酞菁类配合物的构效关系及其半导体性质的量子化学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
作为自然界存在的生物活性分子卟啉的类似物,拥有共面的18π电子共轭大环体系的酞菁(Pc)类化合物由于具有独特的物理和化学性质在科学研究和工业生产中都引起了人们广泛的兴趣。酞菁大环周围苯环上的每一个位置均可以被取代基所取代,而且取代基的位置和种类都极大地影响着酞菁的物理和化学性质。酞菁这些性质和应用都与它们最基本的电子结构密切相关。因此,从理论上研究酞菁类化合物结构和性质的关系(构效关系)对从根本上理解酞菁的内在性质的决定因素并从结构上设计具有需要性能的新型化合物分子具有至关重要的意义。
     酞菁能够与半径较大配位数较多的金属如稀土金属等形成三明治型双层或三层化合物。酞菁配体与金属形成的双层酞菁金属配合物尤其是稀土双层酞菁配合物具有新奇和独特的电子和光学性质,这使得它们在材料领域如分子电子学、非线性光学器件、传感器和光学寻址空间光调节器等多个方面具有广泛的应用。此前的研究结果显示双层酞菁稀土配合物的电化学和光谱学性质与分子中两层酞菁环间的距离密切相关,而两层酞菁环间的距离是由中心稀土金属的离子半径以及金属与酞菁配位键的强度决定的。然而,在酞菁领域中从基础上对共轭酞菁环、中心金属、周边或者非周边取代基、分子结构和光谱学以及电化学性质的关系的研究还没有开展。另一方面,由于双层酞菁稀土配合物中两层酞菁环之间存在很强的π-π相互作用,一层酞菁环上的取代基预计会对另一层酞菁配位以及整个双层配合物的结构和性质产生影响,这种影响应该与单层酞菁配合物中的情况有所不同。然而,双层酞菁稀土配合物中两层酞菁配体中的一层酞菁环上的取代基对整个双层分子的影响规律至今还没有完全弄明白。尽管在实验上人们已经合成出了很多在酞菁环周边和非周边位置具有不同取代基的双层酞菁稀土配合物,对取代基的位置和数目对整个双层酞菁稀土配合物的结构和光谱性质的影响的理论研究却很少,尤其是从密度泛函理论水平上进行的研究。
     由于除了铈之外其它稀土元素通常采取正三价氧化态而无论卟啉还是酞菁都需要两个电子来形成二价阴离子形式的十八电子π体系,因此双层酞菁或混杂酞菁卟啉稀土配合物中存在一个空八,空八的存在使这些双层四吡咯稀土配合物很容易被还原变成阴离子形态或者质子化的结构。由于空穴或者酸性质子在材料领域起到非常重要的作用,人们付出很大努力试图去确定相应双层四吡咯稀土配合物中空穴和酸性质子的位置。X射线衍射技术不能够给出双层四吡咯稀土配合物中质子或者空穴位置的有效信息。尽管空穴位置已经可以通过光谱手段确定,在质子化的双层四吡咯稀土配合物中尤其是混杂酞菁卟啉稀土配合物中酸性质子的位置至今还未被实验手段确定。
     此外,由于存在内在的离域到两层酞菁环上的空穴,在三明治型双层酞菁稀土配合物中捕获或者失去电子都很容易。这与三明治型双层酞菁稀土配合物具有高度离域的π共轭体系一起使它们呈现出作为双极性有机场效应晶体管半导体的巨大应用潜力,正如Simon等人先前的实验工作预测的那样。尽管半导体材料中的分子堆积对基于薄膜材料的有机场效应晶体管装置的电荷传输性质具有重要作用,分子堆积方式对π-π相互作用以及相应的半导体材料的电荷传输性质的影响规律仍然不是很清楚。因此用密度泛函理论方法对双层酞菁稀土配合物的半导体性质进行理论研究并弄清在半导体中电荷传输性质将对发展用作有机场效应晶体管的新颖的酞菁半导体材料起到很大帮助。
     本论文对单层酞菁配合物和双层酞菁配合物以及混杂酞菁卟啉配合物的结构和性能的关系进行了密度泛函水平上的理论研究,并模拟了双层酞菁配合物有机场效应晶体管中的电荷传输性质。
     1、烷氧基取代基链长、中心金属离子以及轴向配体对单层酞菁配合物的结构和性质的影响
     我们用密度泛函理论和含时密度泛函理论在B3LYP/LANL2DZ水平上系统研究了三种酞菁铅配合物,即PbPc、PbPc(α-OC_2H_5)_4和PbPc(α-OC_5H_(11))_4的分子结构、分子轨道能级、原子电荷、红外和拉曼光谱以及紫外可见吸收光谱。计算的PbPc和PbPc(α-OC_5H_(11))_4的分子结构以及模拟的PbPc(α-OC_5H_(11))_4的红外和紫外吸收光谱与实验报道的结果进行了对比,证明我们采用的基组和泛函对计算酞菁配合物是合适的。计算结果发现在酞菁环非周边位置上的烷氧基取代基对酞菁铅配合物的分子结构和相应的化学性质产生了非常大的影响,而这种影响的大小随烷氧基上烷基链长度的不同而不同。非周边位置的四烷氧基取代将酞菁铅的每个异吲哚单元在异吲哚伸展的方向即垂直于分子C_4轴的方向上发生扭曲而在C_4轴方向上发生扭转,被取代一侧的对应键长比未取代一侧的要长些,而在C_4轴方向上取代一侧要高于未取代一侧。这种扭曲和扭转作用随着烷氧基的空间位阻的不同而不同。此外,烷氧基取代还导致酞菁铅分子的红外光谱和紫外吸收光谱发生很大的变化。我们的结果清楚地指出了酞菁铅配合物中分子结构和性质随着烷氧基链长度的变化规律,为通过调控酞菁分子上的取代基来调节分子性质提供了很大的指导作用。
     我们用密度泛函理论和含时密度泛函理论在B3LYP/LANL2DZ水平上详细研究了酞菁铅、酞菁锡、酞菁锗以及酞菁锡和酞菁锗的轴向氯离子取代的类似物的分子结构、分子轨道能级、原子电荷、红外光谱、拉曼光谱和电子吸收光谱。我们将计算的PbPc的分子结构、模拟的红外光谱和PbPc在氯仿和DMSO溶液中的电子吸收光谱电子吸收光谱与实验上得到的单晶分子结构、实验测得的红外吸收光谱和紫外可见吸收光谱的进行了比较,发现它们都符合得很好。通过对五个具有不同中心金属离子和轴向配体的化合物的比较研究,我们发现了轴向配体和中心金属离子半径对分子结构、分子轨道和原子电荷以及红外和拉曼光谱的重要的影响规律。我们对吸收光谱中的每个吸收峰进行了分析,指出了每个吸收峰的激发态对称性,并对每个报道的吸收峰的电子跃迁本质以电子跃迁贡献和包含进该跃迁的轨道的形式进行了洋细的报道和分析。轴向配体由于改变了分子轨道能级次序和分子对称性从而也对整个分子的电子吸收光谱产生显著的影响。我们的结果清楚地指出了酞菁类配合物中分子结构和性质随着中心金属离子半径不同以及轴向配位作用的变化规律,为通过调控酞菁分子上中心金属离子以及轴向配体来调节分子性质提供了很大的指导作用。
     2、三明治型双层酞菁及混杂酞菁卟啉稀土配合物结构和光谱性质的密度泛函理论研究
     我们首次通过密度泛函和含时密度泛函理论计算准确地描述了中性态双层酞菁稀土配合物及其阴离子的分子结构、分子轨道、原子电荷、电子吸收光谱、红外光谱和拉曼光谱。计算的结果与实验数据符合得很好,说明我们选取的方法和基组对计算诸如双层酞菁镧配合物之类的大分子是可行的。我们发现无论是在中性态还是还原态的双层稀土酞菁配合物中中心稀土元素的离子半径对M-N键长和环间距离的影响比酞菁环内部结构参数的影响要大。将中性态双层酞菁稀土配合物还原成阴离子导致它们分子轨道和电荷分布的重排但是分子结构改变并不是很大。我们还根据原子特征对所有化合物的前线轨道的轨道能级和轨道本质进行了描述和解释。从酞箐钇阴离子到酞菁镧阴离子,由于HOMO-1轨道和HOMO轨道的能级差以及LUMO轨道和LUMO+1轨道能级差的减小,两个Q带的分裂程度有所降低。由于环间π-π相互作用的增强,酞菁钇和酞菁钇阴离子的红外和拉曼光谱中的吸收峰与酞菁镧和酞菁镧阴离子中的相应峰比较都发生了蓝移。计算显示酞菁钇阴离子和酞菁镧阴离子分别在1283和1273cm~(-1)处的峰以及酞菁钇和酞菁镧在1258和1246cm~(-1)处的红外吸收峰可以用作特征红外信号来区分中性态和还原态的双层酞菁稀土配合物。实验观察到的酞箐钇和酞菁镧分别存1322和1313cm~(-1)处的红外吸收峰应该被归属为既包含酞菁阴离子自由基又包含酞菁二价阴离子的混合振动模式而不是以前实验归属的单纯的酞菁阴离子自由基的振动模式。本部分工作为从本质上更深入理解双层酞菁稀土配合物的结构和性质以及中心稀土离子对双层配合物结构和性质的影响规律提供了很大帮助。
     我们通过密度泛函和含时密度泛函理论计算准确描述了三个不对称双层酞菁钇配合物及其还原态阴离子的分子结构、分子轨道、原子电荷分布、电子吸收光谱、红外光谱和拉曼光谱。计算的中性分子的电子吸收光谱、红外光潜和拉曼光谱与实验结果都符合得很好。计算结果显示双层酞菁稀土配合物中一层酞菁配体非周边位置的取代基对双层大分子结构和光谱性质的影响要比周边位置取代基的大。增加取代基的数目进一步导致双层分子结构和光谱性质的更大变化。在中性双层酞菁稀土配合物的两层酞菁配体的一层中引入给电子性质的甲氧基取代基导致取代酞菁配体上的一些电子转移到了未取代酞菁环上。中性分子的单电子还原导致在还原态阴离子中两层酞菁环电荷分布趋于平衡。此外,在双层酞菁钇分子中两层酞菁环中的一层上引入甲氧基取代基使得区分由未取代酞菁和取代酞菁配体引起的振动模式成为可能。随着中性态分子被还原成阴离子由未取代酞菁产生的振动模式和由取代酞菁配体产生的振动模式具有一致的变化规律,进一步证实在不对称双层酞菁稀土配合物中空穴是离域到两个酞菁环上的。由于双层酞菁稀土配合物中两层酞菁环之间的强烈的π-π相互作用,不仅甲氧基取代基的空间位阻作用还有两层酞菁配体间的电子转移都对整个双层配合物结构和性质的改变以及取代基效应从取代酞菁环到未取代酞菁环的转移起到重要影响。本部分工作首次通过密度泛函理论计算来研究双层酞菁稀土配合物中的两个酞菁环中一个酞菁环上的烷氧基的位置和数目对整个双层配合物结构和性质的影响规律。
     通过对化合物(Pc)Y(Por)、[(Pc)Y(Por)]~-、(HPc)Y(Por)和(Pc)Y(HPor)的分子结构、分子轨道、原子电荷、电子吸收光谱和红外光谱的基于密度泛函理论的比较计算,我们进一步确证了在中性态非质子化的双层混杂酞菁卟啉稀土配合物中空穴位于酞菁配体一侧。这与实验上用红外光谱技术得出的结论一致。然而,与以前推测的结果相反,我们的比较性的理论计算结果证明在质子化的混杂双层酞菁卟啉稀土配合物中酸性质子更倾向于处在卟啉而不是酞菁配体上。据我们所知,本文的工作首次在密度泛函理论计算的基础上尝试理解双层混杂酞菁卟啉稀土配合物的结构和性质。
     3.三明治型双层酞菁配合物有机场效应晶体管半导体性质的密度泛函理论研究
     我们通过密度泛函理论计算对一系列并噻吩化合物及其杂原子和卤素取代的衍生物进行了研究以考察它们作为有机场效应晶体管半导体材料的潜力。我们系统研究了并噻吩类化合物的HOMO和LUMO轨道能级、离子势、电子亲和能、重组能、传输交换积分、电荷传输迁移率、尤其是半导体性质随低聚物长度、杂原子取代和卤素取代的变化规律。未取代的并噻吩由于相对应金电极电子注入势垒很高故只能作为p型半导体。用杂原子尤其是硼原子取代并噻吩化合物中噻吩上的硫原子通过降低电子注入势垒和提高电子传输迁移率极大地改善了它们的电子传输的半导体性质但没有削弱它们的p型半导体性能,因而导致硼原子取代的并噻吩类化合物从并噻吩的基于金电极的有机场效应晶体管的p型活性半导体层转变成并硼噻吩的双极性半导体层。用两个氟原子取代硼取代的并六噻吩一端硼噻吩上的两个质子导致空八和电子传输迁移率略有升高。本部分工作作为对并噻吩低聚物的有机场效应晶体管性质的杂原子取代效应的首次系统的理论研究对合理地设计具有双极性的有机场效应晶体管半导体材料具有很大的帮助和指导作用。
     在对小分子进行尝试计算的基础上,我们通过密度泛函理论计算研究了在双层酞菁钇和酞菁镧配合物的晶体结构以及由双层酞菁钇分子构成的可能二聚体中的电荷传输性质。计算结果表明双层配合物酞菁钇和酞菁镧都是很好的双极性半导体材料,计算的它们的空穴迁移率分别达到了0.034和0.17 cm~2 v~(-1)s~(-1),电子迁移率分别高达0.031和0.088 cm~2 v~(-1)s~(-1)。我们还描述了还原和氧化导致的分子几何结构和电子结构的变化以合理解释它们很小的空穴和电子重组能并且弄清在这些双层配合物中的电荷传输模式。对由两个酞菁钇分子构成的所有可能的二聚体模型中的传输交换积分也进行了系统地研究并且计算了对应的内在电荷传输迁移率。我们在这部分工作中基于密度泛函理论计算的对双层酞菁稀土配合物的半导体性质的理论研究将对发展用作有机场效应晶体管的新颖的酞菁半导体材料起到很大帮助。
Phthalocyanines are an important class of pigments which have found their applications in various disciplines.Study on the relationship of their structures and properties is of great importance on designing new phthalocyanines with novel properties and material performances.Our research work has been focused on the following respects:
     1.DFT study of the structures and properties of mono-phthalocyanine metal complexes with different nonperipheral and axial substituents and central metals
     Density Functional Theory(DFT) and time-dependent DFT calculations are carried out to comparatively describe the molecular structures,molecular orbital energy gaps,atomic charges,infrared(IR) and Raman spectra,and the UV-vis spectra of PbPc,PbPc(α-OC2H5)_4,and PbPc(α-OC5H11)_4.Substitution of bulky alkoxy groups at the nonperipheral positions of phthalocyanine ring adds obvious effect to the molecular structures of phthalocyaninato lead compounds by deflecting the isoindole units in the direction that the isoindole units extend and distorting them in the C_4 axis direction due to the steric hindrance.Both the calculated IR and UV-vis absorption spectra of PbPc(α-OC5H11)_4 correspond well with the experimental results.
