配电网电能质量监测点优化选址的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
国民经济突飞猛进的发展,极大地促进了我国电力系统的建设事业,随着电力系统规模的日益壮大,实现电网全面可靠、动态实时的监控对保证电力系统稳定运行和防御安全具有十分重要的意义。目前主体的监测手段集中于稳态和局部监控阶段,无法完成整个电网的实时动态同步量测工作,对于系统的运行调度来说缺少有效的监测管理平台。本课题着重研究量测点的优化选址问题,即通过一定的优化算法实现电能质量量测点的优化配置,为构建完善的电力系统广域同步在线量测体系奠定基础,利于加强对全网的动态监测和分析能力。
     本文综述了当前量测点优化配置的主要研究方法,在此基础之上,根据我国现有的经济实力、技术难度等现场条件,通过深入分析提出了优化配置的两大层次,即不给定PMU配置数量和给定PMU配置数量两种情况下的配置优化思路,并建立了两大层次各自相应的配置优化数学模型,提出了将FP-DC策略与改进自适应遗传MAGA算法相结合的FPDC-MAGA算法,用以求解优化问题的数学模型。文中还提出了全局临界配置、欠配置和过配置的概念。
     论文重点研究了两大层次的量测点配置优化算法,针对第一层次的优化配置,阐述了有关的数学理论基础以及量测点的配置原则,基于数学模型和FPDC-MAGA算法,给出了不给定PMU配置数量情况下的优化配置算法和流程图;针对第二层次的优化配置,分析了配置最优化的判定依据,以全局临界配置为参考,提出了分别按照欠配置和过配置两个方面来研究给定PMU配置数量情况下的优化配置问题,同时,分别探讨了二者的优化算法和对应的流程图。
     以IEEE37节点系统为例,根据本文提出的量测点优化配置算法流程,通过编写算法程序分别验证了两大层次的优化算法有效性,对程序运行所得结果进行分析对比,来进一步评估优化算法的可行性。
The rapid development of national economy has greatly promoted the construction cause of power system in our country. With the increasing grandness of power system scale, it’s very significant to realize comprehensive, reliable, dynamic and real-time monitoring of power grid to ensure the stability and security of power system. At present, the subjective monitoring means, with a view to steady and partial supervision, are unable to perform synchronous measurement work of the whole power grid, so there is lack of effective monitoring and management platform for operation dispatching of system. This paper emphatically studies optimal configuring of power quality monitors, which implements optimum number and location of monitors by certain optimization algorithm, in order to establish a good foundation for wide area online measurement system.
     The main research methods of optimal allocation of monitors are summarized in this paper. On the basis of this, according to practical conditions of our economic level and technical difficulty, two hierarchy of optimal configuration is first proposed through deep analysis, including no given and given configuration quantity of PMU, of which optimization mathematical models are presented in this paper. A FPDC-MAGA algorithm used to solve mathematical models is proposed, which combines FPDC strategy and modified adapted genetic algorithm. And concept of global critical configuration, less configuration and over configuration is first proposed in this paper.
     Optimization algorithm of each hierarchical configuration is analyzed mainly in this dissertation. For the first-hierarchy optimal configuration, the related mathematical theories and configuration principles are described. Based on mathematical model and FPDC-MAGA algorithm, the optimization configuration algorithm and corresponding flow chart without given installation quantity of PMU are shown in this paper. For the second-hierarchy optimal configuration, the judging basis of optimum configuration is analyzed, and referring to global critical configuration, this paper studies the optimization configuration with given installation quantity of PMU from two aspects such as less-configuration and over-configuration.
     Take the IEEE 37-node system as the example, in the light of optimal configuration algorithm flow of power quality monitors as proposed, this article has respectively confirmed the effectiveness of two hierarchical optimization algorithms through compile program, analyzed and compared the results obtained by program operation, in order to further assess the feasibility of optimization algorithm.
引文
[1]韩祯祥,薛禹胜,邱家驹.2000年国际大电网会议系列报道——电网互联的现状和前景[J].电力系统自动化.2000,25(24):1-4.
    [2]郑宝森,郭日彩.中国互联电网的发展[J].电网技术.2003,27(02):1-3.
    [3]林海雪.现代电能质量的基本问题[J].电网技术,2001,25(10):5-12.
    [4] Dugan R C,Megranghan M F,Benty H W.Electrical power system quality[M].New York:MC Graw-Hill,1996.
    [5]肖湘宁,徐永海.电能质量问题剖析[J].电网技术,2001,25(3):66-69.
    [6] U.S.-Canada Power System Outage Task Force.Final Report on the August 14,2003 Blackout in the United States and Canada Causes and Recommendations[R],2004.
    [7]李春艳,孙元章,陈向宜,等.西欧“11.4”大停电事故的初步分析及防止我国大面积停电事故的措施明[J].电网技术,2006,30(24):16-21.
