JAK2/STAT3通路对小鼠骨骼肌发育、能量代谢及肌间脂肪相关基因表达的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
JAK2激酶/信号转导和转录激活因子3(JAK2/STAT3)信号通路不仅具有心肌保护作用,在细胞生长、分化及凋亡过程中也发挥重要作用,还可调节动物体脂肪的代谢。但有关该途径在骨骼肌上的研究少有报道。本研究以健康昆明小白鼠和小白鼠骨骼肌细胞为研究对象,分别用AG490和IL-11处理。称取小鼠体重、测量小鼠体温及检测氧化酶(SOD、CAT和GSH-PX)活性和MDA含量,利用Real-time PCR技术检测JAK2、STAT3、MyoD、Myf5、LXRα、UCP3、PPARγ、FAS和HSL基因表达,分别在个体和细胞水平上,分析该通路对小鼠骨骼肌发育、能量代谢相关基因表达及氧化酶活性的影响。
     1用JAK2特异性抑制剂AG490处理小鼠,处理组小鼠体重显著低于对照组(P<0.05);小鼠体温维持在正常浮动范围内;JAK2和STAT3基因表达显著下降(P<0.05);骨骼肌发育相关基因MyoD和Myf5表达极显著下降(P<0.01);能量代谢相关基因LXRα和UCP3表达极显著下降(P<0.01)。表明AG490有效地抑制了骨骼肌组织中JAK2/STAT3信号通路,可通过降低骨骼肌发育和能量代谢相关基因的表达而调节小鼠骨骼肌发育和能量代谢。
     2用IL-11处理小鼠,处理组小鼠体重显著高于对照组(P<0.05);小鼠体温维持在正常浮动范围内;JAK2和STAT3表达显著升高(P<0.05)。骨骼肌发育相关基因MyoD和Myf5表达显著上升(P<0.05);能量代谢相关基因LXRα表达无变化(P>0.05),UCP3表达显著上升(P<0.05)。证明IL-11可以激活JAK2/STAT3信号通路,可通过提高骨骼肌发育和能量代谢相关基因的表达而调节骨骼肌发育和能量代谢。
     3分别用IL-11和AG490处理小鼠,IL-11处理组小鼠脂肪代谢相关基因PPARγ表达显著高于对照组(P<0.05),FAS和HSL表达无变化(P>0.05);CAT、GST-PX和SOD酶活性显著增强(P<0.05),MDA含量显著下降(P<0.05)。AG490处理组,PPARγ、FAS和HSL表达显著下降(P<0.05);CAT、GST-PX和SOD酶活性显著下降(P<0.05),但MDA含量却显著增加。证明JAK2/STAT3信号通路可能参与调节肌间脂肪的沉积,也对机体组织的酶活产生影响,起到保护机体组织的作用。
     4 15μg/mL AG490和10ng/mL IL-11分别作用于骨骼肌细胞。AG490处理组JAK2和STAT3表达显著下降(P<0.05);骨骼肌发育相关基因MyoD和Myf5表达显著下降(P<0.05);能量代谢相关基因LXRа和UCP3表达显著下降(P<0.05)。IL-11处理组JAK2和STAT3表达显著上升(P<0.05);骨骼肌发育相关基因MyoD和Myf5表达显著上升(P<0.05);能量代谢相关基因LXRа表达无变化(P<0.05),UCP3表达显著上升(P<0.05)。从细胞水平上证明JAK2/STAT3信号通路对骨骼肌发育和能量代谢相关基因表达产生影响。
Janus Kinase2/Signal transducers and activators of transcription3 (JAK2/STAT3) signal pathway is a recent research focus, which has myocardial protect function and plays an important role in cell growth, differentiation and apoptosis. In addition, the pathway could regulate metabolism of animal fat. But there are less research on this pathway in skeletal muscles. In this study, Kun Ming mice and mouse skeletal muscle were taken as study object, which were treated with AG490 and IL-11. Body weight change, body temperature and oxidative enzymes (SOD、CAT、MDA and GSH-PX) activity were measured, and JAK2、STAT3、MyoD、Myf5、LXRα、UCP3、PPARγ、FAS and HSL gene expression were detected by using Real-time PCR, to analysis the effect of JAK2/STAT3 signaling pathway in mouse skeletal muscle development, energy metabolism and oxidative enzyme activity.