     Density functional theory(DFT) and time-dependent DFT calculations are carried out to comparatively describe the molecular structures,molecular orbital energy gaps,atomic charges,infrared(IR) spectra,Raman spectra,and electronic absorption spectra of lead phthalocyaninate(PbPc),tin phthalocyaninate(SnPc),germanium phthalocyaninate(GePc),tin(Ⅳ) dichlorophthalocyaninate(PcSnCl_2),and germanium(Ⅳ) dichlorophthalocyaninate(PcGeCl_2).The calculated structural data and the simulated IR spectrum of PbPc correspond well with the experimental result. The important effects of axial ligands and ionic radius of metal center to the molecular structures,molecular orbital and atomic charges are described,and the metal-sensitive peaks in the IR and Raman spectra are identified by comparative study of the five complexes with different central metals and axial ligands.The electronic natures of all the bands in the absorption spectra are assigned and analyzed comparatively according to the calculated electronic transition contributions.Axial ligands also greatly changed the electronic absorption spectra due to the change of the orbital energy level and the molecular symmetry.
     2.DFT study of the structures and properties of homoleptic and hemoleptic bis(phthalocyaninato) yttrium and lanthanum double-decker complexes and location of hole and acid proton in mixed (phthalocyaninato)(porphyrinato) yttrium double-decker
     Density Functional Theory(DFT) calculations are carried out to describe the molecular structures,molecular orbitals,atomic charges,UV-vis absorption spectra,IR,and Raman spectra of bis(phthaiocyaninato) rare earth(Ⅲ) complexes M(Pc)_2(M = Y,La) as well as their reduced products[M(Pc)_2]~-(M = Y,La).Good consistency is found between the calculated results and experimental data.Reduction of the neutral M(Pc)_2 into[M(Pc_)2]~- induces the reorganization of their orbitals and charge distribution,and decreases the inter-ring interaction.With the increase of the ionic size from Y to La,the inter-ring distance of both the neutral and reduced double-decker complexes M(Pc)_2 and[M(Pc)_2]~-(M = Y,La) increases,the inter-ring interaction and the splitting of the Q bands decrease,and corresponding bands in the IR and Raman spectra take red shift.The orbital energy level and orbital nature of the frontier orbitals are also described and explained in term of atomic character.The present work,representing the first systemic DFT study on the bis(phthalocyaninato) yttrium and lanthanum complexes,sheds further light on clearly understanding structure and spectroscopic properties of bis(phthalocyaninato) rare earth complexes.
     The substitutional effect of alkoxy substituents attached at one phthalocyanine ligand on the whole molecule of three heteroleptic bis(phthalocyaninato) yttrium complexes Y(Pc)[Pc(α-OCH_3)_4](1), Y(Pc)[Pc(α-OCH_3)_8](2),and Y(Pc)[Pc(β-OCH_3)_8](3) as well as their reduced products {Y(Pc)[Pc(α-OCH_3)_4]}~-(4),{Y(Pc)[Pc(α-OCH_3)_8]}~-(5),and {Y(Pc)[Pc(β-OCH_3)_8]}~-(6) in term of the molecular structures,molecular orbitals,atomic charges,electronic absorption spectra,IR,and Raman spectra is studied by density functional theory(DFT) calculations.Good consistency is found between the calculated results and experimental data in the electronic absorption spectra,IR,and Raman of 1 and 3.Introduction of electronic-donating methyloxy groups at one phthalocyanine ring of the heteroleptic double-deckers induces structural deformation on both the phthalocyanine ligands,electron transfer between the two phthalocyanine rings, change of orbital energy and composition,shift of electronic absorption bands, and distinguish of the vibrational modes of the unsubstituted phthalocyanine from the substituted phthalocyanine ligand in the IR and Raman spectra in comparison with the unsubstituted homoleptic counterpart Y(Pc)_2.The calculation results reveal that incorporation of methyloxy substituents at the non-peripheral positions add more influence on the structure and spectroscopic properties of bis(phthalocyaninato) yttrium double-decker than at the peripheral positions,which also increases with increasing the number of substituents from four to eight.Nevertheless,the substitutional effect due to alkoxy substituents at one phthalocyanine ligand of the double-decker on the unsubstituted phthalocyanine ring as well as the whole molecule and importance of the position and number of alkoxy substituents are discussed in detail.In addition, the effect of reduction of 1-3 into 4-6 on the structure and spectroscopic properties of bis(phthalocyaninato) yttrium compound is also discussed.The systemic DFT study of alkoxy substitutional effect on the heteroleptic bis(phthalocyaninato) yttrium complexes is not only useful towards understanding the structure and spectroscopic properties of bis(phthalocyaninato) rare earth complexes but also helpful in designing and preparing double-deckers with tuneable structure and properties in terms of substitutional effects.
     The location of the hole and acid proton in neutral non-protonated and protonated mixed(phthalocyaninato)(porphyrinato) yttrium double-decker complex,respectively,is studied on the basis of density functional theory(DFT) calculations on the molecular structures,molecular orbitals,atomic charges,and electronic absorption and infrared spectra of neutral,reduced,and two possible protonated species of mixed(phthalocyaninato)(porphyrinato) yttrium compound,namely(Pc)Y(Por),[(Pc)Y(Por)]~-,(HPc)Y(Por),and(Pc)Y(HPor). When the neutral(Pc)Y(Por) is reduced to[(Pc)Y(Por)]~-,the calculated results on the molecular structure,atomic charge,and electronic absorption and infrared spectra show that the added electron has more influence on the Pc ring than on Pot counterpart,suggesting the location of hole on the Pc ring in neutral (Pc)Y(Por).Nevertheless,comparison of the calculation results on the structure, orbital composition,charge distribution,and electronic absorption and infrared spectra between(HPc)Y(Por) and(Pc)Y(HPor) leads to the conclusion that the acid proton in protonated mixed(phthalocyaninato)(porphyrinato) yttrium compound should localize on the Por ring rather than Pc ring despite of the localization of the hole on the Pc ring in(Pc)Y(Por).This result is in line with the trend revealed by comparative studies over the X-ray single crystal molecular structures between[M~Ⅲ{ Pc(α-OC_5H_(11))4 }(TCIPP)]and [M~ⅢH{Pc(α-OC_5H_(11)_4)(TCIPP)](M = Sm,Eu).The present work not only represents the first systemic DFT study on structures and properties of mixed (phthalocyaninato)(porphyrinato) yttrium double-decker complexes,but more importantly sheds further light on clearly understanding the nature of protonated bis(tetrapyrrole) rare earth complexes.
     3.Charge transfer properties of bis(phthalocyaninato) rare earth(Ⅲ) complexes:intrinsic ambipolar semiconductor for field effect transistors
     Density functional theory(DFT) calculations are carried out to investigate the effect of oligomer length,halogen substitution,and heteroatom substitution on the organic field effect transistor(OFET) performance of a series of oligothienoacenes(1-5 for oligothienoacene with thiophene units' number from two to six).The appropriate ionization potential and electron affinity,balanced charge injection barrier for both hole and electron relative to the work function potential of Au source-drain electrodes,low hole and electron reorganization energy,and good intrinsic transfer mobility for both hole and electron of both the boron substituted hexathienoacenes 5BH and 5BH-2F-a make these two compounds good potential semiconductors for ambipolar OFET devices,with calculated intrinsic charge transfer mobilities achieving 3.74 and 5.07 cm~2 V~(-1) s~(-1) for hole,and 4.77 and 5.76 cm~2 V~(-1) s~(-1) for electron,respectively.The high intrinsic mobilities of 5BH and 5BH-2F-a are rationalized in terms of their frontier orbitals,molecular structure variation upon oxidation and reduction,and electron coupling between two neighboring molecules.All the results indicate that heteroatom substitution of sulfur atoms in oligothienoacenes is a rational way towards good ambipolar OFET semiconducting materials.
     Density functional theory(DFT) calculations are carried out to study the charge transfer properties of bis(phthalocyaninato) yttrium and lanthanum double-decker complexes M(Pc)_2(M = Y,La) for organic field effect transistors (OFET).The results indicate that the intrinsic delocalized hole in M(Pc)_2(M = Y, La) induces the high energy level of highest occupied molecular orbital(HOMO) and low energy level of lowest unoccupied molecular orbital(LUMO) in the sandwich double-decker molecules as well as the small ionization potential and large electronic affinity.These factors lead to very small injection barrier relative to Au source-drain electrode of these two double-deckers for both hole and electron and render them as good potential ambipolar semiconductor. Associated with the very small reorganization energy for hole and electron and large transfer integral in crystal,these two complexes M(Pc)_2(M = Y,La) display intrinsic charge transfer mobility of 0.034 and 0.17 cm~2 v~(-1) s~(-1) for hole and 0.031 and 0.088 cm~2 v~(-1) s~(-1) for electron in crystal according to the calculation results.The high intrinsic mobility for both hole and electron in these double-deckers is rationalized by examining the changes of geometric and electronic structures upon reduction and oxidation and charge transfer integral of different transfer modes in crystal.Charge transfer integrals in all the possible dimers composed of two Y(Pc)_2 molecules are systematically studied to simulate the molecular arrangement of bis(phthalocyaninato) rare earth complexes in thin solid films.
引文
[1](a) N.Uyeda,T.Kobayashi,E.Suito,Y Harada,M.Watanabe.Molecular image resolution in electron microscopy[J]J.Appl.Phys.,1972,43,5181;
    (b) T.Kobayashi,S.Isoda.Lattice Images and Molecular Images of Organic Materials[J]J.Mater.Chem.1993,3,1.
    [2]Eley,D.D.Phthalocyanines as semiconductors[J]Nature,1948,162,819.
    [3](a) Schramm,C.J.,Stojakovic,D.R.,Hoffman,B.M.&Marks,T.J.;New low-dimensional molecular metals:single-crystal electrical conductivity of nickel phthaioeyanine iodide[J]Science,1978,200,47;
    (b) Marks,T.J.,Electrically conductive metallomacroeyclic assemblies;[J]Science,1985,227,881.
    [4](a) Bott,B.,Jones,T.A.;A highly sensitive NO_2 sensor based on electrical conductivity changes in phthalocyanine films;[J]Sensors&Actuators,1984,5,43.
    (b) Wright,J.D.;Gas adsorption on phthaloeyanines and its effects on electrical properties;[J]Prog Surf.Sci.,1989,31,1.
    [5]Vartanyan,A.T.Poluprovodnikovye Svoistva Organicheskikh Krasitel[J]Zh.Fiz Khim.948,22,769-774.
    [6]Law,K.-Y.;Organic photoconductive materials:recent trends and developments;[J]Chem.Rev.,1993,93,449-486.
    [7]Tang,C.W.;Two-layer organic photovoltaic cell:[J]Appl.Phys.Lett.,1986,48,183-t85.
    [8]Nazeeruddin,M.K.,et al,Efficient near IR sensitization of nanocrystalline TiO_2 films by ruthenium phthaiocyanines.;[J]Chem.Commun.,1998,719-720.
    [9]Wohrle,D.,et al,Microlasers based on organic dyes in nanoporous crystals [J]Molecular Crystals&Liquid Crystals,1993,230,221.
    [10]王朝晖,衷庆华,熊轶嘉,孙亚,孔繁敖.酞菁锌分子激发态的超快内转换和振动弛豫[J]化学物理学报,1998,2,15-18.
    [11]De la Torre,G,Vazquez.P.,et al.Phthalocyanines and related compounds [J]J.Mater.Chem.,1998,8,1671-1683.
    [12]Shirk J,S.,Lindle J.R.,Bartoli F.J.et al.Third-order optical nonlinearities of bis(phthalocyanines)[J]J.Phys.Chem.,1992,96,5847-5852.
    [13]陈仕艳,刘云圻,黄学斌,邱文丰,朱道本.酞菁在分子材料器件方面的研究进展[J]自然科学进展,2004,14,125-132.
    [14]C.C.Leznoff,A.B.P.Lever.Phthalocynines:properties and applications.[M]Volumes 1-4,New York:VCH,1989.
    [15]Borisenkova,S.A.New aspects of the heterogeneous catalysis of thiol oxidation by phthalocyanines.[J]Petroleum Chem.1991,31,379-398.
    [16]Mckeown,N.B.Phthalocyanine Materials:Synthesis,Structure and Function;Cambridge University Press:Cambridge,England,1998.
    [17]Kadish,K.M.;Smith,K.M;Guilard,R.The Porphyrin Handbook;Academic Press:San Diego,CA,2000-2003;Vols.1-20.
    [18]Gregory,P.High-Technology Applications of Organic Colorants;Plenum Press:New York,1991.
    [19]Gregory,P.J.Porphyrins Phthalocyanines 2000,4,432.
    [20]Ao,R.:Kilmmert,L.:Haarer,D.Adv.Mater.1995,7,495.
    [21]Birkett,D.Chem.Ind 2000,178.
    [22]Moser,F.H.;Thomas,A.L.The Phthalocyanines;Vols.1 and 2,Manufacture and Applications:CRC Press:Boca Raton,FL,1983.
    [23]Wohrle,D.;Meissner,D.Adv.Mater.1991,3,129.
    [24]Eichhorn,H.J.Porphyrins Phthalocyanines.2000,4,88.
    [25]Snow,A.W.;Barger,W.R.In Phthalocyanines:Properties and Applications.Leznoff,C.C.,Lever,A.B.P.,Eds.;VCH:New York,1989;pp 341-392.
    [26]Shirk,J.S.;Pong,R.G S.;Flom,S.R.;Heckmann,H.;Hanack,M.J.Phys.Chem.2000,104,1438.
    [27]LukCentyanets,E.A.J.Porphyrins Phthalocyanines.1999,3,424.
    [28] H. Hasrar, H.; van Lier, J. E. Chem. Rev. 1999, 99, 2379.
    [29] Cosomelli, B.; Roncuccin, G; Dei, D.; Fantetti, L.; Ferroin, F.; Ricci, M., Spinelli, D. Tetrahedron. 2003, 59, 10025.
    [30] Beltra'n, H. I.; Esquive, R.; Sosa-Sa'nchez, A.; Sosa-Sa'nchez, J. L.; Ho¨pfl, H.; Barba, V; Farfan, N.; Garcia, M. G; Olivares-Xometl, O.; Zamudio-Rivera, L. S. Inorg. Chem. 2004,43, 3555.
    
    [31] H. M. Ding, S. Y. Wang, and S. Q. Xi; J. Mol. Struct., 1999,475, 175-180
    [32] X. Gong, H. Xiao, H.Tian; J. Mol. Struct. (Theochem) ,2002,593, 93-100.
    [33] M. Liao, T. Kar, S. M. Gorun, S. Scheiner; Inorg. Chem. 2004,43, 7151 -7161.
    [34] P. N. Day, Z. Q. Wang and R. Pachter; J. Mol. Struct. (Theochem), 1998, 455, 33-50.
    [35] N. Ishikawa, T. lino, Y. Kaizu; J. Am. Chem. Soc, 2002, 124 (38), 11440 -11447.
    [36] L. Petit, C. Adamo, N. Russo; J. Phys. Chem. B, 2005, 109 (24), 12214 -12221.
    [37] S. Griveau, F. Bedioui, C. Adamo; J. Phys. Chem. A. 2001, 105 (50), 11304-11311.
    [38] Bian, Y; Wang, R.; Jiang, J.; Lee, C.-H.; Wang, J.; Ng, D. K. P. Chem. Commun. 2003, 1194.
