.利用小孢子培育技术筛选油菜抗菌核病材料.西南农业学报,1997,1 :108-112
    刘志文,王英,刘雪平,傅廷栋,薛永常,涂金星,马朝芝.甘蓝型黄籽油菜分子标记辅助选择的效果分析.华北农学报, 2006, 21(2):57-61
    鲁坤存,刘淑艳,郭家保,刘忠松.芥甘杂交选育甘蓝型黄籽油菜的研究.湖南农业大学学报(自然科学版),2006,32(2):116-119
    马渐新,周荣华,董玉深.小麦抗条锈病基因定位及分子标记研究进展.生物技术通报,1999,l:51-61
    牛应泽,郭世星,付绍红,刘玉贞,汪良中.人工合成甘蓝型油菜特长角变异系的选育.植物遗传资源学报,2005,6(2):151~158
    牛应泽,汪良中,刘玉贞,郭世星.利用人工合成甘蓝型油菜创建油菜新种质.中国油料作物学报,2003,25(4) :11-15
    潘大仁.甘蓝型油菜与萝卜杂交产生的杂种BC2代株系抗线虫病分析.福建农业大学学报, 1999,28 (4) : 402- 406
    蒲晓斌,张锦芳,李浩杰,黄驰,李治华,张启行,蒋梁材.甘蓝型油菜太空诱变后代农艺性状调查及品质分析.西南农业学报,2006,19(3):373-377
    齐莉莉,刘大钧,陈佩度.从普通小麦-簇毛麦易位系中分离与抗病基因连锁的分子标记.高新技术通讯,1993,8:31-341
    孙海艳,王利沙.8种大白菜过氧化物酶同工酶分析.现代农业科技, 2009, 5: 8-9
    唐道城,张礼,王艳萍.白芥及油菜产量性状抗旱性鉴定指标研究初探.干旱地区农业研究,1999,17:62-66
    唐桂香,秦叶波,杨晓风,Katrin K, Cai D.转抗性基因甘蓝型油菜对甜菜孢囊线虫抗性的影响.植物保护学报, 2008, 35(6): 571-572
    唐祈林,荣廷昭,宋运淳,李晚忱,潘光堂,黄玉碧.玉米×四倍体多年生玉米F1减数分裂构型及不同构型的染色体来源研究.中国农业科学, 2004 ,37 (4): 473-476
    王汉中,刘后利.甘蓝型油莱粒色与种子有关性状间的关系研究.中国油料,1989(2):32-36
    王景雪,赵福永,徐培林,田颖川.油菜转抗草甘膦、抗虫基因获得双抗植株.遗传学报,2005,32(12) :1293-1300
    王新发,王汉中,刘贵华,胡赞民,郑元本.导入双价基因的转基因杂交油菜亲本及其对菌核病抗性的研究.植物学通报,2005,22(3) :292- 301
    王新发,王汉中,刘贵华.现代生物技术在油菜育种中的应用及前景.中国油料作物学报,2002,24(3) :74-77
    王新望,王军丽,段霞瑜,周文娟,盛宝钦,朱立煌,张文俊.普通小麦中来自黑麦的抗白粉病Pm20基因的抗谱分析和AFLP定位.科学通报,2001,46(8):666-669
    王秀娥,赵彦,张清平,王苏玲,周波,陈佩度,刘大钧.利用PCR技术初步鉴定小麦加州野大麦异染色体系.南京农业大学学报,2004,27:1-5
    伍晓明,许鲲,王汉中,郑普英,陈碧云,李响枝.甘蓝型油菜与新疆野生油菜属间杂种的获得与分子鉴定.中国油料作物学报,2002,24:5-9
    熊兴华,官春云,李恂,江巨鳌,邬克彬,王学军,周小云.基因枪法向甘蓝型油菜转移反义FAD2基因的研究.湖南农业大学学报(自然科学版),2003,29(3) :188-191
    姚金保.优质油菜产量构成因素的相关和通径分析.江苏农业科学,1993(5):22-24.
    姚金保.优质油菜产量构成因素的相关和通径分析.江苏农业科学,1993(5):22-24.