    [8]李再华,白晓民,丁剑,等.西欧大停电事故分析[J].电力系统自动化,2007,3l(1):l-3, 32.
    [9]傅书遢.2006年电力系统调度自动化综述与建议[J].电网技术,2007,31(10):1-9,27.
    [10] Wang L,Morison K.Implementation of online security assessment[J].IEEE Power and Energy Magazine,2006,4(5):46-59.
    [11]朱永强,尹忠东,肖湘宁,申展.电能质量监测技术综述[J].电气时代,2007(5).
    [12]高云鹏,滕召胜.电能质量监测技术现状与发展方向[J].仪器仪表用户,2004.
    [13]刘海涛,韩文新,苏剑.电能质量在线综合监测系统[J].电网技术,2006,30.
    [14]李刚,王少荣,夏涛,等.电力系统广域动态监测中的功角直接测量技术[J].电力系统自动化,2005,29(3):45-49.
    [15]吴京涛,谢小荣,王立鼎,等.广域测量系统在电力系统的发展与展望[J].电力设备, 2006,7(3):46-49.
    [16] Yi K K,Choo J B,Yoon S H,eta1.Development of wide area measurement and dynamic security assessment systems in Korea[C]//IEEE Power Engineering Society Summer Meeting Vancouver,BC,Canada:2001:1495-1499.
    [17]丁剑,白晓民,王文平,赵伟,方竹.电力系统中基于PMU同步数据的应用研究综述[J].继电器,2006,34(6):78-84.
    [18] Hauer J F.Validation of phasor calculations in the Macrodyne PMU for California- Oregon transmission project tests of March 1993.IEEE Trans on PD,1996,11(3): 1224-1231.
    [19] Bertsch J,Zima M,Suranyi A,etal.Experiences and Perspectives of the System for Wide Area Monitoring of Power Systems[A].2003 CIGRE/IEEE PES International Symposium,2003.
    [20] Phadke A G.Synchronized Phasor Measurements a Historical Overview[A].IEEE/PES Transmission and Distribution Conference and Exhibition,Asia Pacific:2002.
    [21]丁仁杰,闵勇,熊炜华,等.基于GPS的电力系统动态安全监测装置及其动态模拟试验[J].清华大学学报(自然科学版),2002,42(3):316-320.
    [22]彭班南,孙元章,王海风.考虑系统完全可观测性的PMU最优配置方法[J].电力系统自动化,2003,27(4):10-16.
    [23]韩英铎,王仲鸿,林孔兴,杨永康,黄其励,蒋建民.电力系统中的三项前沿课题——柔性输电技术,智能控制,基于GPS的动态安全分析与监测系统[J].清华大学学报(自然科学版),1997,37(7):1-6.
    [24]罗建裕,王小英,鲁庭瑞,等.基于广域测量技术的电网实时动态监测系统应用[J].电力系统自动化,2003,27(24):78-80.
    [25]傅周兴,郭颖娜,何文林.基于GPS同步时钟的相量测量在电力系统中的应用研究[J].继电器,2001,29(7):31-34.
    [26] Phadke A G..Synchronized phasor measurements-a historical overview[C]//2002 IEEE/PES T&D conference and Exhibition,Yokohama,Japan,2002(1):276-479.
    [27]胡绍谦.电力系统同步相量测量技术的研究[D].西南交通大学硕士学位论文,2004.
    [28] Martin K E.IEEE standard for synchrophasors for power systems[J].IEEE Trans on Power Delivery,1998,13(1):73-77.
    [29] PHADKE A G.Synchronized phase measurements in power system[J].IEEE Computer Application in Power,1993,6(2):42-47.
    [30] Cease T W.Real-time of the TVA Power System.IEEE Computer Application in Power,1994,7:47-51.
    [31] IEEE Standard for Synchrophasors for Power Systems[S].IEEE Std1344-1995.
    [32] Denys P,Counan C,Hossenlopp L,etal.Measurement of Voltage Phase for the FrenchFuture Defense Plan against Losses of Synchronism.IEEE Trans on PWRD,1992,7(1): 442-449.
    [33]高厚磊,厉吉文,文锋,等.GPS及其在电力系统中的应用[J].电力系统自动化,1995, 19(9):41-44.
    [34]吴京涛,阂勇,丁仁杰,徐飞,等.黑龙江东部电网区域稳定控制系统的二期开发[J].电力系统及其自动化,2001,(6):49-51.
    [35]严登俊,鞠平,袁洪.网络通信模式下电网相量的广域测量与实时传输系统[J].电网技术,2004,28(4):15-18.
    [36]马勇.广域测量系统中的PMU布点优化及研究[D].华东交通大学硕士学位论文, 2008.
    [37]李大虎,曹一家,江全元,等.基于多目标进化算法的相量测量单元优化配置[J].电网技术,2005,29(22):45-49.