    [39] Bian, Y.; Wang, R.; Wang, D.; Zhu, P.; Li, R; Dou, J.; Liu, W.; Choi, C.-F.; Chan, H.-S.; Ma., C.; Ng, D. K. P.; Jiang, J. HelV. Chim. Acta. 2004,87,2581.
    [40] Bian, Y; Li, L.; Wang, D.; Choi, C.-F.; Cheng, D. Y Y; Zhu, P.; Li, R; Dou, J., Wang, R.; Pan, N.; Ma, C.; Ng, D. K. P.; Kobayashi, N.; Jiang, J. Eur. J. Inorg. Chem., 2005, 2612-2618.
    [41] Hay, P. J.; Wadt, W. R. J. Chem. Phys. 1985, 82, 299.
    [42] Dunning Jr., T. H.; Hay, P. J. in Modern Theoretical Chemistry, Schaefer, H. F. III Ed.: Plenum; New York, 1976; vol. 3, pp. 1.
    [43]Tian,W.Q.;Ge,M.;Gu,F.L.L.;Yamada,T.;Aoki,Y.J.Phys.Chem.A 2006,110,6285.
    [44]Ukei,K.Acta Crystallogr.1973,B29,2290.
    [45]Ukei,K.J.Phys.Soc.Jpn.1976,40,140.
    [46]Iyechika,Y;Yakushi,K.;Ikemoto,I.;Kuroda,H.Acta Crystallogr.1982,B38,766.
    [47]Przyborowski,F.;Hamann,C.Cryst.Res.Technol.1982,17,1041.
    [48]Bluhm,T.L.;Wagner,H.J.;Loutfy.R.O.J.Mater.Sci.Lett.1983,2,85.
    [49]Bian,Y.;Li,L.;Dou,J.;Cheng,D.Y.Y.;Li,R.;Ma,C.;Ng,D.K.P.;Jiang,J.Inorg.Chem.2004,43,7539-7544.
    [50]Burnham,P.M.;Cook,M.J.;Gerrard,L.A.;Heeney,M.J.;Hughes,D.L.Chem.Commun.2003,2064.
    [51]V.Myakov,V.Chudakova and M.Lopatin J.Porphyrins Phthalocyanines 2001;5:617-620.
    [52]S.Maree,D.Phillips and T.Nyokong,J.Porphyrins Phthalocyanines 2002,06,017-025.
    [53]T.Kobayashi,C.Furukawa,T.Ogawa and S.Isoda;J.Porphyrins Phthalocyanines,1997,01,297-304.
    [54]Bennett W.E.,Broberg D.E.,Baenziger N.C.Crystal structure of stannic phthalocyanine,an eight-coordinated tin complex[J]Inorg.Chem.,1973,12,930-936.
    [55]Kirin I.S.,Moskalev P.N.,Makashev Yu.A.Formation of phthalocyanines of rare-earth elements[J]Russ.J.Inorg.Chem.1965,10,1065.
    [56](a) Komatsu,T.;Ohta,K.;Fujimoto,T.;Yamamoto,I.J.Mater.Chem.1994,4,533.
    (b) Jones,R.;Krier,A.;Davidson,K.Thin SolidFilms 1997,298,228.
    [57](a) Madru,M.;Guillaud,G;Al Sadoun,M.;Maitrot,M.;Clarisse,C.;Le Contellec,M;Andre,J.-J.;Simon,J.Chem.Phys.Lett.1987,142,103.(b) Madru, R.; Guillaud, G.; Al Sadoun, M, Maitrot, M.; Andre, J.-J.; Simon, J.; Even, R. Chem. Phys. Lett. 1988,145, 343.
    (c) Clarisse, C.; Riou, M. T ; Gauneau, M; Le Contellec, M. Electron. Lett. 1988, 24, 674.
    (d) Guillaud, G.; Al Sadoun, M.; Maitrot, M.; Simon, J.; Bouvet, M. Chem. Phys. Lett. 1990, 167, 503-506.
    [58] (a) Souto, J.; Rodriguez, M. L.; Desaja, J. A.; Aroca, R. Int. J. Electron. 1994, 76, 763.
    (b) Bassoul, P.; Toupance, T.; Simon, J. Sens. Actuators B 1995, 26-27, 150.
    (c) Rickwood, K. R.; Lovett, D. R.; Lukas, B.; Silver, J. J. Mater. Chem. 1995, J, 725.
     (d) Liang, B ; Yuan, C.; Wei, Y.; Zhang, Y ; Jiang, D.; Zhang, S.; Lu, A. Synth. Met. 1997, 88, 219.
    (e) Alvarez, J.; Souto, J.; Rodriguez-Mendez, M. L.; de Saja, J. A. Sens. Actuators B 1998, 48,339.
    [59] M. Guena, Wu, Z. Y.; L'Her, M.; Pondaven, A.; Cadiou, C. Appl. Phys. Lett. 1998, 72, 765.
    [60] Konami, H.; Hatano, M.; Kobayashi, N., Osa, T. Chem. Phys. Lett. 1990, 165, 397.
    [61] Buchler, J. W.; Hammerschmitt, P.; Kaufeld, I.; Loftier, J. Chem. Ber. 1991,124,2151.
    [62] Chabach, D; Tahiri, M.; De Cian, A.; Fischer, J.; Weiss, R.; El Malouli Bibout, M. J. Am. Chem. Soc. 1995, 117, 8548.
    [63] Guilard, R.; Barbe, J.-M.; Ibnlfassi, A., Zrineh, A., Adamian, V. A., Kadish, K. M. Inorg. Chem. 1995, 34, 1472.
    [64] Buchler, J. W.; Scharbert, B.; J. Am. Chem. Soc. 1988,110, 4272.
    [65] (a) Ishikawa, N.; Ohno, O.; Kaizu, Y.; Kobayashi, H J. Phys. Chem. 1992, 96, 8832.
    (b) Ishikawa, N.; Ohno, O.; Kaizu, Y. J. Phys. Chem. 1993, 97, 1004.
    (c) Ishikawa, N.; Kaizu, Y. J. Phys. Chem. A. 2000, 104, 10009
    (d) Ishikawa, N.; Sugita, M.; Okubo, T.; Tanaka, N.; lino, T.; Kaizu, Y. Inorg. Chem. 2003, 42, 2440.
    (e) Ishikawa, N. J. Porphyrins Phthalocyanines 2001, 5, 87
    [66] Lee, C.; Yang, W.; Parr, R.G. Phys. Rev. B 1988,37,785.
    [67] (a) R. Wang, R. Li, Y. Li, X. Zhang, P. Zhu, P.-C. Lo, D. K. P. Ng, N. Pan, C. Ma, N. Kobayashi, J. Jiang, Chem. Eur. J. 2006, 12, 1475-1485.
    b) J. Jiang, K. Kasuga, D. P. Arnold, in Supramolecular Photosensitive and Electroactive Materials (Ed.: H. S. Nalwa), Academic Press, New York, 2001, chapter 2, pp. 113-210,
    c) D. K. P. Ng, J. Jiang, Chem. Soc. Rev. 1997, 26, 433-442;
    d) J. Jiang, W. Liu, D. P. Arnold, J. Porphyrins Phthalocyanines 2003,7,459-473.
    [68] a) W. Liu, J. Jiang, D. Du, D. P. Arnold, Aust. J. Chem. 2000, 53,131-136;
    b) J. W. Buchler, B. Scharbert, U. Englert, J. StrYhle, Chem. Ber. 1988,121, 2077-2082;
    c) G. A. Spyroulias, A. G. Coutsolelos, C. P. Raptopoulou, A. Terzis, Inorg. Chem. 1995, 34, 2476-2479;
    d) G. A. Spyroulias, C. P. Raptopoulou, D. de Montauzon, A. Mari, R. Poilblanc, A. Terzis, A. G. Coutsolelos, Inorg. Chem. 1999, 38, 1683-1696;
    e) J.-H. Agondanou, G. A. Spyroulias, J. Purans, G. Tsikalas, C. Souleau, A. G. Coutsolelos, S. Benazeth, Inorg. Chem. 2001, 40, 6088-6096;
    f) G. A. Spyroulias, A. G. Coutsolelos, Inorg. Chem. 1996, 35, 1382-1385;
    g) J. Jiang, W. Liu, X. Sun,
    D. K. P. Ng, Chem. Res. Chin. Univ. 2001, 17, 134-142,
    h) F. Lu, X. Sun, R. Li, D. Liang, P. Zhu, X. Zhang, C.-F. Choi, D. K. P. Ng, T. Fukuda, N. Kobayashi, J. Jiang, New J . Chem. 2004,28, 1116-1122.
    [69] (a) G. Ostendorp, H. Homborg, Z. Anorg. Allg. Chem. 1996, 622, 873-880;
    b) G. Ostendorp, H. Homborg, Z. Anorg. Allg. Chem. 1996, 622, 1358-1364;
    c) J. Jiang, W Liu, J Lin, D.K.P. Ng, Huaxue Tongbao 1997, 7, 14-19;
    d) Y Zhang, X. Cai, Y. Zhou, X. Zhang, H. Xu, Z. Liu, X. Li, J. Jiang, J. Phys. Chem. A 2007, 111, 392-400.
    [70] (a) J. Jiang, R. C. W. Liu, T. C. W. Mak, T. D. W. Chan, D. K. P. Ng, Polyhedron 1997, 16, 515-520;
    b) J. Jiang, J. Xie, D. K. P. Ng, Y. Yan, Mol. Cryst. Liq.Cryst. 1999, 337-385;
    c) J Jiang, J. Xie, M.T. M. Choi, S. Sun, D.K P. Ng, J. Porphyrins Phthalocyanines 1999, 3, 322-328.
    [71]J.Jiang,W.Liu,W.-F.Law,J.Lin,D.K.P.Ng,Inorg.Chim.Acta 1998,268,49-53.
    [72]J.W.Buchler,J.H(u|¨)ttermann,J.L(o|¨)ffler,Bull.Chem.Soc.Jpn.1988,61,71-77.
    [73]Tsumura,A.;Koezuka,H.;Ando,T.Appl.Phys.Lett.1986,49,1210-1212.
    [74](a) Dimitrakopoulos,C.D.;Malenfant,P.R.L.Adv.Mater.2002,14,99-117.
    (b) Horowitz,G.Adv.Mater 1998,10,365-377.
    [75](a) Su,W.;Jiang,J.;Xiao,K.;Chen,Y.;Zhao,Q.;Yu,G.;Liu,Y.Langmuir 2005,21,6527-6531.
    (b) Chen,Y.;Su,W.;Bai,M.;Jiang,J.:,Li,X.;Liu,Y.;Wang,L.;Wang,S.J.Am.Chem.Soc.2005,127,15700-15701.
    (c) Chen,Y.;Li,R.;Wang,R.;Ma,P.;Dong,S.;Gao,Y.;Li,X.;Jiang,J.Langmuir 2007,23,12549-12554.
    (d) Li,R.;Ma,P.;Dong,S.;Zhang,X.;Chen,Y.;Li,X.;Jiang,J.Inorg.Chem.2007,46,11397-11404.
    [76]For example:(a) Okamoto,T.;Senatore,M.L.;Ling,M M.;Mallik,A.B,;Tang,M.L.;Bao,Z.Adv.Mater 2007,19,3381-3384.
    (b) Gao,X.;Wang,Y.;Yang,X.;Liu,Y.;Qiu,W.;Wu,W;Zhang,H.;Qi,T.;Liu,Y.;Lu,K.;Du,C.;Shuai,Z.;Yu,G.;Zhu,D.Adv.Mater 2007,19,3037-3042.
    (c)Kunugi,Y.;Takimiya,K.;Yamane,K.;Yamashita,K.;Aso,Y.;Otsubo,T.Chem.Mater 2003,15,6-7.
    (d) Meng,H.;Zheng,J.;Lovinger,A.J.;Wang,B.C.;Patten,P.G.V.;Bao,Z.Chem.Mater.2003,15,1778-1787.
    [1]Mckeown,N.B.Phthalocyanine Materials:Synthesis,Structure and Function;Cambridge University Press:Cambridge,England,1998.
    [2]Lever,A.B.P.;Leznoff,C.C.Phthalocyanine:Properties and Applications; VCH:New York,1989-1996;Vols.1-4.
    [3]Kadish,K.M.;Smith,K.M.;Guilard,R.The Porphyrin Handbook;Academic Press:San Diego,CA,2000-2003;Vols.1-20.
    [4]Gregory,P.High-Technology Applications of Organic Colorants;Plenum Press:New York,1991.
    [5]Gregory,P.J.Porphyrins Phthaiocyanines 2000,4,432.
    [6]Ao,R.;Kilmmert,L.;Haarer,D.Adv.Mater 1995,7,495.
    [7]Birkett,D.Chem.Ind.2000,178.
    [8]Moser,F.H.;Thomas,A.L.The Phthalocyanines;Vols.1 and 2,Manufacture and Applications;CRC Press:Boca Raton,FL,1983.
    [9]Wohrle,D.;Meissner,D.Adv.Mater 1991,3,129.
    [10]Eichhorn,H.J.Porphyrins Phthalocyanines.2000,4,88.
    [11]Wright,J.D.Prog.Surf.Sci.1989,31,1.
    [12]Snow,A.W.;Barger,W.R.In Phthalocyanines:Properties and Applications,Leznoff,C C.,Lever,A.B.P.,Eds.;VCH:New York,1989;pp 341-392.
    [13]Nalwa,H.S.;Shirk,J.S.In Phthalocyanines:Properties and Applications;Leznoff,C.C.,Lever,A.B.P.,Eds.;VCH:New York,1996;pp 79-182.
    [14]Shirk,J.S.;Pong,R.G S.;Flora,S.R.;Heckmann,H.;Hanack,M J.Phys.Chem.2000,104,1438.
    [15]de la Torre,G;Vazquez,P.;AgulloloPez,F.;Torres,T.J.Mater Chem.1998,8,1671.
    [16]LukCentyanets,E.A.J.Porphyrins Phthalocyanines.1999,3,424.
    [17]H.Hasrar,H.;van Lier,J.E.Chem.Rev.1999,99,2379.
    [18]Cosomelli,B.;Roncuccin,G.;Dei,D.;Fantetti,L.;Ferroin,F.;Ricci,M.;Spinelli,D.Tetrahedron.2003,59,10025.
    [19]Beltran,H.I.;Esquive,R.;Sosa-Sanchez,A.;Sosa-Sanchez,J.L.;H(o|¨)pfl,H.;Barba,V.;Farfan,N.;Garcia,M.G;Olivares-Xometl,O.;Zamudio-Rivera,L.S.Inorg.Chem.2004,43,3555.
    [20]Bian,Y.;Wang,R.;Jiang,J.;Lee,C.-H.;Wang,J.;Ng,D.K.R Chem.Commun.2003,1194.
    [21]Bian,Y.;Wang,R.;Wang,D.;Zhu,P;Li,R.;Dou,J.;Liu,W.;Choi,C.-F.;Chan,H.-S.;Ma.,C.;Ng,D.K.P.;Jiang,J.Helv.Chim.Acta,2004,87,2581.
    [22]Bian,Y.;Li,L.;Wang,D.;Choi,C.-F.;Cheng,D.Y.Y.;Zhu,P.;Li,R.;Dou,J.;Wang,R.;Pan,N.;Ma,C.;Ng,D.K.P;Kobayashi,N.;Jiang,J.Eur J.Inorg.Chem.,2005,2612-2618.