    叶小利,李加纳,唐章林,梁颖,谌利.甘蓝型油菜种皮色泽及相关性状的研究.作物学报,2001,27(5):550-556
    余舜武,张端品,宋运淳.基因组原位杂交的新进展及其在植物中的应用.武汉植物学研究,2001,19 (3) : 248-254
    张颖,牛应泽.人工合成甘蓝型大粒材料H484花粉生活力及减数分裂观察.四川农业大学学报,2003,21(4):289-291
    张赞平,侯小改.染色体分带技术及其在植物物种生物学中的应用.河南科学,1996,14 :121-125
    赵继新,陈新宏,王小利,武军,傅杰,何蓓如,宋亚珍,孙志刚.普通小麦-华山新麦草异代换系和附加系的C-分带鉴定.西北农林科技大学学报,2003,31:1-4
    赵云,张义正,杜林方,王茂林.Scu无花瓣油菜遗传及农艺性状的初步研究.四川大学学报(自然科学版),2000,37(增刊):103-106
    赵志刚.甘蓝型油菜与诸葛菜属间杂种后代的遗传学研究.华中农业大学博士学位论文.2008
    赵志伟,曾凡亚,赵云,王茂林.甘蓝型油菜BAN同源基因片段克隆与序列分析.中国油料作物学报, 2001,23(4):7-10
    周汉平,李滨,李振声.蓝粒小麦易位系选育的研究.西北植物学报,1995,15:125-128
    Abrahams S, Tanner GJ, Larkin PJ, Ashton AR. Identification and biochemical characterization of mutants in the proanthocyanidin pathway in Arabidopsis. Plant Physiol., 2002,130:561–576
    Achnine L, Blancaflor EB, Rasmussen S, Dixon RA. Colocalization of lphenylalanine ammonia-lyase and cinnamate 4-hydroxylase for metabolic channeling in phenylpropanoid biosynthesis. Plant Cell,2004,16:3098–3109
    Agnihotri A, Gupta V, Lakshmikumaran MS, Ranade SA, Shivana KR, Prakash S, Jagannathan V. Production of Eruca×Brassica hybrids by embryo rescue and DNA analysis of thehybrids.Cruciferae Newsl, 1988, 13: 84-85
    Ahmad I, Day JP, MacDonald MV, Ingram DS. Haploid culture and UV mutagenesis in rapid-cycling Brassica napus for the generation of resistance to chlorsulfuron and Alternaria brassicicola. Ann Bot, 1991,67 :521-525
    Ahmed SU, Zuberi MI.Inheritance of seed coat color in Brassica campestris L. variety Toria. Crop Sci.,1971, 11:30
    Amanda RW, Paul AD, Agnese CBW, Celia MJ, Srinivasan N, Blundell TL, Jeffrey JE, Marks M David, John CG . The TRANSPARENT TESTA GLABRA1 Locus, Which Regulates
    Trichome Differentiation and Anthocyanin Biosynthesis in Arabidopsis, Encodes a WD40 Repeat Protein. Plant Cell, 1999, 11:1337-1350
    Anjou K, L?nnerdal B, Uppstr?m B, ?man P. Composition of seeds from some Brassica cultivars. Swedish J. Agric. Res.,1977,7:169-178
    Arvind K, Bharti I, Jitendra P, Khurana. Molecular characterization of transparent testa (tt) mutants of Arabidopsis thaliana (ecotype Estland) impaired in flavonoid biosynthetic pathway. Plant Science ,2003,65:1321–1332
    Badani AG, Snowdon RJ, Wittkop B, Lipsa FD, Baetzel R, Horn R, Haro AD, Font R, Luhs W , Friedt W. Localization of a partially dominant gene for yellow seed colour with a major QTL influencing acid detergent fibre (ADF) content in different crosses of oilseed rape (Brassica napus). Genome, 2006,49: 1499–1509
    Bannerot T, Boulidard L, Cauderon Y, Tempe J. Transfer of cytoplasmic male sterility from Raphanus sativus to Brassica oleracea. Eucarpia Meeting on Cruciferae Dundee Scotland,1974, 52-54
    Blackshaw RE, Kanashiro D, Moloney MM, Crosby WL. Growth, yield and quality of canola expressing resistance to acetolactate synthase inhibiting herbicides. Can. J. Plant Sci, 1994,74:745–751
    Bochkaryova EB, Gorlov SL. Utilization of interspecific hybridization and mutagenesis of yellow seed spring rapeseed. In proceeding of 9th international rapeseed congress,1995, J32 :1150-1152
    Bouman F. Integument initiation and testa development in some Cruciferae. Bot J Linn Soc, 1975, 70: 213–299
    Brewe EP, Saunders JA, Angle JS, Chaney RL, McIntosh MS. Somatic hybridization between the zinc accumulator Thlaspi caerulescens and Brassica napus. Theor. Appl. Genet., 1999,99:761–771
    Brown J,Brown AP, Davis JB, Davis JB, Erickson D. Intergeneric hybridization between Sinapis alba and Brassica napus.Euphyrica,l997,93(2):l63- l68
    Brown J, McCaffrey JP , Brown DA, Harmon BL, Davis JB. Yield Reduction in Brassica napus, B. rapa, B. juncea, and Sinapis alba Caused by Flea Beetle (Phyllotreta cruciferae (Goeze) (Coleoptera: Chrysomelidae)) Infestation in Northern Idaho. J Econ Entomol, 2004, 97:1642-1647
    Burns DR, Scarth R, McVetty PBE.Temperature and genotypic effects on the expression of Pol cytoplasmic male sterility in summer rape. Can. J. Plant Sci.,1991,71:655-661
    Buth GM, Ara R. Seed coat anatomy of some cultivated Brassica. Phytomorphology, 1981, 31: 69–78
    Cegielska-Taras T, Pniewski T, Szala L. Transformation of microspore-derived embryos of winter oilseed rape (Brassica napus L.) by using Agrobacterium tumefaciens. J Appl Genet, 2008, 49(4): 343-347
    Chai YR, Lei B, Huang HL, Li JN, Yin JM, Tang ZL, Wang R, Chen L. TRANSPARENT TESTA 12 genes from Brassica napus and parental species: cloning, evolution, and differential involvement in yellow seed trait. Mol Genet Genomics, 2009,281(1):109-123
    Chaudhary S, Parmenter DL, Moloney MM. Transgenic Brassica carinata as a vehicle for the production of recombinant proteins in seeds. Plant Cell Rep, 1998,17:195–200
    Chen BY, Heneen SK, Josson R. Resynthesis of Brassica napus L. through interspecific hybridization between B. alboglabra Bailey and B. campestris L. with special emphasis on seed color. Plant Breed, 1988,101:52–59
    Chen BY, Heneen WK. Inheritance of seed color in Brassica campestris L. and breeding for yellow-seeded B. napus L. Euphytica,1992,59:157-163
    Chen BY, Jorgensen RB, Cheng BF, Heneen WK.Identification and chromosomal assignment of RAPD marker linked with a gene for seed coat color in a Brassica campestris-alboglabra addition line. Hereditas,1997, 126:133–138.