     1 To study the effects of JAK2/STAT3 signal pathway on the expression of muscle development and energy metabolic related genes by inhibiting this pathway using AG490. The tentative male Kunming mice were treated with intraperitoneal injection of AG490 for two weeks. After execution, the leg muscle was surgically removed and total RNA was extracted. Real-time quantitative PCR was used to examine the expression of the key factors in JAK2/STAT3 signal pathway (JAK2、STAT3), the growth related genes of skeletal muscle(MyoD、Myf5), and energy metabolic related gene(sLXRα、UCP3). Compared with control, in the treatment group, the body weight of mice were significantly decreased (P<0.05); the body temperature was stable; the expression of JAK2 and STAT3 were significantly decreased(P<0.05); the expression level of LXRα、UCP3、MyoD and Myf5 were decreased extremely significant (P<0.01). JAK2/STAT3 signal pathway might regulate the growth of skeletal muscle and energy metabolism by decreasing the expression levels of the growth of skeletal muscle development and energy metabolic related genes.
     2 To study the effects of JAK2/STAT3 signal pathway on the expression of muscle development and energy metabolic related genes by activating this pathway using IL-11. The tentative male Kunming mice were treated with intraperitoneal injection of IL-11 for two weeks. After execution, the leg muscle was surgically removed and total RNA was extracted. Real-time quantitative PCR was used to examine the expression of the key factors in JAK2/STAT3 signal pathway, JAK2 and STAT3, the growth related genes MyoD and Myf5, and energy metabolic related genes LXRαand UCP3. Compared with control group, the mice weight of muscle and body were significantly increased in the treatment groups (P<0.05); body temperature was stable in the reasonable rang; the expression of STAT3 and JAK2 were significantly increased (P<0.05); the expression level of MyoD和Myf5 were significantly increased(P<0.05); the expression of LXRαwas slightly up-regulated (P>0.05)and UCP3 expression increased (P<0.05). The results indicated that JAK2/STAT3 signal pathway might regulate the growth of skeletal muscle and energy metabolism by increasing the expression levels of the skeletal muscle development and energy metabolic related genes.
     3 Mice were respectively treated with IL-11 and AG490. The results showed that in IL-11 treatment group, the expression of genes PPARγincreased significantly (P<0.05), FAS and HSL expression were unchanged (P>0.05); CAT、GST-PX and SOD activity decreased significantly (P<0.05), MDA content was significantly increased (P<0.05). In AG490 treatment group, PPARγ、FAS and HSL expression decreased significantly (P<0.05); CAT、GST-PX and SOD activity significantly decreased (P<0.05), but the MDA content significantly increased. The results showed that JAK2/STAT3 signaling pathway may be involved in regulating muscle fat deposition, Also affect the activity of tissues of the body play an important role in protect the organization.
     4 Skeletal muscle cells were respetively treated with 15μg/mL AG490 and 10 ng/mL IL-11, In AG490 treatment group, JAK2 and STAT3 expression significantly decreased (P<0.05); MyoD and Myf5 expression significantly decreased (P<0.05); LXRаand UCP3 expression significantly decreased (P<0.05). In IL-11 treatment group, JAK2 and STAT3 expression significantly increased (P<0.05); MyoD and Myf5 expression increased significantly (P<0.05); LXRаgene expression did not change significantly(P>0.05), UCP3 expression significantly increased (P<0.05). The results certificated that JAK2/STAT3 pathway relates to skeletal muscle development and energy metabolism at the cell level.
引文
陈晓萍,徐飞. 2009. JAK-STAT信号通路研究进展[J].自然杂志, 25(3): 149~152.
    仓木拉,杨涛,商鹏. 2008.脂调节基因—UCP3基因研究进展[J].现代农业科技, 16: 244~246.
    邓永兵,唐文渊. 2010. PPARγ的神经保护作用研究进展[J].中华神经外科疾病研究杂志, 9(1): 92~94.
    丁能水,黄路生,任军等. 2000.猪激素敏感脂肪酶(HSL)基因的研究概况[J].遗传, 22(5): 331~333.