    [23]Ukei,K.Acta Crystallogr.1973,B29,2290.
    [24]Ukei,K.J.Phys.Soc.Jpn.1976,40,140.
    [25]Iyechika,Y.;Yakushi,K.;Ikemoto,I.;Kuroda,H.Acta Crystallogr.1982,B38,766.
    [26]Przyborowski,F.;Hamann,C.Cryst.Res.Technol.1982,17,1041.
    [27]Bluhm,T.L.;Wagner,H.J.;Loutfy.R.O.J.Mater Sci.Lett.1983,2,85.
    [28]Bian,Y.;Li,L.;Dou,J.;Cheng,D.Y.Y.;Li,R.;Ma,C.;Ng,D.K.P;Jiang,J.Inorg.Chem.2004,43,7539-7544.
    [29]Burnham,P.M.;Cook,M.J.;Gerrard,L.A.;Heeney,M.J.;Hughes,D.L.Chem.Commun.2003,2064.
    [30]Ding,H.M.;Wang,S.Y.and Xi,S.Q.J Mol.Struct.,1999,475,175-180.
    [31]Gong,X.;Xiao,H.;Tian,H.J.Mol.Struct.(Theochem),2002,593,93-100.
    [32]Liao,M.;Kar,T.;Gorun,S.M.;Scheiner,S.Inorg.Chem.2004,43,7151-7161.
    [33]Day,P.N.;Wang,Z.Q.and Pachter,R.J.Mol.Struct.(Theochem),1998,455,33-50.
    [34]Peng,C.;Ayala,P.Y,;Schlegel,H.B.and Frisch,M.J.J.Comp.Chem.,1996,17,49.
    [35]NIST Computational Chemistry Comparison and Benchmark Database,NIST Standard Reference Database Number 101 Release 10,May 2004, Editor:Russell D.Johnson Ⅲ http://srdata.nist.gov/cccbdb.
    [36]Gaussian 03,Revision B.05;Frisch,M.J.;et al.;Gaussian,Inc.,Pittsburgh PA,2003.
    [37]Sakata,M;Sumimoto,M.;Gushima,M;Fujimoto,H.and Matsuzaki,S.Solid State Commun.,2002,121,363-366.
    [38]Ukei,K.Acta Crystallogr.,Sect.B:Struct.Crystallogr.Cryst.Chem.1973,B29,2290.
    [39]lyechika,K.;Yakushi,Y.;Ikemoto,I.and Kuroda,H.Acta Crystallogr.,Sect.B:Struct.Crystallogr.Cryst.Chem.1982,B38,766.
    [40]Papageorgiou,N.;Ferro,Y.;Salomon,E.;Allouche,A.and Layet,J.M.Phys.Rev.B,2003,68,235105.
    [41]Zhang,X.;Zhang,Y.and Jiang,J.Spectrochimica Acta Part A,2004,60,2195-2200.
    [42]Rauhut,G;Pulay,P.J.Phys.Chem.,1995,99,3093.
    [43]Kovaes,A.;Izvekov,V.;Keresztury,G;Pongor,G.Chemical Physics,1995,238,231-243.
    [44]Gong,X.;Xiao,H.and Tian,H.Int.J.Quantum Chem.,2002,86,531-540.
    [45]Thomas,S.R.Ⅲ;Pawel,M.K.;Christine,A.P.;Ranjit,K.;Marek,Z.Z.and Thomas,G.S.J.Phys.Chem.B,2000,104,5020-5034.
    [1]N.B.Mckeown;Phthalocyanine Materials:Synthesis,Structure and Function;Cambridge University Press:Cambridge,England,1998.
    [2]A.B.P.Lever,C.C.Leznoff;Phthalocyanine:Properties and Applications; VCH:New York,1989-1996;Vols.1-4.
    [3]K.M.Kadish,K.M.Smith,R.Guilard;The Porphyrin Handbook;Academic Press:San Diego,CA,2000-2003;Vols.1-20.
    [4]P.Gregory;High-Technology Applications of Organic Colorants;Plenum Press:New York,1991.
    [5]P.Gregory;J.Porphyrins Phthalocyanines,2000,4,432.
    [6]R.Ao,L.Kilmmert,D.Haarer;Adv,.Mater.,1995,7,495.
    [7]D.Birkett;Chem.Ind.2000,178.
    [8]F.H.Moser,A.L.Thomas;The Phthalocyanines;Vols.1 and 2,Manufacture and Applications;CRC Press:Boca Raton,FL,1983.
    [9]D.W(o|¨)hrle,D.Meissner;Adv.Mater.1991,3,129.
    [10]H.Eiehhorn;J.Porphyrins Phthalocyanines.2000,4,88.
    [11]J.D.Wright;Prog.Surf.Sci.1989,31,1.
    [12]A.W.Snow,W.R.Barger;In Phthalocyanines:Properties and Applications;C.C.Leznoff;A.B.P.Lever,Eds.;VCH:New York,1989;pp 341-392.
    [13]H.S.Nalwa,J.S.Shirk;In Phthalocyanines:Properties and Applications;C.C.Leznoff,A.B.P.Lever,Eds.;VCH:NewYork,1996;pp 79-182.
    [14]J.S.Shirk,R.G.S.Pong,S.R.Flom,H.Heckmann,M Hanack,J.Phys.Chem.A.2000,104,1438.
    [15]G.de la Torre,P.Vazquez,F.AgulloloPez,T.Torres;J.Mater.Chem.1998,8,1671.
    [16]E.A.LukCentyanets;J.Porphyrins Phthalocyanines 1999,3,424.
    [17]H.H.Hasrar,J.E.van Lier;Chem.Rev.1999,99,2379.
    [18]B.Cosomelli,G.Roncuccin,D.Dei,L.Fantetti,F.Ferroin,M.Ricci,D.Spinelli;Tetrahedron.2003,59,10025.
    [19]H.I.Beltran,R.Esquive,A.Sosa-Sanchez,J.L.Sosa-Sanchez,H.H(o|¨)pfl,V.Barba,N.Farfan,M.G.Garcia,O.Olivares-Xometl,L.S.Zamudio-Rivera;Inorg.Chem.2004,43,3555.
    [20]P.N.Day,Z.Q.Wang and R.Pachter;J.Mol.Struct,(Theochem),1998,455,33-50.
    [21]A.P.Pelliccioli,K.Henbest,G Kwag,T.R.Carvagno,M.E.Kenney,|and M A.J.Rodgers,J.Phys.Chem.A.2001,105,1757-1766.
    [22]M Hirasawa,Y.Sakazaki,H.Hane,T.Kobayashi,Chem.Phys.Lett.2004,392,390-395.
    [23]K.Ukei;Acta Crystallogr..Sect.B:Struct.Crystallogr.Cryst.Chem.1973,B29,2290.
    [24]K.Ukei;J.Phys.Soc.Jpn.1976,40,140.
    [25]K.Iyechika,Y.Yakushi,I.Ikemoto,and H.Kuroda;Acta Crystallogr,Sect.B:Struct.Crystallogr.Cryst.Chem.1982,B38,766.
    [26]F.Przyborowski,C.Hamann;Cryst.Res.Technol.1982,17,1041.
    [27]T.L.Bluhm,H.J.Wagner;R.O.Loutfy;J.Mater Sci.Lett.1983,2,85.
    [28]V.Myakov,V.Chudakova and M.Lopatin J.Porphyrins Phthalocyanines 2001;5:617-620.
    [29]S.Maree,D.Phillips and T.Nyokong,J.Porphyrins Phthalocyanines 2002,06,017-025.
    [30]T.Kobayashi,C.Furukawa,T.Ogawa and S.Isoda;J.Porphyrins Phthalocyanines,1997,01,297-304.
    [31]H.M.Ding,S.Y.Wang,and S.Q Xi;J.Mol.Struct.,1999,475,175-180.
    [32]X.Gong,H.Xiao,H.Tian;J.Mol.Struct.(Theochem),2002,593,93-100.
    [33]M Liao,T.Kar,S.M Gorun,S.Scheiner;Inorg.Chem.2004,43,7151-7161.
    [34]N.Ishikawa,T.Iino,Y.Kaizu;J.Am.Chem.Soc.,2002,124,11440-11447.
    [35]L.Petit,C.Adamo,N.Russo;J.Phys.Chem.B,2005,109,12214-12221.
    [36]S.Griveau,F.Bedioui,C.Adamo;J.Phys.Chem.A.2001,105,11304-11311.
    [37]A.D.Becke;J.Chem.Phys.1993,98,5648-5652.
    [38] T. H. Dunning Jr. and P. J. Hay, in Modern Theoretical Chemistry, Ed. H. F. Schaefer, III (Plenum, New York, 1976), vol. 3, 1.
    [39] P. J. Hay and W. R. Wadt; J. Chem. Phys. 1985, 82, 270.
    [40] W. R. Wadt and P. J. Hay; J. Chem. Phys. 1985, 82,284.
    [41] P. J. Hay and W. R. Wadt; J. Chem. Phys. 1985, 82, 299.
    [42] C. Peng, P. Y. Ayala, H. B. Schlegel, M. J. Frisch; J. Comput. Chem., 1996, 17,49.
    [43] A. E. Reed, L. A. Curtiss and F. Weinhold, Chem. Rev.,1988,88, 899.
    [44] Gaussian 03, Revision B.05, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, J. A. Montgomery, Jr., T. Vreven, K. N. Kudin, J. C. Burant, J. M. Millam, S. S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G. A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J. E. Knox, H. P. Hratchian, J. B. Cross, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, P. Y. Ayala, K. Morokuma, G. A. Voth, P. Salvador, J. J. Dannenberg, V. G. Zakrzewski, S. Dapprich, A. D. Daniels, M. C. Strain, O. Farkas, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. V. Ortiz, Q. Cui, A. G. Baboul, S. Clifford, J. Cioslowski, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, C. Gonzalez, and J. A. Pople, Gaussian, Inc., Pittsburgh PA, 2003.
    [45] NIST Computational Chemistry Comparison and Benchmark Database, NIST Standard Reference Database Number 101 Release 10, May 2004, Editor: Russell D. Johnson III http://srdata.nist.gov/cccbdb.
    [46] G. Rauhut, P. Pulay;J. Phys. Chem. 1995, 99, 3093
    [47] A. Kovacs, V. Izvekov, G. Keresztury, G. Pongor; Chem. Phys. 1998, 238, 231-243.
    [48]X.Gong,H.Xiao,H.Tian;Int.J.Quantum Chem.2002,86,531-540.
    [49]S.R.Ⅲ.Thomas,M.K.Pawel,A.P.Christine,K.Ranjit,Z.Z.Marek,G.S.Thomas;J.Phys.Chem.B.2000,104,5020-5034.
    [1]Lever,A.B.P.;Leznoff,C.C.Phthalocyanine:Properties and Applications;VCH:New York,1989-1996;Vols.1-4.
    [2]McKeown,N.B.Phthalocyanines Materials:Synthesis,Structure and Function;Cambridge University Press:New York,1998.
    [3]Kadish,K.M.;Smith,K.M.;Guilard,R.The Porphyrin Handbook;Academic Press:San Diego,2000-2003;Vols.1-20.York,2001;Chapter 2,pp 113-210.
    [4]Gregory,P.High-Technology Applications of Organic Colorants;Plenum Press:New York,1991.
    [5]Gregory,P.J Porphyrins Phthalocyanines 2000,4,432-437.
    [6]Ao,R.;Kilmmert,L.;Haarer,D.Adv Mater 1995,7,495-499.
    [7]Birkett,D.Chem Ind 2000,178-181.
    [8]Moser,F.H.;Thomas,A.L.The Phthalocyanines;CRC Press:Boca Raton,FL,1983;Vols.1 and 2,Manufacture and Applications.
    [9]W(o|¨)hrle,D.;Meissner,D.Adv Mater 1991,3,129-138.
    [10]Eichhorn,H.J Porphyrins Phthalocyanines 2000,4,88-102.
    [11]Wright,J.D.Prog Surf Sci 1989,31,1-60.
    [12]Snow,A.W.;Barger,W.R.In Phthalocyanines:Properties and Applications;Eds:Leznoff,C.C.;Lever,A.B.P.;VCH:New York,1989;pp 341-392.
    [13]Nalwa,H.S.;Shirk,J.S.In Phthalocyanines:Properties and Applications;Eds:Leznoff,C.C.;Lever,A.B.P.;VCH:New York,1996;pp 79-182.
    [14]Shirk,J.S.;Pong,R.G.S.;Flom,S.R.;Heckmann,H.;Hanack,M.J Phys Chem A 2000,104,1438-1449.
    [15]de la Torre,G.;Vazquez,P.;Agullo-LoPez,F.;Torres,T.J Mater Chem 1998,8,1671-1683.
    [16]Lukyanets,E.A.J Porphyrins Phthalocyanines 1999,3,424-432.
    [17]Hasrar,H.H.;van Lier,J.E.Chem Rev 1999,99,2379-2450.
    [18]Cosomelli,B.;Roncuccin,G.;Dei,D.;Fantetti,L.;Ferroin,F.;Ricci,M.;Spinelli,D.Tetrahedron 2003,59,10025-10030.
    [19]Beltran,H.I.;Esquive,R.;Sosa-Sanchez,A.;Sosa-Sanchez,J.L.;H(o|¨)pfl,H;Barba,V.;Farfan,N.;Garcia,M.G.;Olivares-Xometl,O.;Zamudio-Rivera,L.S.Inorg Chem 2004,43,3555-3557.
    [20]Myakov,V.;Chudakova,V.;Lopatin,M.J Porphyrins Phthalocyanines 2001,5,617-620.
    [21]Maree,S.;Phillips,D.;Nyokong,T.J Porphyrins Phthalocyanines 2002,6,17-25.
    [22]Kobayashi,T.;Furukawa,C.;Ogawa,T.;Isoda,S.J Porphyrins Phthalocyanines 1997,1,297-304.
    [23]Zhang,Y.X.;Zhang,X.X.;Liu,Z.Q.;Bian,Y.Z.;Jiang,J.Z.J Phys Chem A 2005,109,6363-6370.
    [24]Zhang,Y.X.;Zhang,X.X.;Liu,Z.Q.;Xu,H.;Jiang,J.Z.Vib Spectrosc 2006,40,289-298.
    [25]Zhang,X.X.;Bao,M.;Pan,N.;Zhang,Y.X.;Jiang,J.Z.Chin J Chem 2004,22,325-332.
    [26]Zhang,X.X.;Zhang,Y.X.;Jiang,J.Z.Vib Spectrosc 2003,33,153-161.
    [27]Zhang,X.X.;Zhang,Y.X.;Jiang,J.Z.Spectrochim Acta A 2004,60,2195-2200.
    [28]Zhang,X.X.;Zhang,Y.X.;Jiang,J.Z.J Mol Struc-Theochem 2004,673,103-108.
    [29]Nguyen,K.N.;Pachter,R.J Chem Phys 2001,114,10757-10767.
    [30]Rosa,A.;Ricciardi,G.;Baerends,E.J.;van Gisbergen,S.J.A.J Phys Chem A 2001,105,3311-3327.
    [31]Ricciardi,G.;Rosa,A.;Baerends,E.J.J Phys Chem A 2001,105,5242-5254.