    Chen HF, Wang H, Li ZY. Production and genetic analysis of partial hybrids in intertribal crosses between Brassica species (B. rapa, B. napus) and Capsella bursa-pastoris. Plant Cell Rep.,2007 ,26(10):1791-1800
    Chen P, Lott JNA. Studies of Capsicum annuum L. seeds: structure, storage reserves and mineral nutrients. Can J Bot, 1992, 70: 518–529
    Chen Q. Indentification of wheat Agropyron cristatum monosomic addition lines by RFLP analysis using a set of assigned wheat DNA probes. Theor Appl Genet, 1994, 89: 70- 75
    Cheng L, Li HP, Qu B, Huang T, Tu JX, Fu TD, Liao YC. Chloroplast transformation of rapeseed (Brassica napus) by particle bombardment of cotyledons. Plant Cell Rep, 2010, DOI 10.1007/s00299-010-0828-6
    Chèvre AM, Eber F, This P, Barret P, Tanguy X, Brun H, Delseny M, Renard M. Characterization ofBrassica nigra chromosomes and of blackleg resistance in B.napus-B.nigra addition lines. Plant breed, 1996, 115:113-118
    Chèvre AM, Barret P, Eber F, Duppy P, Brum H, Tanguy X, Renard M. Selection of stable Brassica napus-B.juncea recombination lines resistant to blackleg (Leptosphaeria maculans).Ⅰ. Identification of molecular markers chromosomal and genomic origin of the introgression. Theor Appl Genet, 1997, 95: 1104-1111
    Cruickshank RH. Distinction between Sclerotinia species by their pectic zymograms. Trans Br Mycol Soc,1983, 80: 117-119
    Daun JK, DeClercq DR. Quality of yellow and dark seeds in Brassica campestris canola varieties Candle and Tobin. J Am Oil Chem Soc ,1988,65:122–126
    Devos KM, Gale MD. The use of random amplified polymorphic DNA makers in wheat. Theor Appl Genet, 1992, 84: 567 -572
    Deynze AV, Pauls KP. The inheritance of seed colour and vernalization requirement in Brassica napus using doubled haploid populations.Euphytica,1994,74:77-83
    Dushenkov S, Skarzhinskaya M, Glimelius K, Gleba D, Raskin I. Bioengineering of a phytoremediation plant by means of somatic hybridization. Int J Phytoremediation. 2002,4(2):117-126
    Ellneskog-Staam P, Salomon B, VonBothmer R, et al. Trigenomic origin of the hexaploid Psammopyrum athericum (Triticeae: Poaceae) revealed by in situ hybridization. Chrom. Res, 2001, 9: 243-249
    Facciotti MT, Bertain PB, Yuan L. Improved stearate phenotype in transgenic canola expressing a modified acyl-acyl carrier protein thioesterase. Nat. Biotechnol, 1999,17:593–597
    Fahleson J, Rahlen L, Glimelius K. Analysis of plants regenerated from protoplast fusions between Brassica napus and Eruca sativa. Theor. Appl. Genet, 1988, 76: 507-512
    Fitzpatrick K, Scarth R. Improving the heahh and nutritional value of seed oils.In:PBI.Bulletin January.Saskatoon :NRC-CRC.1998,15-19
    Fu FY, Liu LZ, Chai YR, Chen L, Yang T, Jin MY, Ma AF, Yan XY, Zhang ZS, Li JN. Localization of QTLs for seed color using recombinant inbred lines of Brassica napus in different environments. Genome, 2007, 50: 840–854
    Gaeta RT, Pires JC, Iniguez-Luy F, Leon E, Osborn TC. Genomic changes in resynthesized Brassica napus and their effect on gene expression and phenotype. The Plant Cell, 2007, 19: 3403-3417
    Ge YM, Chen LP. Progress of plant cell engineering germplasm enhancement of Cruciferae. Chin J Cell Biol, 2004,26: 471-474
    Gill BS, Kimber G. Giemsa C-banding technique for cereal chromosomes. Cereal Res. Comm, 1974,2: 87-94
    Halfhill MD, Richards HA, Mabon SA, Stewart CN. Expression of GFP and Bt transgenes in Brassica napus and hybridization with Brassica rapa. Theor. Appl. Genet, 2001,103:659–667
    Hansen LN, Earle ED Novel flowering and fatty acid characters in rapid cycling Brassica napus L. synthesized by protoplast fusion. Plant Cell Rep.,1994,14:151–156
    Hansen MR, Earle ED. Somatic hybridization between Brassica oleracea L. and Sinapis ballii L. with resistance to Alternaria Brassicae (Berk.) Sacc. Theor. Appl. Genet, 1997, 94, 1078-1085.
    Harris WM. Seed coat development in radish (Raphanus sativus L.). Phytomorphology, 1991, 41: 341–349
    Hawkins D, Kridl L. Characterization of acyl-ACP thioesterase of mangosteen (Garcinia mangosteena) seed and high levels of state production in transgenic canola. Plant J., 1998,13:743–752,
    Heneen WK, J?rgensen RB. Cytology, RAPD, and seed color of progeny plants from Brassica rapa-alboglabra aneuploids and development of monosomic addition lines. Genome,2001, 44:1007–1021
    Hinata K, Konno N. Studies on a male sterile strain having the Brassica campestris nucleus and the Diplotascis muralis cytoplasm. Japanese Journal of Breeding, 1979,29:305-311.