    复正远,顾家珍,张遵严等. 1996.体外循环下心肌缺血再灌注后血清心肌酶、SOD活性变化及复方丹参的应用[J].中华麻醉学杂志, 16(3): 1153~1155.
    宫本法,王建祥. 2006. JAK2 V617F突变与真性红细胞增多症发生[J].国际输血及血液学杂志, 29(5): 403~405.
    胡芳芳,陈乔尔. 2008. Fas基因转染与口腔鳞癌基因治疗的研究进展[J].山东医药, 48(18): 113~114.
    黄海雯,吴德沛. 2009. PPARγ及其配体在恶性血液病中的研究进展[J].中国实验血液学杂志, 17(6): 1592~1596.
    蒋林科,孙超. 2009.虾红素对小鼠肌肉组织和骨骼肌细胞中能量代谢相关基因mRNA表达的影响[J].生物工程学报, 03: 1~6.
    刘燕,杨琳. 2007.影响肌肉生成的调控因子[J].饲料工业, 28(7): 17~22
    刘胜中,綦俊,杨双强. 2008. JAK2/STAT3通过上调Bcl-2蛋白介导TTX心肌保护作用[J].重庆医科大学学报, 33(2): 169~172.
    李芳,孙俊英,章秋. 2009. PPARγ与骨代谢的研究进展[J].安徽医药, 13(4): 418~419.
    罗桂芬,文旭辉,杨公社. 2007.瘦素(Leptin)对猪前体脂肪细胞分化及PGC-1α和UCPs mRNA表达的影响[J].中国生物化学与分子生物学报, 23(1): 51~55.
    李波,李华,李学伟等. 2006.猪解耦联蛋白3(UCP3)基因的研究进展[J].黑龙江畜牧兽医, 8: 28~30.
    马涛,曹现宝,薛希均. 2009.癌基因STAT3与喉癌的关系研究进展[J].医学综述, 15(19): 2957~2959.
    孙文浩,朱庆. 2008.生肌决定因子Myf5基因的研究进展[J].黑龙江畜牧兽医, 7: 28~30.
    孙艳香,魏宇淼,廖玉华等. 2006. NF-κB和Jak-STAT信号途径参与血管紧张素Ⅱ介导的大鼠主动脉平滑肌细胞增殖效应[J].高血压杂志. 14(6): 477~482.
    孙红梅,孙超. 2007.猪前体脂肪细胞与肌卫星细胞联合培养体系建立及生长特性初步研究. [硕士学位论文].陕西:西北农林科技大学
    田树海,芦春莲,李建国. 2008.营养因素对牛肉肌间脂肪的调控研究[J].黑龙江畜牧兽医, 8: 19~20.
    涂荣剑,邓昌彦,熊远著. 2004.猪UCP3基因部分编码区序列分析及其单核苷酸多态与胴体、肉质性状的遗传效应[J].遗传学报, 31(8): 807~812.
    唐梅,张钲,宁金民,王银娣. 2006. JAK2/STAT3信号通路在阿托伐他汀抗大鼠血管平滑肌细胞增殖凋亡中的作用研究[J].中国分子心脏病学杂志, 6(3): 161~165.
    王强,江渝. 2009.肝X受体的研究进展[J].生理科学进展, 40(2): 147~150.
    王安娜,冉雪琴,王嘉福,夏先林. 2009.贵州地方猪品种HSL基因多态性与屠宰性状的关联性研究[J].畜牧兽医学报, 40(5): 627~632.
    潘湘涛,吴锦昌. 2006. JAK2基因突变与骨髓增殖性疾病[J].中国医学文摘·内科学, 27(4): 305~308.
    王静丽,赵临襄,景永奎. 2003.谷胱甘的耗竭与肿瘤细胞凋亡[J].中国药物化学杂志, 13(6): 361~366.
    谢亮,孙超. 2009. JAK2/STAT3通路对小鼠生脂和脂解基因转录的影响. [硕士学位论文].陕西:西北农林科技大学
    余守强,杨小龙,朱少金. 2009. STAT3在常见消化道恶性肿瘤中研究进展[J].放射免疫学杂志, 22(4): 379~381.