    [32]Liao,M.-S.;Scheiner,S.J Chem Phys 2001,114,9780-9791.
    [33]Petit,L.;Adamo,C.;Russo,N.J Phys Chem B 2005,109,12214-12221.
    [34]Stratmann,R.E.;Scuseria,G E.;Frisch,M.J.J Chem Phys 1998,109,8218-8224.
    [35]Bauernschmitt,R.;Ahlrichs,R.Chem Phys Lett 1996,256,454-464.
    [36]Casida,M.E.;Jamorski,C.;Casida,K.C.;Salahub,D.R.J Chem Phys 1998,108,4439-4449.
    [37]Becke,A.D.J Chem Phys 1993,98,5648-5652.
    [38]Dunning Jr.,T.H.;Hay,P.J.In Modern Theoretical Chemistry;Ed:Schaefer,H.F.;Ⅲ;Plenum:New York,1976;vol.3,1.
    [39]Hay,P.J.;Wadt,W.R.J Chem Phys 1985,82,270-283.
    [40]Wadt,W.R.;Hay,P.J.J Chem Phys 1985,82,284-298.
    [41]Hay,P.J.;Wadt,W.R.J Chem Phys 1985,82,299-310.
    [42]Cances,M.T.;Mennucci,B.;Tomasi,J.J Chem Phys 1997,107,3210-3221.
    [43]Frisch,M J.;Trucks,G.W.;Schlegel,H.B.;Scuseria,G.E.;Robb,M.A.;Cheeseman,J.R.;Montgomery,J.A.,Jr.;Vreven,T.;Kudin,K.N.;Burant,J.C.;Millam,J.M;lyengar,S.S.;Tomasi,J.;Barone,V.;Mennucci,B.;Cossi,M.;Scalmani,G;Rega,N.;Petersson,G.A.;Nakatsuji,H.;Hada,M.;Ehara,M.;Toyota,K.;Fukuda,R.;Hasegawa,J.;Ishida,M;Nakajima,T.;Honda,Y.;Kitao,O.;Nakai,H.;Klene,M.;Li,X.;Knox,J.E.;Hratchian,H.P.;Cross,J.B.;Adamo,C.;Jaramillo,J.;Gomperts,R.;Stratmann,R.E.;Yazyev,O.;Austin,A.J.;Cammi,R.;Pomelli,C.;Ochterski,J.W.;Ayala,P.Y;Morokuma,K.;Voth,G A.;Salvador,P;Dannenberg,J.J.;Zakrzewski,V.G;Dapprich,S.;Daniels,A.D.;Strain,M.C;Farkas,O.;Malick,D.K.;Rabuck,A.D.;Raghavachari,K.;Foresman,J.B.;Ortiz,J.V.;Cui,Q.;Baboul,A.G;Clifford,S.;Cioslowski,J.;Stefanov,B.B.;Liu,G;Liashenko,A;Piskorz,P.;Komaromi,I.;Martin,R.L.;Fox,D.J.;Keith,T.;Al-Laham,M.A.;Peng,C.Y.;Nanayakkara,A.;Challacombe,M.;Gill,P.M. W.;Johnson,B.;Chen,W.;Wong,M.W.;Gonzalez,C.;Pople,J.A.Gaussian 03,Revision B.05;Gaussian,Inc.:Pittsburgh,PA,2003.
    [44]Ley,M.;Ph.D.Thesis;University of Provence,France,1987.
    [45]Ricciardi,G;Rosa,A.;Baerends,E.J.J Phys Chem A 2001,105,5242-5254.
    [46]Salomon,E.;Papageorgiou,N.;Ferro,Y.;Layet,J.M.Thin Solid Films 2004,466,259-264.
    [47]Mohan Kumar,T.M.;Achar,B.N.J Organomet Chem 2006,691,331-336.
    [48]Agar,E;Sasmaz,S.;G(u|¨)mr(u|¨)kc(u|¨)oglu,I.E.;(O|¨)zdemir,M.Dyes and Pigments 1998,36,407-417.
    [1](a) Leznoff,C.C.;Lever,A.B.P.Phthalocyanine:Properties and Applications;VCH:New York,1989-1996;Vols.1-4.
    (b) McKeown,N.B.Phthalocyanines Materials:Synthesis,Structure and Function;Cambridge University Press:New York,1998.
    (c) Kadish,K.M.;Smith,K M.;Guilard,R.The Porphyrin Handbook;Academic Press:San Diego,2000-2003;Vols.1-20.
    [2]Jiang,J.;Kasuga,K.;Arnold,D.P.In Supramolecular Photosensitive and Electroactive Materials;Nalwa,H.S.,Ed.;Academic Press:New York,2001;Chapter 2,pp 113-210.
    [3]Ng,D.K.P.;Jiang,J.Chem.Soc.Rev.1997,26,433.
    [4](a) Komatsu,T.;Ohta,K.;Fujimoto,T.;Yamamoto,I.J.Mater Chem.1994,4,533.
    (b) Jones,R.;Krier,A.;Davidson,K.Thin Solid Films 1997,298,228.
    [5](a) Madru,M.;Guillaud,G.;AI Sadoun,M.;Maitrot,M.;Clarisse,C.;Le Contellec,M.;Andre,J.-J.;Simon,J.Chem.Phys.Lett.1987,142,103.
    (b)Madru,R.;Guillaud,G.;Al Sadoun,M.;Maitrot,M.;Andre,J.-J.;Simon,J.;Even,R.Chem.Phys.Lett.1988,145,343.
    (c) Clarisse,C.;Riou,M.T.;Gauneau,M.;Le Contellec,M Electron.Lett.1988,24,674.
    (d) Guillaud,G.;Al Sadoun,M.;Maitrot,M.;Simon,J.;Bouvet,M.Chem.Phys.Lett.1990,167,503.
    [6](a) Souto,J.;Rodriguez,M.L.;Desaja,J.A.;Aroca,R.Int.J.Electron.1994,76,763.
    (b) Bassoul,P.;Toupance,T.;Simon,J.Sens.Actuators B 1995,26-27,150.
    (c) Rickwood,K.R.;Lovett,D.R.;Lukas,B.;Silver,J.J.Mater.Chem.1995,5,725.
    (d) Liang,B.;Yuan,C.;Wei,Y.;Zhang,Y.;Jiang,D.;Zhang,S.;Lu,A.Synth.Met.1997,88,219.
    (e) Alvarez,J.;Souto,J.;Rodriguez-Mendez,M.L.;de Saja,J.A.Sens.Actuators B 1998,48,339.
    [7]M Guena,Wu,Z.Y.;L'Her,M;Pondaven,A.;Cadiou,C.Appi.Phys.Lett.1998,72,765,
    [8]Konami,H.;Hatano,M.;Kobayashi,N.;Osa,T.Chem.Phys.Lett.1990,165,397.
    [9]Buchler,J.W.;Hammerschmitt,P.;Kaufeld,I.;Loftier,J.Chem.Bet,1991.124,2151.
    [10]Chabach,D.;Tahiti,M.;De Cian,A.;Fischer,J.;Weiss,R.;El Malouli Bibout,M.J.Am.Chem.Soc.1995,117,8548.
    [11]Guilard,R.;Barbe,J.-M.;Ibnlfassi,A.;Zrineh,A.;Adamian,V.A.;Kadish,K.M.Inorg.Chem.1995,34,1472.
    [12]Buchler,J.W.;Scharbert,B.;J.Am.Chem.Soc.1988,110,4272.
    [13](a) lshikawa,N.;Ohno,O.:Kaizu,Y.;Kobayashi,H.J.Phys.Chem.1992,96,8832.
    (b) Ishikawa,N.;Ohno,O.;Kaizu,Y.J.Phys.Chem.1993,97,1004.
    (c) Ishikawa,N;Kaizu,Y.J.Phys.Chem.A.2000,104,10009.
    (d)Ishikawa,N.;Sugita,M.;Okubo,T.;Tanaka,N.;Iino,T.;Kaizu,Y.lnorg.Chem.2003,42,2440.
    (e) lshikawa,N.J.Porphyrins Phthalocyanines 2001, 5,87.
    [14] Lee, C.; Yang, W.; Parr, R.G. Phys. Rev. B 1988, 37, 785.
    [15] Becke, A. D. J. Chem. Phys. 1993, 98, 5648.
    [16] (a) Gong, X.; Xiao, H.; Tian, H. J. Mol. Struc. (Theochem) 2002, 593, 93.
    (b) Liao, M.; Kar, T.; Gorun, S. M.; Scheiner, S. Inorg. Chem. 2004, 43, 7151.
    (c) Day, P. N.; Wang, Z. Q.; Pachter, R. J. Mol. Struct. (Theochem) 1998, 455, 33.
    [17] (a) Zhang, Y.; Zhang, X.; Liu, Z.; Bian, Y.; Jiang, J. J. Phys. Chem. A 2005, 109, 6363.
    (b) Zhang, Y; Zhang, X.; Liu, Z ; Xu, H.; Jiang, J. Vib. Spectro. 2006, 40, 289.
    [18] Petit, L.; Adamo, C.; Russo, N. J. Phys. Chem. B 2005,109, 12214.
    [19] Liu, X.; Xu, L. C.; He, T. J.; Chen, D. M.; Liu, F. C. Chem. Phys. Lett. 2003, 579,517.
    [20] Hay, P. J.; Wadt, W. R. J. Chem. Phys. 1985, 82,299.
    [21] Dunning Jr., T. H ; Hay, P. J. in Modern Theoretical Chemistry, Schaefer, H. F. III Ed.: Plenum; New York, 1976; vol. 3, pp. 1.
    [22] Tian, W. Q; Ge, M.; Gu, F. L.L., Yamada, T.; Aoki, Y. J. Phys. Chem. A 2006,110, 6285.
    [23] Paillaud, J. L., Drillon, M.; decian, A.; Fisher, J.; Weiss, R.; Poinsot, R.; Herr, A. Physica B 1991,175, 337.
    [24] Peng, C.; Ayala, P. Y; Schlegel, H. B.; Frisch, M. J. J. Comput. Chem. 1996, 17,49.
    [25] NIST Computational Chemistry Comparison and Benchmark Database, NIST Standard Reference Database Number 101 Release 10, May 2004, Editor: Russell D. Johnson III http://srdata.nist.gov/cccbdb.
    [26] Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Montgomery, J. A., Jr.; Vreven, T; Kudin, K. N.; Burant, J. C.; Millam, J. M.; Iyengar, S. S ; Tomasi, J.; Barone, V; Mennucci, B.; Cossi, M.; Scalmani, G; Rega, N ; Petersson, G. A.; Nakatsuji, H.; Hada, M.; Ehara, M.; Toyota, K., Fukuda, R; Hasegawa, J.; Ishida, M.; Nakajima, T; Honda, Y.; Kitao, O.; Nakai, H.; Klene, M.; Li, X.; Knox, J. E.; Hratchian, H. P.; Cross, J. B; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W; Ayala, P. Y; Morokuma, K.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Zakrzewski, V. G.; Dapprich, S.; Daniels, A. D.; Strain, M. C.; Farkas, O.; Malick, D. K.; Rabuck, A. D.; Raghavachan, K.; Foresman, J. B.; Ortiz, J. V; Cui, Q.; Baboul, A. G.; Clifford, S.; Cioslowski,J.; Stefanov, B. B.; Liu, G; Liashenko, A.; Piskorz, P.; Komaromi, I.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y; Nanayakkara, A.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Gonzalez, C.; Pople, J. A. Gaussian 03, Revision B.05; Gaussian, Inc.: Pittsburgh, PA, 2003.
    [27] Huckstadt, H.; Tuta, A.; Goldner, M.; Cornelissen, U.; Homborg, H. Z. Anorg. Allg. Chem. 2001, 627, 485.
    [28] Ostendorp, G.; Homborg, H. Z Naturforsch. B 1995,50, 1200.
    [29] Haghighi, M. S., Franken, A.; Homborg, H. Z Naturforsch. B 1994, 49, 812.
    [30] Zhu, P.; Lu, F.; Pan, N.; Arnold, D. P.; Zhang, S.; Jiang, J. Eur. J. Inorg. Chem. 2004, 510.
    [31] Kobayashi,N. Coordin. Chem. Rev. 2002,227, 129.
    [32] (a) Jiang, J.; Arnold, D. P.; Yu, H. Polyhedron 1999, 18, 2129.
    (b) Lu, F.; Bao, M; Ma, C.; Zhang, X.; Arnold, D. P.; Jiang, J. Spectrochimica Acta Part A 2003, 59, 3273.
    (c) Jiang, J.; Bao, M.; Rintoul, L.; Arnold, D. P. Coord. Chem. Rev. 2006, 250, 424.
    [33] Kadish, K. M.; Moninot, G.; Hu, Y; Dubois, D.; Ibnlfassi, A.; Barbe, J. -M.; Guilard, R. J. Am. Chem. Soc. 1993, 115, 8153.
    [34] (a) Jiang, J.; Rintoul, L; Arnold, D. P. Polyhedron 2000, 19, 1381.
    (b) Bao, M.; Wang, R.; Rintoul, L., Liu, Q., Arnold, D. P.; Ma, C.; Jiang, J. Polyhedron 2006, 25, 1195.
    [1](a) C.C.Leznoff,A.B.P.Lever,Phthalocyanine:Properties and Applications;VCH:New York,1959-199ti;Vols.1-4;
    b) N.B.McKeown,Phthalocyanines Materials." Synthesis,Structure and Function;Cambridge University Press:New York,1998;
    c) K.M.Kadish,K.M.Smith,R.Guilard,The Porphyrin Handbook;Academic Press:San Diego,2000-2003;Vols.1-20.
    [2](a) K T.omatsu,K.Ohta,T.Fujimoto,I.Yamamoto,J.Mater Chem.1994,4,533;
    b) R.Jones,A.Krier,K.Davidson,Thin Solid Films 1997,298,228.
    [3]a) M.Madru,G.Guillaud,M.AI Sadoun,M Maitrot,C.Clarisse,M Le Contellec,J.-J.Andre,J.Simon,Chem.Phys.Lett.1987,142,103-105;
    b)R.Madru,G Guillaud,M.AI Sadoun,M.Maitrot,J.-J.Andre,J.Simon,R.Even,Chem.Phys.Lett.1988,145,343;
    c) C.Clarisse,M.T.Riou,M.Gauneau,M.Le Contellec,Electron.Lett.1988,24,674;
    d) G Guillaud,M.Al Sadoun,M.Maitrot,J.Simon,M.Bouvet,Chem.Phys.Lett.1990,167,503.
    [4]a) J.Souto,M.L.Rodriguez,J.A.Desaja,R.Aroca,Int.J.Electron.1994,76,763;
    b) P.Bassoul,T.Toupance,J.Simon,Sens.Actuators B 1995,26-27,150;
    c) K.R.Rickwood,D.R.Lovett,B.Lukas,J.Silver,J.Mater Chem.1995,5,725;
    d) B.Liang,C Yuan,Y.Wei,Y.Zhang,D.Jiang,S.Zhang,A.Lu,Synth.Met.1997,88,219;
    e) J.Alvarez,J.Souto,M.L.Rodriguez-Mendez,J.A.de Saja,Sens.Actuators B 1998,48,339.