    Houmiel KL, Slater S, Broyles D, Casagrande L, Colburn S, Gonzalez K, Mitsky TA, Reiser SE, Shah D, Taylor NB. Poly (beta-hydroxybutyrate) production in oilseed leukoplasts of Brassica napus. Planta, 1999, 209:547–550
    Howell EC, Barker GC, Jones GH, Kearsey MJ, King GJ, Kop EP, Ryder CD, Teakle GR, Vicente JG, Armstrong SJ. Integration of the cytogenetic and genetic linkage maps of Brassica oleracea. Genetics, 2002, 161: 1225-1234
    Hu Q, Hansen LN, Laursen J, Dixelius C, Andersen SB. Intergeneric hybrids between Brassica napus and Orychophragmus violaceus containing traits of agronomic importance for oilseed rape breeding. Theor Appl Genet, 2002a, 105: 834-840
    Hu Q, Ahdersen SB, Dixelius C, Hansen LN. Production of fertile intergeneric somatic hybrids between Brassica napus and Sinapis arvensis for the enrichment of the rapeseed gene pool. Plant Cell Rep, 2002b, 21 (2): 147-152
    Jagannath A, Bandyopadhyay P, Arumugam N, Gupta V, Burma PK, Pental D. The use of a spacer DNA fragment insulates the tissuespecific expression of a cytotoxic gene (barnase) and allows highfrequency generation of transgenic male sterile lines in Brassica juncea L. Mol. Breed., 2001, 8:11–23
    Jagannath A, Arumugam N, Gupta V, Pradhan A, Burma PK, Pental D. Development of transgenic barstar lines and identification of a male sterile (barnase)/restorer (barstar) combination for heterosis breeding in Indian oilseed mustard (Brassica juncea). Curr. Sci., 2002,82:46–52
    Ji Y, Chetelat RT. Homoeologous pairing and recombinationin Solanum lycopersicoides monosomic addition and substitution lines of tomato. Theor Appl Genet, 2003, 106: 979-989
    Jia JZ. Abstract of Plant GenomeⅢ. San Digo, USA, 1995, 1101 J?nsson R. Yellow-seeded rape and turnip rape. II. Breeding for improved quality of oil and meal in yellow-seeded materials (in Swedish with English summary). Sveriges Utsadesf?renings Tidsk rift,1975, 85:271–278
    Kato A, Vega JM, Han FP, Lamb JC,Birchler JA. Advances in plant chromosome identification and cytogenetic techniques. Current Opinin Plant Biol, 2005, 8 :148 -154
    Kirti PB, Narasimhulu SB, Prakash S, Chopra VL. Somatic hybridization between Brassica juncea and Moricandia arvensis by protoplast fusion. Plant Cell Reports, 1992a,11: 318-321
    Kirti PB, Narasimhulu SB, Prakash S, Chopra VL. Production and characterization of intergeneric 6 somatic hybrids of Trachystoma ballii and Brassica juncea. Plant Cell Reports,,1992b,11: 90-92
    Kirti PB, Banga SS, Prakash S, Chopra VL. Transfer of Ogu cytoplasmic male-sterile line of Brassica juncea and improvement of the male sterile through somatic cell fusion. Theor Appl Genet, 1995, 91: 517-521
    Knutzon DS, Hayes TR, Wyrick A, Xiong H, Davies HM, Voelker T A. Lysophosphatidic acid acyltransferase from coconut endosperm mediates the insertion of laurate at the sn position of triacylglycerols in lauric rapeseed oil and can increase total laurate levels. Plant Physiol. , 1999,120:739–746
    Koornneef M. Mutation affecting the testa colour in Arabidopsis.Arabidopsis Inf.Serv.,1990, 27:1-4 Koul KK, Nagpal R, Raina SN. Seed coat microsculpturing in Brassica and allied genera (Subtribes Brassicinae Raphaninae, Moricandiinae). Ann Bot, 2000, 86: 385–397
    Kumar R, Chowdhury JB, Jain RK. Interspecific hybridization in Brassica juncea and Brassica tournefortii through embryo rescue and their evaluation for biotic and abiotic stress tolerance. Indian J Exp Biol., 2001,39(9):911-915
    Lagercrantz U, Lydiate D. Comparative genome mapping in Brassica. Genetics, 1996, 144: 1903-1910
    Leino M, Teixeira R, Landgren M, Glimelius K. Brassica napus lines with rearranged Arabidopsis mitochondria display CMS and a range of developmental aberrations.Theor Appl Genet.,2003,106(7):1156-1163.
    Lelivelt C and Krens FA. Transfer of resisance to the beet cyst nematode (Heterodera schachtiiSchm.) into the Brassica napus L. gene pool through intergeneric somatic hybridization with Raphanus sativus L. Theor Appl Genet, 1992, 83: 887-894
    Lelivelt C, Leunissen E, Frederiks HJ, Helsper J and Krens FA. Transfer of resistance to the beet cyst nematode (Heterodera schachtii Schm.) from Sinapis alba L.(white mustard)to the Brassica napus L. gene pool by means of sexual and somatic hybridization. Theor Appl Gene, 1993, 85: 688-696
    Lepiniec L, Debeaujon I, Routaboul J, Baudry A, Pourcel L, Nesi N and Caboche M. Genetics and Biochemistry of Seed Flavonoids. Annu. Rev. Plant Biol.,2006,57:405–430
    Levings RL, Henderson LM, Metz CA.In vitro potency assays for nonreplicating veterinary vaccines: comparison to in vivo assays and considerations in assay development,Vet Microbiol., 1993,37(3-4):201-219.