    杨娇,王金环,李牧. 2008.信号转导和转录激活因子3的研究进展及其与脑胶质瘤的关系[J].武警医学院学报, 17(6): 537~542.
    张巍,陈品林,杜丽,王凤阳,祁超. 2009. JAK2结构及其功能研究进展[J].海南大学学报(自然科学版), 27(1): 87~90.
    张明涛,鞠大鹏,杨永青,杨公社. 2009. Leptin通过JAK-STAT3通路抑制原代大鼠脂肪细胞perilipin mRNA的表达[J].西北农林科技大学学报(自然科学版), 37(4): 25-30.
    詹林达,周再生,徐伟杰等. 2007. JAK2/STAT3信号通路在IL-6介导肾小管上皮细胞转分化中的作用[J].中国中西医结合肾病杂志, 8(8): 453~457.
    赵金红,黄勇富,彭祥伟. 2007.肌分化因子MyoD的研究进展[J].上海畜牧兽医通讯, 6: 12~13.
    赵雪莹,闫忠红,李冀. 2010.二至丸对D-半乳糖致衰老模型大鼠CAT、GSH-PX影响的实验研究[J].中医药信息, 27(2): 34~36.
    左从林,徐明波,王勇波等. 2000.重组人白细胞介素-11对正常及骨髓抑制小鼠的促血小板生成作用[J].中国实验血液学杂志, 8: 24~30.
    Ackert-Bicknell C, Rosen C. 2006. The Genetics of PPARG and the Skeleton[J]. PPAR Res, 2006(2006): 93258.
    Asakura A, Komaki M, Rudnicki M. 2001. Muscle satellite cells are multipotential stem cells that exhibit myogenic, osteogenic, and adipogenic differentiation[J]. Differentiation, 68: 53~245.
    Ahima RS, Qi Y, Singhal NS. 2006. Adipokines that link obesity and diabetes to the hypothalamus[J]. Prog Brain Res, 153: 155-174.
    Alzaid S K and Turkson J. 2008. STAT3 as a target for inducing apoptosis in solid and hematological tumors [J]. Cell Reseearch, 18(2): 254~267.
    Bellissimo M I, Amado D, Abdalla DS, et al. 2001. Superoxide dismutase, Glutathione peroxidase activieies and the hydroperoxide concentration are modified in the hippocampus of epileptic rats. Epelepsy Res, 46(2): 121~128.
    Bertz J, Zang C, Liu H, et al. 2009. Compound 48, a novel dual PPAR alpha/gamma ligand, inhibits the growth of human CML cell lines and enhances the anticancer-effects of imatinib. Leuk Res, 33: 686~692.
    Bicknell KA, Harmer SC, Yiangson S, Lockwood W, Bicknell AB. 2009. Lys-gamma3-MSH: A global regulator of hormone sensitive lipase activity?[J]. Mol Cel l Endocrinol, 300: 71~76.
    Bailey P, Tamara H, Andrew BL. 2001. The origin of skeletal muscle stem cells in the embryo and the adul[J]. Curr Opin Cell Biol, 13: 89~679.
    Bromberg J A, Hames E and Darnell J. 2000. The role of STATs in transcriptional control and their impact on cellular function [J]. Oncogene, 19: 2468~2473.
    Bell AW, Thompson G. 1979. Free fatty acid oxidation in bovine muscle in vivo: effects of cold exposure and feeding[J]. Am J Physiol, 237: 309~15.
    Boudny V, Kovarik J. 2002. JAK/STAT signaling pathways and cancer. Janus kinases/signal transducers and activators of transcription[J]. Neop lasma, 49(6): 349~355.
    Cline G W, Vidal-Puig A J and Dufour S. 2001. In vivo effects of uncoupling protein-3 gene disruption on mitochondrial energy metabolism [J]. Journal of Biological Chemistry, 276: 20240~20244.
    CARVAJAL J J, COX D, SUMMERBELL D, et al. 2001. A BAC transgenic analysis of theMrf4/Myf5 locus reveals interdigitated elements that control activation and maintenance of gene exp ression during muscle development[J]. Development, 128: 1857~1868.