    [5]M.Guena,Z.Y.Wu,M.L'Her,A.Pondaven,C.Cadiou,,4ppl.Phys.Lett.1998,72,765.
    [6]a) Y.Zhang,X.Zhang,Z.Liu,Y.Bian,J.Jiang,J.Phys.Chem.A 2005,109,6363;
    b) X.Cai,,Y.Zhang,X.Zhang,J.Jiang,J.Mol.Struct.(Theochem)2006,801,71;
    c) Y Zhang,.X.Cai,P.Yao,H.Xu,Y.Bian,J.Jiang,Chem.Eur J.2007,13,9503-9514;
    d) Y.Zhang,X.Zhang,Z.Liu,H.Xu,J.Jiang,Vib.Spectro.2006,40,289.
    [7]a) N.Kobayashi,N.Sasaki,Y.Higashi,T.Osa,Inorg.Chem.1995,34,1636;
    b) R.Li,X.Zhang,P.Zhu,D.K.P.Ng,N.Kobayashi,J.Jiang,lnorg.Chem.2006,45,2327-2334.
    [8]H.Konami,M.Hatano,N.Kobayashi,T.Osa,Chem.Phys.Lett.1990,165,397.
    [9]J.W.Buchler,E Hammerschmitt,I.Kaufeld,J.L(o|¨)ffier,Chem.Bet 1991,124,2151.
    [10]D.Chabach,M.Tahiti,A.De Clan,J.Fischer,R.Weiss,M.El Malouli Bibout,J.Am.Chem.Soc.1995,117,8548.
    [11]R.Guilard,J.-M.Barbe,A.Ibnlfassi,A.Zrineh,V.A.Adamian,K.M.Kadish,Inorg.Chem.1995,34,1472.
    [12]J.W.Buchler,B.Scharbert,J.Am.Chem.Soc.1988,110,4272.
    [13]Y.Bian,R.Wang,D.Wang,P.Zhu,R.Li,J.Dou,W.Liu,C.-F.Choi,H.-S.Chan,C.Ma,D.K.E Ng,J.Jiang,Helv.Chim.Acta 2004,87,2581-2596.
    [14]J.Jiang,J.Xie,M.T.M.Choi,Y.Yah,S.Sun,K.P.D.Ng,J.Porphyr Phthalocya.1999,3,322-328.
    [15]a) C.Lee,W.Yang,R.G.Parr,Phys.Rev:B 1988,37,785;
    b) A.D.Becke,J.Chem.Phys.1993,98,5648.
    [16]a) X.Gong,H.Xiao,H.Tian,J.Mol.Struc.(Theochem) 2002,593,93;
    b)M.Liao,T.Kar,S.M.Gorun,S.Scheiner,Inorg.Chem.2004,43,7151;
    c)P.N Day,Z.Q.Wang,R.Pachter,J.Mol.Struct.(Theochem) 1998,455,33.
    [17]L.Petit,C.Adamo,N.Russo,J.Phys.Chem.B 2005,109,12214.
    [18]X.Liu,L.C.Xu,T.J.He,D M.Chert,F.C.Liu,Chem.Phys.Lett.2003,379,517.
    [19]P.J.Hay,W.R.Wadt,J.Chem.Phys.1985,82,299.
    [20]T.H.Dunning Jr.,P.J.Hay,in Modern Theoretical Chemistry;H F.Schaefer Ⅲ,Ed:Plenum;New York,1976;vol.3,pp.1.
    [21]W.Q Tian,M Ge,F.L.L Gu,T.Yamada,Y.Aoki,J.Phys.Chem.A 2006,110,6285.
    [22]K.Senechai-David,A.Hemeryck,N.Tancrez,L.Toupet,J.A.G.Williams, I. Ledoux, J. Zyss, A. Boucekkine, J. -P. Guegan, H. Le Bozec, O. Maury, J. Am. Chem. Soc. 2006, 128, 12243.
    [23] a) M. Ernzerhof, G. E. Scuseria, J. Chem. Phys. 1999, 770, 5029;
    b) C. Adamo, J. Barone, J. Chem. Phys. 1999, 770, 6158;
    c) J. P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 1996, 77, 3865; 1997, 78, 1396.
    [24] a) A. D. Quartarolo, N. Russo, E. Sicilia, F. Lelj, J. Chem. Theory Comput. 2007, 3, 860;
    b) L. Petit, A. Quartarolo, C. Adamo, N. Russo, J. Phys. Chem. B 2006,110, 2398;
    c)M. Ernzerhof, G. E. Scuseria, J. Chem. Phys. 1999,110,5029.
    [25] Y. Zhang, X. Cai, Y. Zhou, X. Zhang, H. Xu, Z. Liu, X. Li, J. Jiang, J. Phys. Chem. A 2007, 111, 392.
    [26] We re-optimized the structure of Y(Pc)_2 at PBE0/LANL2DZ level. Comparison between the calculated structure of Y(Pc)_2 with PBE0 and B3LYP method and the crystal structure reveals the PBE0 result corresponds better with the experimental crystal structure than B3LYP.
    [27] P. Zhu, N. Pan, R. Li, J. Dou, Y. Zhang, D. Y. Y. Cheng, D. Wang, D. K. P. Ng, J. Jiang, Chem. Eur. J. 2005, 11, 1425
    [28] G. J. Wilson, D. P. Arnold, J. Phys. Chem. A 2005,109, 6104.
    [29] M. Bao, Y. Bian, L. Rintoul, R. Wang, D. P. Arnold, C. Ma, J. Jiang, Vib. Spectrosc. 2004, 34,283.
    [30] C. Peng, P. Y. Ayala, H. B. Schlegei, M. J. Frisch, J. Comput. Chem. 1996, 77,49.
    [31] NIST Computational Chemistry Comparison and Benchmark Database, NIST Standard Reference Database Number 101 Release 10, May 2004, Editor. Russell D. Johnson III http://srdata.nist.gov/cccbdb.
    [32] a) M. T. Cances, B. Mennucci, and J. Tomasi, J. Chem. Phys. 1997, 107, 3032;
    b) M. Cossi, V. Barone, B. Mennucci, and J. Tomasi, Chem Phys Lett. 1998, 286, 253;
    c) B. Mennucci, J. Tomasi, J. Chem. Phys 1997, 106, 5151.
    [33] Gaussian 03 (Revision B.05), M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, J. A. Montgomery Jr., T. Vreven, K. N. Kudin, J. C. Burant, J. M. Millam, S. S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G. A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J. E. K.nox, H. P. Hratchian, J. B. Cross, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, P. Y. Ayala, K. Morokuma, G. A. Voth, P. Salvador, J. J. Dannenberg, V. G. Zakrzewski, S. Dapprich, A. D. Daniels, M. C. Strain, O. Farkas, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. V. Ortiz, Q. Cui, A. G. Baboul, S. Clifford, J. Cioslowski, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. Johnson, W Chen, M. W Wong, C. Gonzalez, J. A. Pople, Gaussian, Inc., Pittsburgh, PA, 2004.
    [1]The Porphyrin Handbook,Vols.1-20(Eds.:K.M.Kadish,K.M.Smith,R.Guilard),Academic Press,San Diego,2000 and 2003.
    [2]T.Mashiko,D.Dolphin,Porphyrins,hydroporphyrins,α(?)aporphyrins,phthalocyanines,corroles,corrins and related macrocycles,(Chief Ed:G Wilkinson),In Comprehensive Coordination Chemistry,vol.2,Pergamon,Oxford,1987,p.813(Chapter 21.1 ).
    [3]K.M.Smith,Porphyrins,corrins and phthalo-cyanines,(Eds.:A.R.Katritzky,C.W.Rees),In Comprehensive Heterocyclic Chemistry,voi.4,Pergamon,Oxford,1984,p.377(Chapter 3.07).
    [4]D.Dolphin(Ed.),The Porphyrins,vols.1-7,Academic,New York,1978.
    [5]a) J.Jiang,K.Kasuga,D.P.Arnold.in Supramolecular Photosensitive and Electroactive Materials(Ed.:H.S.Nalwa),Academic Press,New York,2001,chapter 2,pp.113-210;
    b) D.K.P.Ng,J.Jiang,Chem.Soc.Rev.1997,26,433-442;
    c) J.Jiang,W.Liu,D.P.Arnold,J.Porphyrins Phthaiocyanines 2003,7,459-473;
    d) Y.Bian,J.Jiang,Y.Tao,M.T.M.Choi,R.Li,A.C.H.Ng,P Zhu,N.Pan,X.Sun,D.P Arnold,Z Zhou,H.-W.Li,T.C.W.Mak,D.K.P.Ng,J.Am.Chem.Soc.2003,125, 12257-12267;
    e) J.Jiang,Y.Bian,F.Furuya,W.Liu,M.T.M.Choi,N.Kobayashi,H.-W.Li,Q.Yang,T.C.W.Mak,D.K.P.Ng,Chem.Eur.J.2001,7,5059-5069;
    f) P.Zhu,N.Pan,R.Li,J.Dou,Y Zhang,D.Y.Y.Cheng,D.Wang,D.K.P.Ng,J.Jiang,Chem.Eur J.2005,11,1425-1432;
    g) R.Wang,R.Li,Y.Bian,C.-F.Choi,D.K.P.Ng,J.Dou,D.Wang,P.Zhu,C.Ma,R.D.Hartnell,D.P.Arnold,J.Jiang,Chem.Eur.J.2005,11,7351-7357;
    h) R.Wang,R.Li,Y.Li,X.Zhang,P.Zhu,P.-C.Lo,D.K.P.Ng,N.Pan,C.Ma,N.Kobayashi,J.Jiang,Chem.Eur J.2006,12,1475-1485.
    [6]a) S.Yoshimoto,T.Sawaguchi,W.Su,J.Jiang,N.Kobayashi,Angew.Chem.Int.Ed.2007,46,in press;
    b) Y.Chen,W.Su,M Bai,J.Jiang,X.Li,J.Am.Chem.Soc.2005,127,15700-15701;
    c) T.Ye,T.Takami,R.Wang,J.Jiang,P.S.Weiss,J.Am.Chem.Soc.2006,128,10984-10985;
    d) Y.Bian,X.Chen,D.Wang,C.-F.Choi,Y.Zhou,P.Zhu,D.K.P.Ng,J.Jiang,Y.Weng,X.Li,Chem.Eur J.2007,13,in press;
    e) N.Ishikawa,T.Iino,Y.Kaizu,J.Am.Chem.Soc.2002,124,11440-11447;
    f) N.Ishikawa,S.Otsuka,Y.Kaizu,Angew.Chem.Int.Ed.2005,44,731-733.
    [7]a) W.Liu,J.Jiang,D.Du,D.P.Arnold,Aust.J.Chem.2000,53,131-136;
    b) J.W.Buchler,B.Scharbert,U.Englert,J.StrYhle,Chem.Ber.1988,121,2077-2082;
    c) G A.Spyroulias,A.G Coutsolelos,C.P.Raptopoulou,A.Terzis,Inorg.Chem.1995,34,2476-2479;
    d) G A.Spyroulias,C.P.Raptopoulou,D.de Montauzon,A.Mari,R.Poilblanc,A.Terzis,A.G Coutsolelos,Inorg.Chem.1999,38,1683-1696;
    e) J.-H Agondanou,G.A.Spyroulias,J.Purans,G Tsikalas,C.Souleau,A.G.Coutsolelos,S.Benazeth,lnorg.Chem.2001,40,6088-6096;
    f) G.A.Spyroulias,A.G Coutsolelos,lnorg.Chem.1996,35,1382-1385;
    g) D.Chabach,M.Tahiri,A.De Cian,J.Fischer,R.Weiss,M.El Malouli Bibout,J.Am.Chem.Soc.1995,117,8548-8556;
    h) J.Jiang,W Liu,X.Sun,D.K.P.Ng,Chem.Res.Chin.Univ.2001,17,134-142;
    i) F.Lu,X.Sun,R.Li,D.Liang,P.Zhu,X. Zhang,C.-F.Choi,D.K.E Ng,T.Fukuda,N.Kobayashi,J.Jiang,New J.Chem.2004,28,1116-1122.
    [8]a) G Ostendorp,H.Homborg,Z Anorg.Allg.Chem.1996,622,873-880;
    b)G Ostendorp,H.Homborg,Z Anorg.Allg.Chem.1996,622,1358-1364;
    c)J.Jiang,W.Liu,J.Lin,D.K.P.Ng,Huaxue Tongbao 1997,7,14-19;
    d) Y.Zhang,X.Cai,Y.Zhou,X.Zhang,H.Xu,Z.Liu,X.Li,J.Jiang,J.Phys.Chem.A 2007,111,392-400.
    [9]a) J.Jiang,R.C.W.Liu,T.C.W.Mak,T.D.W.Chan,D.K.P.Ng,Polyhedron 1997,16,515-520;
    b) J.Jiang,J.Xie,D.K.P Ng,Y.Yan,Mol.Cryst.Liq.Cryst.1999,337-385;
    c) J.Jiang,J.Xie,MT.M.Choi,S.Sun,D.K.P.Ng,J.Porphyrins Phthalocyanines 1999,3,322-328.
    [10]J.Jiang,W.Liu,W.-F.Law,J.Lin,D.K.P.Ng,Inorg.Chim.Acta 1998,268,49-53.
    [11]J.W.Buehler,J.HOttermann,J.L6ffier,Bull.Chem.Soc.Jpn.1955,61,71-77.
    [12]a) C.Lee,W.Yang,R.G Parr,Phys.ReV.B 1955,37,785-789.
    b) A.D.Beeke,J.Chem.Phys.1993,98,5648-5652.
    [13]a) P.J.Hay,W.R.Wadt,J.Chem.Phys.1955,82,299-310.
    b) T.H.,Jr.Dunning,P.J.Hay,In Modern Theoretical Chemistry,(Ed:H.F.Schaefer Ⅲ),Plenum,New York,1976;Vol.3,Por 1.
    [14]a) Y.Zhang,X.Zhang,Z Liu,Y.Bian,J.Jiang,J.Phys.Chem.A 2005,109,6363-6370;
    b) Y.Zhang,X.Zhang,Z.Liu,H.Xu,J.Jiang,Vib.Spectro.2006,40,289-298;
    c) X.Zhang,Y.Zhang,J.Jiang,Vib.Spectro.2003,33,153-161;
    d) X.Zhang,Y.Zhang,J.Jiang,Spectrochimica Acta A 2004,60,2195-2200;
    e) X.Zhang,Y.Zhang,J.Jiang,Spectrochimica Acta A 2005,61,2576-2583.
    [15]C.Peng,P.Y.Ayala,H.B.Schlegel,M.J.Frisch,J.Comput.Chem.1996,17,49-56.
    [16]NIST Computational Chemistry Comparison and Benchmark Database, NIST Standard Reference Database Number 101 Release 10, May 2004, Editor: Russell D. Johnson III http://srdata.nist.gov/cccbdb.
    [17] M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, J. A. Montgomery, Jr., T. Vreven, K. N. Kudin, J. C. Burant, J. M. Millam, S. S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G. A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J. E. Knox, H. P. Hratchian, J. B. Cross, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, P. Y. Ayala, K. Morokuma, G. A. Voth, P. Salvador, J. J. Dannenberg, V. G. Zakrzewski, S. Dapprich, A. D. Daniels, M. C. Strain, O. Farkas, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. V. Ortiz, Q. Cui, A. G. Baboul, S. Clifford, J. Cioslowski, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, C. Gonzalez, J. A. Pople, Gaussian 03, Revision B.05; Gaussian, Inc.: Pittsburgh, PA, 2003.