    Li ZY, Ge XH. Unique chromosome behavior and genetic control in Brassica×Orychophragmus wide hybrids: a review. Plant Cell Rep, 2007, 26:701-710
    Liu Clarke JH, Chevre AM, Landgren M , Glimelius K.Characterization of sexual progenies of male-sterile somatic cybrids between Brassica napus and Brassica tournefortii. Theor. Appl. Genet.,1999,99:605–610
    Liu H, Han J, Hu X.Studies on the inheritance of seed coat colour and other related characters of yellow seeded B. napus. In: Wratten N, Salisbury PA (eds) Proc 8th Int Rapeseed Congr,vol. 5. The Regional Institute, Gosford, Australia,1991, 1438-1444
    Liu HL.Studies on the breeding of yellow seeded Brassica napus L. Proceedings of the 6th International Rapeseed Congress, Paris, France. Groupe Consultatif International de Recherche Sur la Colza, Paris, France. ,1983, 637-641
    Liu JW, DeMichele S, Bergana M, Bobik E,Hastilow C, Chuang LT, Mukerji P, Huang YS. Characterization of oil exhibiting high gamma-linolenic acid from a genetically transformed canola strain. J. Am. Oil Chem. Soc., 2001,78:489–493
    Liu S, Wang H, Zhang J, et al. In vitro mutation and selection of doubled-haploid Brassica napus lines with improved resistance to Sclerotinia sclerotiorum. Plant Cell Rep, 2005, 24: 133-144
    Liu ZW, Fu TD, Tu JX, Chen Y. Inheritance of seed color and identification of RAPD and AFLP markers linked to the seed color gene in rapeseed (Brassica napus L.). Theor.Appl. Genet., 2005,110: 303–310.
    Lott JNA. Protein bodies in seeds. Nord J Bot, 1981, 1: 421–423
    Luo P, Fu HL, Lan ZQ, Zhou SD, Zhou HF, Luo Q. Phytogenetic Studies on Intergeneric Hybridization Between Brassica napus and Matthiola incana. Acta Botanica Sinica,2003 , 45 (4) : 432-436
    Maataoui A, et al. Effect of water stress on the aggressiveness of oilseed rape (Brassica napus L.) and two mustards (Sinapis alba L. and S.arvensis L.). Common Agric Appl Biol Sci, 2003, 68:433-440
    Mahmood T, Rahman MH, Stringam GR, Raney JP, Good AG.. Molecular markers for seed colour in Brassica juncea. Genome,2005, 48: 755–760
    Marles MAS, Gruber M Y. Histochemical characterization of unextractable seed coat pigments and quantification of extractable lignin in the Brassicaceae. J Sci Food Agric, 2004, 84: 251–262
    Meng J, Shi S, Gan L, Li Z, Qu X. The production of yellow-seeded Brassica napus (AACC) through crossing interspecific hybrids of B. campestris(AA) and B. carinata (BBCC) with B. napus. Euphytica,,1998, 103: 329-333
    Mohammad A, Sikka SM, Aziz MA Inheritance of seed colour in some oleiferous Brassiceae. Indian J Genet ,1942, 2:112–127
    Morgan CL, Bruce DM, Child R, Ladbrooke ZL, Arthur AE. Genetic variation for pod shatter resistance among lines of oilseed rapa developed from synthetic B.napus. Field Crops Research,1998,58:153-165
    Mukhlesur R, Peter BE, McVetty, Genyi Li. Development of SRAP, SNP and Multiplexed SCAR molecular markers for the major seed coat color gene in Brassica rapa L.. Theor Appl Genet,2007,115:1101–1107
    Negi MS, Devic M, Delseny M, Lakshmikumaran M.Identification of AFLP fragments linked to seed coat colour in Brassica juncea and conversion to SCAR marker for rapid selection. Theor Appl Genet,2000,101:146–152
    ?lsson G. Species crosses within the genus Brassica. II. Artificial Brassica napus L. Hereditas,1960, 46: 351-396
    Pathania A, Bhat SR, Dinesh Kumar V, Kirti PB, Ashutosh, Prakash S, Chopra VL. Cytoplasmic male sterility in alloplasmic Brassica juncea carrying Diplotaxis catholica cytoplasm: molecular characterization and genetics fertility restoration. Theor Appl Genet, 2003, 107: 455-461
    Pelletier GPC, Vedel F, Chetrit P, Remy R, Rouselle P, Renard M. Intergeneric cytoplasm hybridization in Cruciferae by protoplast fusion. Molecular General Genetics, 1983, 191:244-250
    Peng Q, Hu Y, Wei R, Zhang Y, Guan C, Ruan Y, Liu C. Simultaneous silencing of FAD2 and FAE1 genes affects both oleic acid and erucic acid contents in Brassica napus seeds. Plant Cell Rep, 2010, Epub ahead of print.