    [38] Marin F J,Garcia-Lagos F,Joya G,etal.Genetic algorithms for optimal placement of phasor measurements units in electrical networks[J].IEEE Electronics Letters,2003,39 (19):1403-1405.
    [39] MiloseviC B,Begovic M.Nondominated sorting genetic algorithm for optimal phasor measurement placement[J].IEEE Trans on Power Systems,2003,18(1):69-75.
    [40]李强,于尔铿,潘毅,等.一种改进的相量测量装置最优配置方法[J].电网技术,2005 ,29(12):57-61.
    [41] Zhao Hongshan,Li Ying,Mi Zengqing,etal.Sensitivity constrained PMU placement for complete observability of power systems[C]//2005 IEEE Trans and Distribution Conference and Exhibition,Dalian,China,2005:1-5.
    [42] Nuqiu R F,Phadke A G.Phasor measurement unit placement based on incomplete observability[C]//Power Engineering Society Summer Meeting,Chicago,USA,2002,2: 889-893.
    [43] Cho K S,Shin J R,Hyun S H.Optimal placement of phasor measurement units with GPS receiver[C]//IEEE Power Engineering Society Winter Meeting,Ohio,USA,2001, 1:258-262.
    [44]彭疆南,孙元章,工海风.考虑系统完全可观测性的PMU最优配置方法[J].电力系统自动化,2003,27(4):10-16.
    [45]马勇,陈赤培,王林,姜琴.基于遗传禁忌搜索算法的PMU布点配置[J].继电器,2008, 36(2):21-25,48.
    [46]兰华,万旺经,王韵然,李昕俊.基于模拟退火混合遗传算法的电力系统相量测量装置优化配置[J].电网技术,2007,31:114-117.
    [47] Zivanovie R,Cairns C.Implementation of PMU technology in state estimation[C]//4th IEEE AFRICON Conference,Stellenbosch,South Africa,1996,2:1006-1011.
    [48] Mao Anjia,Yu jiaxi,Guo Zhizhong.PMU placement and data processing in WAMS that complements SCADA[C]//IEEE Power Engineering Society General Meeting, California,USA,2005,1:690-693.
    [49]毛安家,郭志忠.与SCADA互补的WAMS中PMU的配置及数据处理方法[J].电网技术,2005,29(8):71-74.
    [50]郑相华,米增强,赵洪山,等.基于PMU的状态估计的研究[J].继电器,2004,32(17): 16-19.
    [51]王克英,穆钢,陈学允.计及PMU的状态估计精度分析及配置研究[J].中国电机工程学报,2001,21(8):29-33.
    [52]张鹏飞,薛禹胜,张启平,等.基于PMU实测摇摆曲线的暂态稳定量化分析[J].电力系统自动化,2004,28(20):17-20.
    [53]许剑冰,薛禹胜,张启平,等.基于系统同调性的PMU最优布点[J].电力系统及其自动化,2004,28(19):22-26.
    [54]李大虎,江全元,曹一家.基于发电机同调分群的相量测量单元优化配置方法[J].电网技术,2006,30(5):49-55.
    [55]王克英,穆钢,韩学山,等.使潮流方程直接可解的PMU配置方案研究[J].中国电机工程学报,1999,19(10):14-17.
    [56]卫志农,孙国强,常宝立,等.考虑电力系统潮流直接可解的同步相量量测单元最优配置[J].电网技术,2005,29(1):65-68.
    [57]卫志农,常宝立,孙国强,等.在一种新的考虑电力系统潮流直接可解的PMU最优配置[J].继电器,2005,33(21):36-40.
    [58]刘杰,李建华.系统可观PMU最优配置和分阶段配置方案的研究[J].西安交通大学学报,2007,41(6).
    [59]蒋正威,李继红,孙维真.基于不可观测深度的分阶段PMU配置算法[J].电网技术,2008,32(16):81-90.
    [60]董存,余贻鑫.相角-电压空间上的实用动态安全域[J].电力系统及其自动化学报,2005,17(6):1-4.
    [61]申晓留,周长玉,雷琼.全球定位系统(GPS)在电力系统中的应用[J].现代电力,2003,20(6):74-78.
    [62]孔五阳.基于GPS的电网同步相量测量装置的研究[D].河海大学硕士学位论文,2007.
    [63]高厚磊,厉吉文,文锋,江世芳.GPS及其在电力系统中的应用[J].电力系统及其自动化学报,1995,19(9):41-44.
    [64]高厚磊.全球定位系统(GPS)在电力系统中的应用及展望[J].电网技术,1999,(2):48- 52.
    [65]陈若珠,张玲,刘箫,刘峻.基于GPS的相量量测单元在电力系统中的应用研究[J].科学技术与工程,2008,8(9):2405-2409.