    [1]Tsumura,A.;Koezuka,H.;Ando,T.Appl.Phys.Lett.1986,49,1210-1212.
    [2](a) Dimitrakopoulos,C.D.;Malenfant,P.R.L.Adv.Mater 2002,14, 99-117.
    (b) Horowitz,G Adv.Mater.1998,10,365-377.
    [3]For example:(a) Nelson,S.F.;Lin,Y.Y.;Gundlach,D.J.;Jackson,T.N.Appl.Phys.Lett.1998,72,1854.
    (b) Sundar,V.C.;Zaumseil,J.;Podzorov,V.;Menard,E.;Willett,R.L.;Someya,T.;Gershenson,M.E.;Rogers,J.A.Science 2004,303,1644.
    (c) Jones,B.A.;Facchetti,A.;Wasielewski,M.R.;Marks,T.J.J.Am.Chem.Soc.2007,129,15259.
    (d) Ando,S.;Nishida,J.I.;Tada,H.;Inoue,Y.;Tokito,S.;Yamashita,Y.J.Am.Chem.Soc.2005,127,5336.
    (e) Panzer,M.J.;Frisbie,C.D.Adv.Funct.Mater.2006,16,1051.
    (f) Xia,Y.;Kalihari,V.;Frisbie,C.D.;Oh,N.K.;Rogers,J.A.Appl.Phys.Lett.2007,90,162106.
    (g) Kim,C.;Facchetti,A.;Marks,T.J.Adv.Mater.2007,19,2561.
    (h) Facchetti,A.;Deng,Y.;Wang,A.;Koide,Y.;Sirringhaus,S.;Marks,T.J.;Friend,R.H.Angew,Chem.Int.Ed.2000,39,4547.
    (i) Jones,B.A.;Facchetti,A.;Marks,T.J.;Wasielewski,M.R.Chem.Mater.2007,19,2703.
    (j) Pappenfus,T.M.;Chesterfield,R.J.;Frisbie,C.D,;Mann,K.R.;Casado,J.;Raff,J.D.;Miller,L.L.J.Am.Chem.Soc.2002,124,4184.
    (k) Yoon,M.-H.;Kim,C.;Facchetti,A.;Marks,T.J.J.Am.Chem.Soc.2006,128,12851.
    (I) Chua,L.-L.;Zaumseill,J.;Chang,J.-F.;Ou,E.C.-W.;Ho,P.K.-H.;Sirringhaus,H.;Friend,R.H.Nature 2005,434,194.
    [4](a) Dodabalapor,A.;Katz,H.E.;Torsi,L.;Haddon,R.C.Science 1995,1560,269.
    (b) Babel,A.;Wind,J.D.;Jenekhe,S.A.Adv.Funct.Mater.2004,14,891.
    (c) Ye,R.;Suzuki,K.Appl.Phys.Lett.2005,86,253505.
    (d)Wang,J.;Wang,H.;Yan,X.;Huang,H.;Yan,D.Appl.Phys.Lett.2005,87,093507.
    (e) Wang,J.;Wang,H.;Yan,X.;Huang,H.;Yan,D.Chem.Phys.Lett.2005,407,87.
    (f) Rost,C.;Gundlach,D.J.;Karg,S.;Rieβ,W.J.Appl.Phys.2004,95,5782.
    (g) Sakamoto,Y.;Suzuki,T.;Kobayashi,M.;Gao,Y.;Fukai,Y.;Lnoue,Y;Seto,F.;Tokito,S.J.Am.Chem.Soc.2004,126,8138.
    (h) Chesterfield,R.J.;Newman,C.R.;Pappenfus,T.M.;Ewbank,P.C.;Haukaas,M.H.;Mann,K.R.;Miller,L.L.;Frisbie,C.D.Adv.Mater.2003, 15,1278.
    (i) Jung,T.;Yoo,B.;Wang,L.;Dodabalapur,A;Jones,B.A.;Facchetti,A.;Wasielewski,M.R.;Marks T.J.Appl.Phys.Lett.2006,88,183102.
    (j) Yoon,M.-H.;DiBenedetto,S.A.;Facchetti,A.;Marks,T.J.J.Am.Chem.Soc.2005,127,1348.
    (k) Dinelli,F.;Capelli,R.;Loi,M.A.;Murgia,M.;Muccini,M.;Facchetti,A.;Marks,T.J.Adv.Mater.2006,18,1416.
    [5](a) Cornil,J.;Bredas,J.-L.;Zaumseil,J.;Sirringhaus,H.Adv.Mater.2007,19,1791-1799.
    (b) Yin,S.;Yi,Y.;Li,Q.;Yu,G.;Liu,Y.;Shuai,Z.J.Phys.Chem.A 2006,110,7138-7143.
    [6](a) Sch(o|¨)n,J.H.;Berg,S.;Kloc,Ch.;Batlogg,B.Science 2000,287,1022-1023.
    (b) Amriou,S.;Mehta,A.;Bryce,M.R.J.Mater.Chem.,2005,15,1232-1234.
    (c) Shkunov,M.;Simms,R.;Heeney,M.;Tierney,S.;McCulloch,I.Adv.Mater.2005,17,2608-2612.
    (d) Yasuda,T.;Tsutsui,T.Chem.Phys.Lett.2005,402,395-398.
    (e) Yasuda,T.;Tsutsui,T.Jpn.J.Appl.Phys.2006,45,L595-L597.
    (f) Anthopoulos,T.D.;Setayesh,S.;Smits,E.;C(o|¨)lle,M.;Cantatore,E.;de Boer,B.;Blom,P.W.M.;de Leeuw,D.M.Adv.Mater.2006,18,1900-1904.
    (g) Takahashi,T.;Takenobu,T.;Takeya,J.;Iwasa,Y.Adv.Funct.Mater.2007,17,1623-1628.
    [7](a) Chen,H.-Y.;Chao,I.ChemPhysChem 2006,7,2003-2007.
    (b) Winkler,M.;Houk,K.J.Am.Chem.Soc.2007,129,1805-1815.
    [8](a) Heidenhain,S.B.;Sakamoto,Y.;Suzuki,T.;Miura,A.;Fujikawa,H.;Mori,T.;Tokito,S.;Taga,Y.J.Am.Chem.Soc.2000,122,10240-10241.
    (b)Chen,H.-Y.;Chao,I.Chem.Phys.Lett.2005,401,539-545.
    (c) Sakamoto,Y.;Komatsu,S.;Suzuki,T.J.Am.Chem.Soc.2001,123,4643-4644.
    (d)Facchetti,A.;Mushrush,M.;Katz,H.E.;Marks,T.J.Adv.Mater.2003,15,33-38.
    (e) Facchetti,A.;Yoon,M.H.;Stern,C.L.;Katz,H.E.;Marks,T.J.Angew.Chem.Int.Ed.2003,42,3900-3903.
    (f) Jones,B.A.;Ahrens,M.J.;Yoon,M.H.;Facchetti,A.;Marks,T.J.;Wasielewski,M.R.Angew.Chem.Int.Ed.2004,43,6363-6366.
    (g) Swartz,C.R.;Parkin,S.R.;Bullock,J. E.;Anthony,J.E.;Mayer,A.C.;Malliaras,G G Org.Lett.2005,7,3163-3166.
    (h) Kou,M.-Y.;Chen,H.-Y.;Chao,I.Chem.Eur.J.2007,13,4750-4758.
    [9]Ito,K.;Suzuki,T;Sakamoto,Y.;Kubota,D.;Inoue,Y.;Sato,F.;Tokito,S.Angew.Chem.Int.Ed.2003,42,1159-1162.
    [10](a) Kagan,C.R.;Afzali,A.;Graham,T.O.Appl.Phys.Lett.2005,86,193505.
    (b) Li,Y.;Wu,Y.;Liu,P.;Prostran,Z.;Gardner,S.;Ong,B.S.Chem.Mater 2007,19,418-423.
    (c) Maliakal,A.;Raghavachari,K.;Katz,H.;Chandross,E.;Siegrist,T Chem.Mater 2004,16,4980-4986.
    (d)Wolak,M.A.;Jang,B.-B.;Palilis,L.C.;Kafafi,Z.H.J.Phys.Chem.B 2004,108,5492-5499.
    [11](a) Horowitz,G.J.Mater Chem.1999,9,2021-2026.
    (b) Katz,H.E.;Bao,Z.J.Phys.Chem.B 2000,104,671-678.
    (c) Marseglia,E.A;Grepioni,F.;Tedesco,E.;Braga,D.Mol.Cryst.Liq.Cryst.2000,348,137-151.
    (d)Barbarella,G;Zambianchi,M.;Bongini,A.;Antolini,L.Adv.Mater 1993,5,834-838.
    (e) Liu,W.-J.;Zhou,Y.;Ma,Y.;Cao,Y.;Wang,I;Pei,J.Org.Left.2007,9,4187.
    (f) Zhou,Y.;Liu,W.-J.;Ma,Y.;Wang,H.;Qi,L.;Cao,Y.;Wang,J.;Pei,J.J.Am.Chem.Soc.2007,129,12386.
    [12]Zhang,X.;C(?)te,A.P.;Matzger,A.J.J.Am.Chem.Soc.2005,127,10502-10503.
    [13](a) Baumgartner,T.J.lnorg.Organomet Polym.2006,15,389-409.
    (b)Okamoto,T.:Kudoh,K.;Wakamiya,A.:Yamaguchi,S.Org.Lett.2005,7,5301-5304.
    (c) Osuna,R.M.:Ortiz,R.P.;Okamoto,T.;Suzuki,Y.;Yamaguchi,S.;Hernaindez,V.;L6pez Navarrete,J.T.J.Phys.Chem.B 2007,111,7488-7496.
    (d) Okamoto,T.;Kudoh,K.;Wakamiya,A.;Yamaguchi,S.Chem.Eur J.2007,13,548-556.
    (e) Yamada,K.;Okamoto,T:Kudoh,K.;Wakamiya,A.;Yamaguchi,S.;Takeya,J.Appl.Phys.Lett.2007,90,072102.
    [14](a) Xiao,K.;Liu,Y.;Qi,T.;Zhang,W.;Wang,F.;Gao,J.;Qiu,W.;Ma,Y.; Cui,G;Chen,S.;Zhan,X.;Yu,G;Qin,J.;Hu,W.;Zhu,D.J.Am.Chem.Soc.2005,127,13281-13286.
    (b) Sun,Y.;Ma,Y.;Liu,Y.;Lin,Y.;Wang,Z.;Wang,Y;Di,C;Xiao,K.;Chert,X,;Qiu,W;Zhang,B.;Yu,G;Hu,W;Zhu,D.Adv.Funct.Mater.2006,16,426-432.
    (c) Gao,J.;Li,R.;Li,L.;Meng,Q.;Jiang,H.;Li,H.;Hu,W.Adv.Mater.2007,19,3008-3011.
    [15](a) Chert,Y.;Su,W.;Bai,M.;Jiang,J.;Li,X.;Liu,Y.;Wang,L.:Wang,S.J.Am.Chem.Soc.2005,127,15700-15701.
    (b) Su,W.;Jiang,J.;Xiao,K.;Chen,Y.;Zhao,Q.;Yu,G;Liu,Y.Langmuir 2005,21,6527-6531.
    (c)Wang,Y;Chen,Y.;Li,R.;Wang,S.;Su,W.;Ma,P;Wasielewski,M.R.;Li,X.;Jiang,J.Langmuir 2007,23,5836-5842.
    (d) Chen,Y.;Li,R.;Wang,R.;Ma,P.;Dong,S.;Gao,Y.;Li,X.;Jiang,J.Langmuir 2007,23,12549.
    (e) Li,R.;Ma,P.;Dong,S.;Zhang,X.;Chen,Y.;Li,X;Jiang,J.lnorg.Chem.2007,46,11397.
    [16]For example:(a) Zhang,Y.;Cai,X.;Yao,P;Xu,H.;Bian,Y.;Jiang,J.Chem.Eur.J.2007,13,9503.
    (b) Zhang,Y.;Cai,X.;Zhou,Y.;Zhang,X.;Xu,H.;Liu,Z.;Li,X.;Jiang,J.J.Phys.Chem.A 2007,111,392-400.
    (c)Zhang,Y.;Zhang,X.;Liu,Z.;Bian,Y.;Jiang,J.J.Phys.Chem.A 2005,109,6363-6370.
    (d) Zhang,Y.;Yao,P.;Cai,X.;Xu,H.;Zhang,X.;Jiang,J.J.Mol.Graph.Model.2007,26,319-326.
    [17]Kirn,E.-G;Coropceanu,V.;Gruhn,N.E.;Sanehez-Carrera,R.S.;Snoeberger,R.;Matzger,A.J.;Bredas,J.-L.J.Am.Chem.Soc.2007,129,13072.
    [18](a)Marcus,R.A Annu.Rev.Phys.Chem.1964,15,155.
    (b)Marcus,R.A.Rev,:Mod Phys.1993,65,599-610.
    (c) Bredas,J.-L.;Calbert,J.P.;da Silva Filho,D.A.;Cornil,J.Proc.NatiAcad Sci.2002,99,5804.
    [19](a) Newman,C.R.;Frisbie,C.D.;da Silva,F.D.A.;Bredas,J.-L.;Ewbank,P.C.;Mann,K.R.Chem.Mater.2004,16,4436-4451.
    (b)W(u|¨)rthner,F.Angew.Chem.,Int.Ed.2001,40,1037-1039.
    (c) Katz,H E.;Bao,Z.;Gilat,S.L.Acc.Chem.Res.2001,34,359-369.
    (d) Bendikov,M.: Wudl,F.;Perepichka,D.F.Chem.Rev.2004,104,4891-4946.
    (e) Mitschke,U.;B(a|¨)uerle,P.,I.Mater Chem.2000,10,1471-1507.
    (f) Bredas,J.-L.;Beljonne,D.;Coropceanu,V.;Cornil,J.Chem.Rev.2004,104,4971-5004.
    (g) W(u|¨)rthner,F.;Schmidt,R.ChemPhysChem 2006,7,793-797.
    (h)Anthony,J.E.Chem.Rev.2006,106,5028-5048.
    (i) Cornil,J.;Beljonne,D.;Calbert,J.P.;Bredas,J.-L.Adv.Mater.2001,13,1053-1067.
    (j) Deng,W.-Q.;Goddard,W.A,Ⅲ d.Phys.Chem.B 2004,108,8614-8621.
    (k)Hutchison,G R.;Ratner,M.A.;Marks,T.J.J.Am.Chem.Soc.2005,127,16866-16881.
    (I) Raghunath,P.;Reddy,M.A.;Gouri,C.;Bhanuprakash,K.;Rao,V.J.J.Phys.Chem.A 2006,110,1152-1162.
    [20]Valeev,E.F.;Coropceanu,V.;da Silva Filho,D.A.;Salman,S.;Bredas,J.-L.d.Am.Chem.Soc.2006,128,9882-9886.
    [21](a) Yang,X.;Li,Q.;Shuai,Z.Nanotechnology 2007,18,424029.