    Peterka H, Budahn H, Schrader O, Ahne R, Schütze W. Transfer of resistance against the beet cyst nematode from radish (Raphanus sativus) to rape (Brassica napus) by monosomicchromosome addition. Theor Appl Genet, 2004, 109: 30-41
    Piotrowska A, Krymanski J, Bartkowiak-Broda I, Krotka,K. Characteristic of yellow-seeded lines of winter oilseed rape.In Proceedings of the 11th International Rapeseed Congress 6–10 July 2003. Vol. 1. Edited by H. S?rensen. Dept. of Chemistry, The Royal Veterinary and Agricultural University, Frederiksberg, Denmark. ,2003, 247–249
    Prakash S, Hinata K. Taxonomy, cytogenetics and origin of crop Brassicas, a review. Opera Bot, 1980, 55: 1-57
    Prakash S and Chopra BL. Male sterility caused by cytoplasm of Brassica oxyrrhina in B. campestris and B. juncea. Theor. Appl. Genet, 1990, 79: 285-287
    Prasad KVSK, Sharmila P, Kumar PA, Saradhi P P. Transformation of Brassica juncea (L.) Czern with bacterial coda gene enhances its tolerance to salt and cold stress. Mol. Breed., 2000,6:489–499
    Qi CK, Fu SZ, Pu HM. A successful transfer of yellow-seeded trait from Brassica carinata to B. napus. Proc. 9th Int. Rapeseed Congress Cambridge,1995, 4:1137-1140
    Qing CM, Fan L, Lei Y, Bouchez D, Tourneur C, Yan L, Robaglia C. Transformation of Pakchoi (Brassica rapa L. ssp chinensis) by Agrobacterium infiltration. Mol Breed, 2000,6:67–72
    Rahman MH. Production of yellow-seeded Brassica napus through interspecific crosses. Plant Breed, 2001b,120: 463-472
    Rahman MH. Inheritance of petal colour and its independent segregation from seed colour in Brassica rapa. Plant Breed , 2001, 120:197–200
    Raina SN , Mukai Y. Genomic in situ hybridization in Arachis ( Fabaceae) identifies the diploid wild progenitors of cultivated ( A.hypogaea) and related wild ( A.monticola) peanut species . Plant Syst Evol, 1999, 214(1-4): 251-262
    Rashid A, Rakow G and Downey RK. Development of yellow seeded Brassica napus through interspecific crosses. Plant Breed,1994,112:127-134
    Ren JP, Dickson MH, Earle ED. Improved resistance to bacterial soft rot by protoplast fusion between Brassica rapa and B. oleracea. Theor Appl Genet, 2000, 100: 810-819
    Rodrigo MPS, Findlay K, Lopez-Villalobos A, Yeung EC, Nykiforuk CL, Moloney MM. The accumulation of oleosins determines the size of seed oilbodies in Arabidopsis. Plant Cell, 2006, 18: 1961–1974
    Roy NN. Interspecific transfer of Brassica juncea-type high blackey resistance to Brassica napus. Euphytica, 1984 .33: 295-303.
    Sabharwal V, Negi MS, Banga SS, Lakshmikumaran M. Mapping of AFLP markers linked to seed coat colour loci in Brassica juncea (L.) Czern. Theor Appl Genet,2004,109:160–166
    Schwetka A. Inheritance of seed color in turnip rape (Brassica campestris L.). Theor ApplGenet ,1982, 62:161–169
    Sharp PJ, Chao S, Desai S, Gale MD. The isolation, characterization and application in the Triticeae of a set of wheat RFLP probes indentifying each homoeologious chromosome. Theor Appl Genet, 1988, 78: 342- 348
    Shewmaker CK, Sheehy JA, Daley M, Colburn S, Ke DY. Seedspecific overexpression of phytoene synthase: increase in carotenoids and other metabolic effects. Plant J, 1999,20:401-412
    Shirley BW, Kubasek WL, Storz G, Bruggemann E, Koornneef M, Ausubel FM, Goodman HM. Analysis of Arabidopsis mutants deficient in flavonoid biosynthesis.Plant J,1995, (8):659-671
    Shirley BW. Flavonoids in seeds and grains: physiological function, agronomic importance and the genetics of biosynthesis. Seed Sci Res,1998, 8:415–422
    Shirzagedan M and R?bellen G. Influence of seed colour and hull proportions on quality properties of seeds in Brassica napus L. Fette Seifen Anstrichm. ,1985, 87: 235–237
    Slominski BA, Campbell LD, Guenter W. Carbohydrates and dietary fibre components of yellow and brown-seeded canola. J Agric Food Chem,1994, 42: 704–707
    Slominski BA, Simbaya J, Campbell LD, Rakow G, Guenter W. Nutritive value for broilers of meals derived from newly developed varieties of yellow-seeded canola. Anim Feed Sci Technol,1999,78:249-262
    Snowdon RJ, Friedt W, Kohler A, Friedt W. Molecular cytogenetic localization and characterization of 5S and 25S rDNA loci for chromosome identification in oilseed rape (Brassica napus L.). Ann Bot, 2000, 86: 201-204
    Snowdon RJ, Winter H, Diestel A, Sacristán MD. Development and characterisation of Brassica napus-Sinapis arvensis addition lines exhibiting resistance to Leptosphaeria maculans. Thero Appl Genet, 2000, 101:1008-1014
    Snowdon RJ, Friedrich T, Friedt W. Identifying the chromosomes of the A- and C-genome diploid Brassica species B.rapa (syn. campestris) and B.oleracea in their amphidiploid B.napus. Theor Appl Genet, 2002, 104: 533-538
    Snowdon RJ. Cytogenetics and genome analysis in Brassica crops. Chromosome Research, 2007, 15:85–95
    Somers DJ, Rakow G, Prabhu VK, Friesen KR. Identification of a major gene and RAPD markers for yellow-seeded coat colour in Brassica napus. Genome, 2001,44: 1077–1082.
    Stewart CN, Adang MJ, All JN., Raymer PL, Ramachandran S, Parrott WA. Insect control and dosage effects in transgenic canola containing a synthetic Bacillus thuringiensis cry1Ac gene. Plant Physiol, 1996, 112:115–120
    Stiewe G, R?bbelen G. Establishing cytoplasmic male sterility in Brassica napus by mitochondrialrecombination with B. tournefortii. Plant Breeding,1994,113:294-304
    Stoutjesdijk PA, Hurlestone C, Singh SP, Green AG. High-oleic acid Australian Brassica napus and B. juncea varieties produced by cosuppression of endogenous delta 12-desaturases. Biochem. Soc. Trans.,2000,28:938–940.