    CHA S H, HU Z, CHOHNAN S, et al. 2005. Inhibition of hypothalamic fattyacid synthase triggers rapid activation of fatty acid oxidation in skeletal muscle[J]. Proc Natl Acad Sci, 102(41): 14557~14562.
    Commerford SR, Vargas L, Dorfman SE, et al. 2007. Dissection of the insulin2sensitizing effect of liver X receptor ligands. Mol Endocrinol, 21: 3002~3012.
    Challiss RA, Ferre P. 1988. Integration of carbohydrate and lipid metabolism in skeletal muscle during postnatal development[J]. Reprod Nutr Dev, 28: 805~15.
    Dressel U, Allen T L and Pippal J B. 2003. The peroxisome proliferator-activated receptor beta/delta agonist, GW501516, regulates the expression of genes involved in lipid catabolism and energy uncoupling in skeletal muscle cells [J]. Molecular Endocrinology, 17(12): 2477~2493.
    Damell JE J r, Kerr M, Stark GR, et al. 1994. Jak-STAT pathways and transcriptional activation in response to IFNs and other extracellular signalling proteins[J]. Science, 264(5164): 1415~1421.
    Erikaen K W, Kaltoft K and Mikkelsen G. 2001. Constitutive STAT3-activation in Sezary syndrome; tyrphostin AG490 inhibits STAT3-activation, interleukin-2 receptor expression and growth of leukemic Sezary cells [J]. Leukemia, 15(5): 787~793.
    Ellisa P A, Deyan L, Antoinette B, et al. 2009. Flavonoids, a prenatal prophylaxis viatargeting JAK2/STAT3 signaling to oppose IL-6/MIA associated autism[J]. Journal of Neuroimmunology, 217(1-2): 20~27.
    Esther B, Cèlia G M, Sandra M. 2009. UCP3 overexpression neutralizes oxidative stress rather than nitrosative stress in mouse myotubes[J]. FEBS Letters, 583(2): 350~356.
    Frank V, Eva V, James FD. 2001. The role of active oxygen species in plant signal transduction.Plant Science 161: 405~414.
    Ferrand A, Kowalski-Chauvel A, Bertrand C, Pradayrol L, Fourmy D, Dufresne M, Seva C. 2004. Involvement of JAK2 upstream of the PI 3-kinase in cell-cell adhesion regulation by gastrin. Exp Cell Res, 301(2): 128~138.
    Fang Q C, Jia W P and Yang M. 2005. Effect of polymorphism of uncoupling protein 3 gene-55(C>T) on the resting energy expenditure, total body fat and regional body fat in Chinese [J]. Chinese journal of medical genetics, 22(5): 485~488.
    Fruhbeck G. 2006. Intracellular signalling pathways activated by leptin[J]. Biochem J, 393:7-20.
    Foahay K, Rodriguez G and Hoel B. 2005. JAK2/STAT3 Directs Cardiomyogenesis Within Murine Embryonic Stem Cells In Vitro [J]. Stem Cells, 23: 530~543.
    Giardino R, Giavaresi G, FiniM, et al. 2002. The role of different chemical modifications of superoxide dismutase in preventing a prolonged muscular ischemis/reperfusion injury[J]. Artif CellsBlood Immubiol Biotechmol, 30(3): 189~198.
    Geyeregger R, ZeydaM, Stulnig TM, et al. 2006. L iver X receptors in cardiovascular and metabolic disease. CellMol L ife Sci, 63: 524~539.
    Gong D W, Monemdjou S, Gavrilova O, et al. 2000. Lack of obesity and normal response to fasting and thyroid hormone in mice lacking uncoupling protein-3[J]. J Biol Chem, 275(21): 16251~16257.
    Gao J, Li Z, Paulin D. 1998. A novel site, Mt, in the human desmin enhancer is necessary for maximal expression in skeletal muscle[J]. J Biol Chem, 273(11): 6402.
    Garcia-martinez C, Ibille B, Solanes G, et al. 2001. Over-expression of UCP3 in cultured human muscle lowers mitochondrial membrane potential, raises ATP/ADT ratio, and favors fatty acid vs. glucose ocidation[J], FASEB J, 15(11): 2033~2035.