    [66]郭强等.GPS同步时钟用于电力系统暂态稳定控制的初步研究[J].电力系统及其自动化学报,1996,8(3):23-28.
    [67]张作鹏.同步向量测量单元优化配置算法研究[D].重庆大学硕士学位论文,2007.
    [68]于尔铿.电力系统状态估计[M].北京:水利电力出版社,1985.
    [69]杨明海,王成山.电力系统PMU优化配置方法综述[J].电力系统及其自动化学报,2007,19(2):86-92.
    [70]高雷阜.最优化理论与方法[M].辽宁:东北大学出版社,2005.
    [71]谭瑛,高慧敏,曾建潮.求解整数规划问题的微粒群算法[J].系统工程理论与实践,2004,(5):126-129.
    [72]刘静,须文波,孙俊.基于量子粒子群算法求解整数规划[J].计算机应用研究,2007,24(3):79-81,105.
    [73]任平.遗传算法(综述)[J].工程数学学报,1999,16(1):1-8.
    [74]武飞周,薛源.智能算法综述[J].工程地质计算机应用.2005,(2):9-15.
    [75]黄友锐.智能优化算法及其应用[M].北京:国防工业出版社,2005.
    [76]汪定伟,王俊伟,王洪峰,张瑞友,郭哲.智能优化方法[M].北京:高等教育出版社, 2007.
    [77]林海雪.现代电能质量的基本问题.电网技术[J],2001,25(10):5-12.
    [78]肖湘宁,徐永海.电能质量问题剖析.北京:国家电力公司重大科技项目(SPKJ011-08)资助.
    [79]董其国.电能质量技术问答.第一版.北京:中国电力出版社,2003.
    [80]朱永强,尹忠东,肖湘宁,申展.电能质量监测技术综述.电气时代[J],2007(5):66-69.
    [81] Elderly Mohamed Amin,El-Saandany Ehab F,Salama M.M.A.A novel power quality monitoring allocation algorithm. IEEE Transaction on Power Delivery,2006,21(2):768- 777.
    [82]何明峰.网络化电能质量监测与分析系统.华北电力大学硕士学位论文,2004.
    [83] Baldwin T L,Mili L,Boisen M B J,eta1.Power system observability with minimal phasor measurement placement[J].IEEE Transactions On Power Systems.1993,8(2): 707-715.
    [84]沙智明,郝育黔,郝玉山,等.电力系统PMU安装地点选择优化算法的研究[J].继电器,2005,33(7):31-37.
    [85]王艳松,何新霞.基于网络模型的节点阻抗矩阵的新算法[J].中国石油大学学报(自然科学版),2000,24(3):98-100.
    [86]李积捷,田伟.电力系统相量测量装置最优配置混合算法的研究[J].广东电力,2008,21(4):10-14.
    [87]蔡田田,艾芊.电力系统中PMU最优配置的研究[J].电网技术,2006,30(13):32-37.
    [88]刘杰,李建华,焦莉,刘东晖.系统可观测同步相量测量单元最优配置和分阶段配置[J].西安交通大学学报,2007,41(8):959-963.
    [89]林丹,李敏强,寇纪凇.基于遗传算法求解约束优化问题的一种算法[J].软件学报,2001,12(4):628-632.
    [90] Dong-Jun Won,Seung-Il Moon.Optimal Number and Locations of Power Quality Monitors Considering System Topology[J].IEEE TRANSACTIONS ON POWER DELIVERY,2008,23(1):287-295.
    [91]吴笃贵.电力系统谐波建模和谐波状态估计技术的研究[D].浙江大学博士论文,1999.
    [92] Phadke A G, Thorp J S, Karimi K J. State Estimlatjon with Phasor Measurements[J]. IEEE Transactions on Power Systems.1986,1(1):233-238.
    [93]彭疆南,孙元章,王海风.考虑系统完全可观测性的PMU最优配置方法[J].电力系统自动化.2003,27(04):10-16.
    [94] Milosevic B, Begovic M. Nondominated sorting genetic algorithm for optimal phasor measurement placement[J].IEEE Transactions On Power Systems.2003,18(1):69-75.
    [95]薛禹胜.时空协调的大停电防御框架——(一)从孤立防线到综合防御[J].电力系统自动化.2006,30(01):8-16.
    [96]薛禹胜.时空协调的大停电防御框架——(二)广域信息、在线量化分析和自适应优化控制[J].电力系统自动化.2006,30(02):l-10.
    [97]薛禹胜.时空协调的大停电防御框架——(三)各道防线内部的优化和不同防线之间的协调[J].电力系统自动化.2006,30(03):l-10.
    [98]李强.基于PMU量测的电力系统状态估计研究[D].中国电力科学研究院博士学位论文,2007.
    [99]蒋正威.相量测量装置优化配置的研究[D].浙江大学硕士学位论文,2008.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700