    Stringam GR. Inheritance of seed color in turnip rape. Can J Plant Sci. ,1980, 60:331–335
    Subramanian B, Bansal VK and KavD NNV. Proteome-Level Investigation of Brassica carinata-Derived Resistance to Leptosphaeria maculans. J Agric Food Chem, 2005, 53 (2):313–324
    Tan GX, Jin HJ, Li G, He RF, Zhu LL, He GG. Production and characterization of a complete set of individual chromosome addition lines from Oryza officinalis to Oryza sativa using RFLP and GISH analysis. Theor Appl Genet, 2005, 111:1585-1595
    Tang ZL, Li JN, Zhang XK, Chen L, Wang R. Genetic variation of yellow-seeded rapeseed lines (Brassica napus L.) from different genetic sources. Plant Breed, 1997, 116(5):471–474.
    Taylor DC, Francis T, Guo Y, Brost JM, Katavic V, Mietkiewska E, Michael GE, Lozinsky S, Hoffman T. Molecular cloning and characterization of a KCS gene from Cardamine graeca and its heterologous expression in Brassica oilseeds to engineer high nervonic acid oils for potential medical and industrial use. Plant Biotechnol J, 2009, 7(9): 925-938
    Theander O, Aman P, Miksche GE, Yasuda S. Carbohydrates, polyphenols, and lignin in seed hulls of different colors from turnip rapeseed. J. Agric. Food Chem.,1977, 25: 270–273
    Ting JTL, Lee KY, Ratnayake C, Platt KA, Balsamo RA, Huang AHC. Oleosin genes in maize kernels having diverse oil contents are constitutively expressed independent of oil contents: size and shape of intracellular oilbodies are determined by the oleosins oils ratio. Planta, 1996, 199: 158–165
    Todd JJ and Vodkin LO. Duplications That Suppress and Deletions That Restore Expression from a Chalcone Synthase Multigene Family.The Plant Cell,1996,8:687- 699
    Tzen JTC, Cao YZ, Laurent P, Ratnayake C, Huang AHC. Lipids, proteins and structure of seed oilbodies from diverse species. Plant Physiol, 1993, 101: 267–276
    UN . Genome-analysis in Brassica with special reference to the experimental formation of B. napus and its peculiar mode of fertilization. Japan J Bot. 1935, 7:389–452.
    Van Deynze AE, Landry BS, Pauls KP. The identification of restriction fragment length polymorphisms linked to seed colour genes in Brassica napus.Genome,1995, 38:534-542
    Vanghan JG.The testa of some Brassica seeds of oriental origin. Phytomorphology, 1959,9:l07-110
    Vaughan JG, Whitehouse J M. Seed structure and the taxonomy of the Cruciferae. Bot J Linn Sci, 1971, 64: 383–409
    Vigeolas H, Waldeck P, Zank T, Geigenberger P. Increasing seed oil content in oil-seed rape(Brassica napus L.) by overexpression of a yeast glycerol-3-phosphate dehydrogenase under the control of a see-specific promoter. Plant Biotechnol, 2007,5: 431-441
    Vosa CG, Marchi P. Quinacrine fluorescence and Giesma staining in plants. Nature, New Biol, 1972, 237: 191-192
    Wan LL, Xia Q, Qiu X, Selvaraj G. Early stages of seed development in Brassica napus: A seed coat-specific cysteine proteinase associated with programmed cell death of the inner integument. Plant J, 2002, 30(1): 1–10
    Wan ZJ, Jing B, Tu JX, Ma CZ, Shen JX, Yi B, Wen J, Huang T, Wang XJ, Fu TD. Genetic characterization of a new cytoplasmic male sterility system (hau) in Brassica juncea and its transfer to B.napus. Theor Appl Genet, 2008, 116:355-362
    Wang AY, Li X, Hu DY. Research advances on distant hybridization breeding in rapeseed. Acta Agriculturae Boreali-occidentalis Sin, 2005,14(6):67-71
    Wang HZ, Liu HL. Genetic analysis of seed color stability in yellow-seed Brassica napus.刘后利论文集.北京:北京农业大学出版社,1994,229-234
    Wang HZ. Problem in the development of oilseed industry and it's countermeasure in China, Chinese J Oil Crop Sci, 2005, 27:100-105
    Wang L, Ning SB, SongYC, LuYT. The progress and application of fluorescent in situ hybridization. Acta Bot Sin, 2000, 42: 1101-1107
    Wang N, Wang YJ, Tian F, King GJ, Zhang CY, Long Y, Shi L, Meng JL. A functional genomics resource for Brassica napus: development of an EMS mutagenized population and discovery of FAE1 point mutations by TILLING. New Phytologist, 2008, research, 751-764
    Wang YP, Sonntag K, Rudloff E. Development of rapeseed with high erucic acid content by asymmetric somatic hybridization between Brassica napus and Crambe abyssinica. Theor Appl Genet, 2003, 106: 1147-1155
    Wang YP, Snowdon RJ, Rudloff E, Wehling P, Friedt W, Sonntag K. Cytogenetic characterization and fael gene variation in progenies from asymmetric somatic hybrids between Brassica napus and Crambe abyssinica. Genome, 2004, 47: 724-731
    Wang YP, Sonntag K, Rudloff E, et al. Intergeneric somatic hybridization between Brassica napus and Sinapis alba. Integrative J Plant Biol, 2005a 47(1): 84-91