    (b) Song,Y.;Di,C;Yang,X.;Li,S.;Xu,W.Liu,Y.;Yang,L.:Shuai,Z.:Zhang,D.:Zhu,D.J.Am.Chem.Soc.2006,128,15940.
    (c) Schein,L.B.;McGhie,A.R.Phys.Rev.B 1979,20,1631.
    [22]Frisch,M.J.et al;Gaussian 03,Revision B.05;Gaussian,Inc.:Pittsburgh,PA,2003.
    [23](a) Lee,C.;Yang,W.;Parr,R.G Phys.Rev.B 1988,37,785-789.
    (b)Becke,A.D.J.Chem.Phys.1993,98,5648-5652.
    [24](a) Ditchfield,R.;Hehre,W.J.;Pople,J.A.J.Chem.Phys.1971,54,724-728.
    (b) Hehre,W.J.;Ditchfield,R.;Pople,J.A.,I.Chem.Phys.1972,56,2257-2261.
    (c) Hariharan,P.C.;Pople,J.A.Moi.Phys.1974,27,209.
    (d) Gordon,M.S.Chem.Phys.Lett.1980,76,163-168.
    (e) Hariharan P.C.;Pople,J.A.Theo.Chim Acta.1973,28,213.
    [25]One Molecular Simulation Software,Inc.,see https://www.accelrys.com
    [26](a) Salzner,U.;Lagowski,J.B.;Pickup,P.G.;Poirier,R.A.Synth.c Met.1998,96,177.
    (b) Hutchison,G R.;Zhao,Y.-J.;Delley,B.:Freeman,A.J.;Ratner,M.A.;Marks,T.J.Phys.Rev.B 2003,68,035204.
    [27] (a) Cox, E. G.; Gillot, R. J. J. H.; Jeffrey, G. A. Acta Crystallogr. 1949, 2, 356.
    (b) Mazaki, Y; Kobayashi, K. J. Chem. Soc, Perkin Trans. 2, 1992, 761-764.
    [28] (a) Sirringhaus, H.; Brown, P. J.; Friend, R. H., Nielson, M. M.; Bechgaard, K.; Langeveld-Voss, B. M. W.; Spiering, A. J. H.; Janssen, R. A.; Meijer, E. W.; Herwig, P.; de Leeuw, D. M. Nature 1999, 401, 685-688.
    (b) Li, X. C.; Sirringhaus, H.; Gamier, F.; Holmes, A. B.; Moratti, S. C.; Feeder, N.; Clegg, W.; Teat, S. J.; Friend, R. H. J. Am. Chem. Soc. 1998, 120, 2206-2207.
    (c) Dimitrakopoulos, C. D.; Furman, B. K.; Graham, T; Hegde, S.; Purushothaman, S. Synth. Met. 1998, 92, 47-52.
    (d) Gamier, F.; Horowitz, G.; Fichou, D., Yassar, D. Synth. Met. 1996, 81, 163.
    [1]Tsumura,A.;Koezuka,H.;Ando,T.Appl.Phys.Lett.1986,49,1210-1212.
    [2](a) Dimitrakopoulos,C.D.;Malenfant,E R.L.Adv.Mater.2002,14,99-117.
    (b)Horowitz,G.Adv.Mater.1998,10,365-377.
    [3](a) Dodabalapor,A.;Katz,H.E;Torsi,L.;Haddon,R.C.Science 1995,269,1560-1562.
    (b) Babel,A.;Wind,J.D.;Jenekhe,S.A.Adv.Funct.Mater.2004,14,891-898.
    (c) Ye,R.;Suzuki,K.Appi.Phys.Lett.2005,86,253505.
    (d) Wang,J.;Wang,H.;Yan,X.;Huang,H.;Yah,D.Appl.Phys.Lett.2005,87,093507.
    (e) Wang,J.;Wang,H.;Yah,X.;Huang,H.;Yan,D.Chem.Phys.Left.2005,407,87-90.
    (f) Rost,C.;Gundlach,D.J.;Karg,S.;Rieβ,W.J.Appl.Phys.2004,95,5782-5787.
    (g) Sakamoto,Y.;Suzuki,T.;Kobayashi,M;Gao,Y.;Fukai,Y.;Lnoue,Y.;Seto,F.;Tokito,S.J.Am.Chem.Soc.2004,126,8138-8140.
    (h) Chesterfield,R.J.;Newman,C.R.;Pappenfus,T.M.;Ewbank,E C.;Haukaas,M.H.;Mann,K.R.;Miller,L.L.;Frisbie,C.D.Adv.Mater.2003,15,1278-1282.
    (i) Jung,T.;Yoo,B.; Wang,L.;Dodabalapur,A;Jones,B.A.;Facchetti,A.;Wasielewski,M.R.;Marks T.J.Appl.Phys.Lett.2006,88,183102.
    (j) Yoon,M.-H.;DiBenedetto,S.A.;Facchetti,A.;Marks,T.J.J.Am.Chem.Soc.2005,127,1348-1349.
    (k) Dinelli,F.;Capelli,R.;Loi,M.A.;Murgia,M.;Muccini,M.;Facchetti,A.;Marks,T.J.Adv.Mater.20011,18,1416-1420.
    (I)Shkunov,M.;Simms,R.;Heeney,M.;Tierney,S.;McCulloch,I.Adv.Mater 2005,17,2608-2612.
    [4](a) Cornil,J.;Bredas,J.-L.;Zaumseil,J.;Sirringhaus,H.Adv.Mater 2007,19,1791-1799.
    (b) Yin,S.;Yi,Y.;Li,Q.;Yu,G;Liu,Y.;Shuai,Z.J.Phys.Chem.A 2006,110,7138-7143.
    [5](a) Seh(o|¨)n,J.H.;Berg,S.;Kloc,Ch;Batlogg,B.Science 2000,287,1022-1023.
    (b) Amriou,S.;Mehta,A.;Bryce,M.R.J.Mater Chem.,2005,15,1232-1234.
    (c) Anthopoulos,T.D.;Setayesh,S.;Smits,E.;C(O|¨)lle,M;Cantatore,E.;de Boer,B.;Blom,P.W.M.;de Leeuw,D.M.Adv.Mater.2006,18,1900-1904.
    [6](a) Leznoff,C.C.;Lever,A.B.P.;Phthalocyanine:Properties and Applications;VCH:New York,1959-19911;Vols.1-4.
    (b) McKeown,N.B.;Phthalocyanines Materials:Synthesis,Structure and Function;Cambridge University Press:New York,1998.
    (c) Kadish,K.M;Smith,K.M.;Guilard,R.;The Porphyrin Handbook;Academic Press:San Diego,2000-2003;Vols.1-20.
    [7]Guillaud,G;Sadoun,M.A;Maitrot,M.;Simon,J.;Bouvet,M.(?) Chem.Phys.Lett.1990,167,503-506.
    [8](a) Su,W.;Jiang,J.;Xiao,K.;Chen,Y.;Zhao,Q.;Yu,G;Liu,Y.Langmuir 2005,21,6527-6531.
    (b) Chen,Y.;Su,W.;Bai,M.;Jiang,J.;Li,X.;Liu,Y:Wang,L.;Wang,S.J.Am.Chem.Soc.2005,127,15700-15701.
    (c) Chen,Y.;Li,R.;Wang,R.;Ma,P.;Dong,S.;Gao,Y.;Li,X.;Jiang,J.Langmttir 2007,23,12549-12554.
    (d) Li,R.;Ma,P.;Dong,S.;Zhang,X.;Chen,Y;Li,X.,Jiang,J.lnorg.Chem.2007,46,11397-11404.
    [9]For example:(a) Okamoto,T.;Senatore,M.L.;Ling,M.M.;Mallik,A.B.;Tang,M.L.;Bao,Z.Adv.Mater 2007,19,3381-3384.
    (b) Gao,X.;Wang,Y.;Yang,X.;Liu,Y.;Qiu,W.;Wu,W.;Zhang,H.;Qi,T.;Liu,Y.;Lu,K.;Du,C.;Shuai,Z.;Yu,G;Zhu,D.Adv.Mater 2007,19,3037-3042.
    (c)Kunugi,Y.;Takimiya,K.;Yamane,K.;Yamashita,K.;Aso,Y.;Otsubo,T.Chem.Mater 2003,15,6-7.
    (d) Meng,H.;Zheng,J.;Lovinger,A.J.;Wang,B.C.;Patten,P.G V.;Bao,Z.Chem.Mater 2003,15,1778-1787.
    [10]Zhang,Y.;Cai,X.;Bian,Y.;Li,X.;Jiang,J.d.Phys.Chem.C.2008,112,5148-5159.
    [11]For example:(a) Zhang,Y.;Cai,X.;Yao,P.;Xu,H.;Bian,Y.;Jiang,J.Chem.Eur J.2007,13,9503-9514.
    (b) Zhang,Y.;Cai,X.;Zhou,Y.;Zhang,X.;Xu,H.;Liu,Z.;Li,X.;,liang,J.d.Phys.Chem.A 2007,111,392-400.
    (c) Zhang,Y.;Zhang,X.;Liu,Z.;Bian,Y.;Jiang,J.J.Phys.Chem.A 2005,109,6363-6370.
    (d) Zhang,Y.:Yao,P.;Cai,X.;Xu,H.;Zhang,X.:.liang,J.J.Mol.Graph.Model.2007,26,319-326.
    (e) Zhang,Y.;Cai,X.;Qi,D.;Yao,P.;Bian,Y.;Jiang,J.ChemPhysChem.2008,9,781-792.
    [12](a) Coropceanu,V.;Comil,J.;da Silva Filho,D.A.;Olivier,Y.;Silbey,R.;Bredas,J.L.Chem.Rev:2007,107,926-952.
    (b) Bredas,J.L.;Calbert,J.P.;da Silva Filho,D.A.;Cornil,J.Proc.Natl.Acad.Sci.US.A.2002,99,5804-5809.
    (c) Hutchison,G R.;Ratner,M.A.;Marks,T.J.J.Am.Chem.Soc.2005,127,16866-16881.
    (d) Deng,W.Q.;Goddard,W.A.,Ⅲ J.Phys.Chem.B 2004,108,8614-8621.
    [13](a) Marcus,R.A.Annu.Rev.Phys.Chem.1964,15,155-196.
    (b) Marcus,R.A.Rev.Mod.Phys.1993,65,599-610.
    [14](a) Newman,C.R.;Frisbie,C.D.;da Silva,F.D.A.;Bredas,J.-L.;Ewbank,P.C.;Mann,K.R.Chem.Mater 2004,16,4436-4451.
    (b)W(u|¨)rthner,F.Angew.Chem.,Int.Ed.2001,40,1037-1039.
    (c) Katz,H.E.;Bao,Z.;Gilat,S.L.Acc.Chem.Res.2001,34,359-369.
    (d) Bendikov,M.;Wudl,F.;Perepichka,D.F.Chem.Rev.2004,104,4891-4946.
    (e) Mitschke, U.;B(a|¨)uerle,P.,I.Mater Chem.2000,10,1471-1507.
    (f) Bredas,J.-L.;Beljonne,D.;Coropceanu,V.;Cornil,J.Chem.Rev.2004,104,4971-5004.
    (g) W(u|¨)rthner,F.;Schmidt,R.ChemPhysChem 2006,7,793-797.
    (h)Anthony,J.E.Chem.Rev.2006,106,5028-5048.
    (i) Cornil,J.;Beljonne,D.;Calbert,J.P.;Br6das,J.-L.Adv.Mater 2001,13,1053-1067.
    (j)Raghunath,P.;Reddy,M.A.;Gouri,C.;Bhanuprakash,K.;Rao,V.J.J.Phys.Chem.A 2006,110,1152-1162.
    [15]Troisi,A.;Orlandi,G.Chem.Phys.Lett.2001,344,509-518.
    [16](a) Yang,X.;Li,Q.;Shuai,Z.Nanotechnology 2007,18,424029.
    (b) Yang,X.;Wang,L.;Wang,C.;Long,W.;Shuai,Z.Chem.Mater.2008,20,3205-3211.
    [17](a) Valeev,E.F.;Coropceanu,V.;da Silva Filho,D.A.;Salman,S.;Bredas,J.-L.J.Am.Chem.Soc.2006,128,9882-9886.
    (b) Grzegorczyk,W.J.;Savenije,T.J.;Valeton,J.J.P.;Fratiioiu,S.;Grozema,F.C.;de Leeuw,D.M.;Siebbeles,L.D.A.J.Phys.Chem.C 2007,111,18411-18416.
    (c) Prins,P.;Senthilkumar,K.;Grozema,F.C.;Jonkheijm,P.;Schenning,A.P.H.J.;Meijer,E.W.;Siebbeles,L.D.A.J.Phys.Chem.B 2005,109,18267-18274.
    [18](a) Song,Y.;Di,C.;Yang,X.;Li,S.;Xu,W.Liu,Y.;Yang,L.;Shuai,Z.;Zhang,D.;Zhu,D.J.Am.Chem.Soc.2006,128,15940-15941.
    (b) Schein,L.B.;McGhie,A.R.Phys.Rev.B 1979,20,1631-1639.
    [19](a) Lee,C.;Yang,W.;Parr,R.G Phys.Rev.B 1988,37,785-789.
    (b)Becke,A.D.J.Chem.Phys.1993,98,5648-5652.
    [20](a) Hay,P.J.;Wadt,W.R.J.Chem.Phys.1985,82,299-310.
    (b) Jr.Dunning,T.H.;Hay,P.J.;In Modern Theoretical Chemistry,(Ed.:Schaefer,H.F.I11),Plenum,New York,1976;Vol.3,Por 1.
    [21]Frisch,M.J.;Trucks,G W.;Schlegel,H.B.;Scuseria,G.E.;Robb,M.A.;Cheeseman,J.R.;Montgomery,J.A.,Jr.;Vreven,T.;Kudin,K.N.;Burant,J.C.;Millam,J.M.;lyengar,S.S.;Tomasi,J.;Barone,V;Mennucci,B.; Cossi, M.; Scalmani, G.; Rega, N.; Petersson, G. A.; Nakatsuji, H., Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y; Kitao, O., Nakai, H.; Klene, M.; Li, X.; Knox, J. E.; Hratchian, H. P.; Cross, J. B.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Ayala, P. Y; Morokuma, K.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Zakrzewski, V. G; Dapprich, S.; Daniels, A. D.; Strain, M. C.; Farkas, O.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K., Foresman, J. B.; Ortiz, J. V; Cui, Q.; Baboul, A. G; Clifford, S.; Cioslowski,J.; Stefanov, B. B.; Liu, G; Liashenko, A.; Piskorz, P.; Komaromi, I.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y; Nanayakkara, A.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Gonzalez, C.; Pople, J. A. Gaussian 03, Revision B.05; Gaussian, Inc.: Pittsburgh, PA, 2003.
    [22] Takamatsu, S.; Ishikawa, N. Polyhedron 2007,26,1859-1862.
    [23] (a) Paillaud, J. L.; Drillon, M.; Decian, A.; Fisher, J.; Weiss, R.; Poinsot, R.; Herr, A. Physica B 1991, 175, 337-348.
    (b) Ostendorp, G; Homborg, H. Z Naturforsch. B 1995, 50, 1200-1206.
    [24] Chen, Y.; Liu, H.; Zhu, P.; Zhang, Y; Wang, X.; Li, X.; Jiang, J. Langmuir 2005,21, 11289-11295.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700