    Han D H, Nolte L A, Ju J S, Coleman T and Holloszv J O. 2004. UCP-mediated energy depletion in skeletal muscle increases glucose transport despite lipid accumulation and mitochondrial dysfunction[J]. American journal of physiology endocrinol Metabolism, 286(3): 347~353.
    Hegyi K, Fulop K, Kovacs K, et al. 2004. leptin-induced signal transduction pathways[J]. Cell Biol Int, 28: 158-169.
    Hattori R, Maulik N, Otani H, et al. 2001. Role of STAT3 in ischemia preconditioning[J]. J Mol Cell Cardiol, 33(11): 1929~1936.
    Harbitz I, Langset M, Ege A B, et al. 1999. The porcine hormone-sensitive lipase gene: sequence, structure, polymorphisms and linkage mapping[J]. A nim Genet, 30: 10~15.
    Ishibashi J, Perry RL, Asakura A. 2005. MyoD induces myogenic differentiation through cooperation of its NH2-and COOH-terminal regions. J Cell Biol, 171(3): 471~482.
    Jimenez M, Yvon C and Lehr L. 2002. Expression of uncoupling protein-3 in subsarcolemmal and intermyofibrillar mitochondria of various mouse muscle types and its modulation by fasting[J]. European Journal of Biochemistry, 269: 2878~2884.
    Kersten S, Desvergne BA and Wahli W. 2000. Roles of PPARs in health and disease[J]. Nature, 405: 421~424.
    Kurth I, Horsten U, Pflanz S, et al. 1999. Activation of the signal transducer glycoprotein 130 by both IL-6 and IL-11 requires two distinc binding epitopes. J Immunol, 162: 1480~1487.
    Krintel C, Osmark P, Larsen MR, Resj? S, Logan DT, Holm C. 2008. Ser649 and Ser650 are the major determinants of protein kinase A-mediated activation of human hormone-sensitive lipase against lipid substrates[J]. PL oSON E, 3: e3756.
    Lconard W J. 1999. Type I cytokines and interferons and their receptors [J]. Fundamental Immunology, 4: 74l~774.
    Lee S, Kohane I, Kasif S. 2005. Genes involved in comp lex adap tive processes tend to have highly conserved up stream regions in mammalian genomes[J]. BMC Genomics, 27: 168.
    Lobo M V, Huerta L, Arenas M I, et al. 2009. Hormone-sensitive lipase expression and IHC localization in the rat ovary, oviduct, and uterus[J]. JHistochem Cy tochem, 57: 51~60.
    Li L, Gao Y, Zhang L L, et al. 2008. Concomitant activation of the JAK/STAT3 and ERK1/2 signaling is involved in lep tin-mediated proliferation of renal cell carcinoma Caki-2 cells[J]. CancerBiol Ther, 7(11): [Epub ahead of print].
    Lconard W J. 1999. Type I cytokines and interferons and their receptors [J]. Fundamental Immunology, 4: 74l~774.
    Maak S, Neumann K, Swalve H H. 2006. Identification and analysis of putative regulatory sequences for the Myf5/Myf6 locus indifferent vertebrate species[J]. Gene, 379: 141~147.
    Miyoshi H, Perfield J W, Obin M S, et al. 2008. Adipose triglyceride lipase regulates basal lipolysis and lipid droplet size in adipocytes [J]. J Cel l B iochem, 105: 1430~1436.
    Nakajima H, Takenaka M, Kaimori J Y, Hamano T, Iwatani H, Sugaya T, Ito T, Hori M, Imai E. 2004. Activation of the signal transducer and activator of transcription signaling pathway in renal proximal tubular cells by albumin. J Am Soc Nephrol, 15(2): 276~285.
    Naik SU, Wang X, Da Silva JS, et al. 2006. Pharmacological activation of liver X receptors promotes reverse cholesterol transport in vivo. Circulation, 113: 90~97.
    Omura T, Yoshiyama M, Ishikura F, Kobayashi H, Takeuchi K, Beppu S, Yoshikawa J. 2001. Myocardial ischemia activates the JAK-STAT pathway through angiotensin II signaling in vivo myocardium of rats[J]. J Mol Cell Cardiol, 33(2): 307~316.