    Wang YP, Zhao XX, Sonntag K, et al. Behaviour of Sinapis alba addition chromosomes in a Brassica napus background revealed by genomic in situ hybridisation. Chromosome Res, 2005b, 13:819-826
    Wang Z, Mao H, Dong CH, Ji RQ, Fu RQ, Cai L, Fu H, Liu SY. Overexpression of Brassica napus MPK4 enhances resistance to Sclerotinia sclerotiotum in oilseed rape. Mol Plant Microbe Interact, 2009, 22(3): 235-244
    Warwick SI, Francis A ,Gugel R Ket. Guide to wild germplasm of Brassica and allied crops (tribe Brassiceae, Brassicaceae). 2nd edition. Ottawa, Ont. 2000, PartⅣ,11-12
    Waterer D, Lee S, Scoles G, Keller W. Field evaluation of herbicide resistant transgenic broccoli. HortScience.2000,35:930–932
    Wei W, LI Y, Wang L, Liu S, Yan X, Mei D, Li Y, Xu Y, Peng P, Hu Q. Development of a novel Sinapis arvensis disomic addition line in Brassica napus containing the restorer gene for Nsa CMS and improved resistance to Sclerotinia sclerotiorum and pod shattering. Theor Appl Genet, 2009, Epub ahead of print
    Wei YL, Li JN, Lu J, Tang ZL, Pu DC, Chai YR. Molecular cloning of Brassica napus TRANSPARENT TESTA 2 gene family encoding potential MYB regulatory proteins of proanthocyanidin biosynthesis. Mol Biol Rep,2007,34:105–120
    Wei Z, Jing B, Tu J, Ma C, Shen J, Yi B, Wen J, Huang T, Wang X, Fu T. Genetic characterization of a new cytoplasmic male sterility system (hau) in Brassica juncea and its transfer to B.napus. Theor Appl Genet, 2008, 116(3):355-362
    Whetten RW, Mackay JJ, Sederoff R. Recent advances in understanding lignin biosynthesis. Annu. Rev. Plant Physiol. Plant Mol. Biol.,1998,49: 585–609
    Windsor JB, Symonds VV, Mendenhall J, Lloyd AM. Arabidopsis seed coat development: morphological differentiation of the outer integument. Plant J, 2000, 22: 483–493
    Wu JS, Shi SW, Wu DW, Liu HL. Studies on the inheritance of yellow seedcoat in rapeseed (Brassica napus L). In Proceedings of the 10th International Rapeseed Congress, September 1999, Canberra, Australia. Edited by N. Wratten and P.A. Salisbury. The Regional Institute Ltd., Gosford, NSW, Australia. Available from http://www.regional.org.au/au/gcirc/4/146.
    Xiao DR, Liu HL. Correlation analysis of seed colour and seed oil in Brassica napus L. Acta Agronomica Sinica, 1982, 8:24–27
    Xiao SS, Xu JS, Li Y, Zhang L, Shi SJ, Shi SW, Wu JS, Liu KD.Generation and mapping of SCAR and CAPS markers linked to the seed coat color gene in Brassica napus using a genome-walking technique. Genome,2007,50: 611–618
    Xu BB, Li JN, Zhang XK, Wang R, Xie LL,Chai YR. Cloning and molecular characterization of a functional flavonoid 3’-hydroxylase gene from Brassica napus. Journal of Plant Physiology, 2007, 164: 350-363
    Yao XC, Du XZ, Ge XH, Chen JP, Li ZY. Intra- and intergenomic chromosome pairings revealed by dual-color GISH in trigenomic hybrids of Brassica juncea and B. carinata with B. maurorum. Genome, 2010, 53(1): 14-22
    Zaman MW. Potential for species introgression in Brassica napus with special reference to earliness and seed color. Ph.D. thesis, Dept. of Plant Breeding, Institution for Vaxtforadeling,Swedish Univ. Agric. Sci., Uppsala, Sweden. 1987
    Zaman MW. Inheritance of seed colour in Brassica campestris. Sveriges Utsadesf?renings Tidskrift ,1989, 99:205–207
    Zeng CL, Wang JB, Liu AH, Wu XM. Seed coat microsculpturing changes during seed development in diploid and amphidiploid Brassica species. Ann Bot, 2004, 93: 555–566
    Zhang FL, Takahata Y. Microspore mutagenesis and in vitro selection for resistance to soft rot disease in Chinese cabbage(Brassica campestris L. ssp. pekinensis).Breed Sci, 1999,49(3) :161-166
    Zhang HX, Hodson JN, Williams JP, Blumwald E. Engineering salttolerant Brassica plants: characterization of yield and seed oil quality in transgenic plants with increased vacuolar sodium accumulation. Proc. Natl Acad. Sci. USA , 2001,98:12832–12836
    Zhang J, Lu Y, Yuan Y, Zhang X, Geng J, Chen Y, Cloutier S, McVetty PB, Li G. Map-based cloning and characterization of a gene controlling hairiness and seed coat color traits in Brassica rapa. Plant Mol Biol, 2009 ,69(5):553-563
    Zhong R, Zhu F, Liu YL, Li SG, Kang LY, Luo P. Oilseed rape transformation and the establishment of a bromoxynil-resistant transgenic oilseed rape. Acta Bot. Sin. 1997,39:22–27,
    Zhu JQ, Zhang JT, Tang RJ, Lv QD, Yang L, Zhang HX. Molecular characterization of ThIPK2, an inositol polyphosphate kinase gene homolog from Thellungiella halophila, and its heterologous expression to improve abiotic stress tolerance in Brassica napus. Physiol Plant, 2009, 136(4): 407-425

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700