    Parganas E, Wang D, Stravopodis D, Topham DJ, Marine JC, Teglund S, Vanin EF, Bodner S, Colamonici OR, van Deursen JM, Grosveld G, Ihle JN. 1998. JAK2 is essentialfor signaling through a variety ofcytokine receptors[J]. Cell, 93: 385
    Rawlings JS, Rosler KM, Harrison DA. 2004. The JAK/STAT signaling pathway[J]. J Cell Sci, 117(8): 1281~1283.
    Ribiere C, Plut C. 2005. Nutritional regulation of leptin signaling[J]. Curr Hypertens Rep, 7(1): 11-16. Ross SE et al. 2002. Mol Cell Biol, 22(16): 5989~5999.
    Stepkowski SM, Chen W, Ross JA, et al. 2008. STAT3: an important regulator of multiple cytokine functions [J]. Transp lantation, 85(10): 1372~1377.
    Shulman AI, Mangelsdorf DJ. 2005. Retinoid X receptor heterodimers in the metabolic syndrome. N Engl JMed, 353: 604~615.
    Stumvoll M, Wahl H G, Jacob S, Rettig A, Machicao F, H?ring H. 2001. Two novel prevalent polymorphisms in the hormone-sensitive lipase gene have no effect on insulin sensitivity of lipolysis and glucose disposal[J]. J LipidRes, 42: 1782~1788.
    Schindler CW. 2002. Series introduction JAK-STAT signaling in human disease[J]. J Clin Invest, 109(9): 1133~1137.
    Sokolova.M, Sokolov EP. 2005. Evolution of mitochondrial uncoupling proteins: novel invertebrate UCP homologues suggest early evolutionary divergence of the UCP family[J]. FEBS Lett, 579(2): 313.
    Sandhu SK, Kaur G. 2002. Alterations in oxidative stress scavenger system in aging rat brain and lumphocytes [J]. Biogerontology, 3(3): 161~173.
    Sahar inen P, Takaluoma K, Silvenno ineco. 2000. Regulation of the JAK2 tyrosine kinase by its pseudokinase domain[J]. Mol. Cell. Biol, (20): 3387~3395.
    Tapseott S J. 2005. The circuitry of a master switch: Myod and the regulation of skeletal muscle gene transcription. Development, 132(12): 2685~2695.
    Umadevi K, Michelle A. 2010. Angiotensin II activates JAK2/STAT3 pathway and induces interleukin-6 production in cultured rat brainstem astrocytes[J]. Regulatory Peptides, 159(1-3): 110~116.
    Voet D, Voet JG, Pratt CW. 1999. Fundamentals of biochemistry[M]. John Wiley & Sons, Inc. Wen CY, Ito M, Matsun M, et al. 2002. Mechanism of the antiulcerogenic effect of IL-11 on acenic acid-induced gastric ulcer in rats[J]. Life Sci, 70 (25): 2997~3005.
    Watanabe S, Mu W, Kahn A, et al. 2004. Role of JAK/STAT pathway in IL-6-induced activation of vascular smooth muscle cells. Am J Nephrol, 24: 387~392.
    Xiong H, Zhang Z G and Tian X Q. 2008. Inhibition of JAK1, 2/STAT3 signaling induces apoptosis, cell cycle arrest, and reduces tumor cell invasion in colorectal cancer cells[J]. Neoplasia, 10(3): 287~297.
    Yan K and Yang Y X. 2009. STAT3 induces muscle stem cell differentiation by interaction with MyoD[J]. Cytokine, 46(2): 137~141.
    Yanping, Yang Ying Xu, et al. 2009. STAT3 induces muscle stem cell differentiation by interaction with MyoD[J]. Cytokine, 46(2): 137~141.
    Zhong Z, Wen Z, Darnell JE J r. 1994. STAT3: a STAT familymember activated by tyrosine phosphory- lationin response to epidermal growth factor and interleukin-6[J]. Science, 264 (5155): 95~98.
    Zelcer N, Tontonoz P. 2006. L iver X recep tors as integrators of metabolic and inflammatory signaling. J Clin Invest, 116: 607~614.
    Zechner R, Kienesberger P C, Haemmerl E G, et al. 2009. Adipose triglyceride lipase and the lipolytic catabolism of cellular fat stores[J]. J LipidRes, 50: 3221.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700