2型糖尿病大鼠神经视网膜损伤蛋白质组学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
糖尿病视网膜病变(diabetic retinopathy,DR)是糖尿病最为常见的慢性并发症,是当今世界上中老年龄段人群主要致盲性眼病之一。资料表明,糖尿病患者中,DR的发病率高达50%。15年病程的糖尿病患者,大约有10%因视网膜病变而有严重视力障碍,约2%成为盲目。
     应用传统的研究方法,虽然已经初步揭示了DR的病理过程和部分相关机制,但是,缺乏对其复杂的生化和分子机制的全面了解。在临床上,对DR的预防和治疗,至今还没有理想的措施。蛋白质组学作为一门新兴学科,着重于从整体水平上研究生物体的功能。应用蛋白质组学的研究方法能够全面揭示组织或细胞内蛋白质的表达状况。通过比较正常和疾病状态下表达蛋白的差异,可揭示参与DR病理过程的多种因子和调控网络,发现新的与DR病理过程相关的蛋白。该技术对深入、系统的研究DR发生发展的病理机制,确定有效预防和治疗药靶方面有独特的优势。
     本研究第一部分,对SD大鼠神经视网膜进行分离,并用组织学和透射电镜方法鉴定所分离的组织,提取组织总蛋白,应用二维电泳(two-dimensional gel electrophoresis,2DE)技术对提取的蛋白进行分离,摸索各个实验环节的条件,获得了分辨率高和重复性好的2DE图像,建立了2DE分离技术的平台,为进一步研究奠定了基础。
     本研究的第二部分,用高脂饮食联合小剂量STZ(streptozotocin,STZ)腹腔注射建立大鼠2型糖尿病模型。以年龄匹配正常SD大鼠为对照。分离神经视网膜组织,提取组织总蛋白。2DE分离蛋白质,应用银染或考马斯兰染色方法显示分离的蛋白质。通过计算机图像分析系统对凝胶图像进行处理,在24cm,pH3-10的胶体上,正常组平均每块胶检测到3122±37(n=3)个蛋白点;糖尿病组,平均每块胶检测到2702±21(n=3)个蛋白点,平均匹配率为76.8%。大部分蛋白质点分布在pI 4-8和分子量14.4-64.4KD区域。与正常组比较,表达有明显差异的约150个蛋白点。在糖尿病组表达上调的点68个,下调的点82个。
     采用肽质量指纹谱(peptide mass fingerprinting,PMF)和串联质谱肽序列分析方法对差异表达蛋白进行鉴定。经鉴定,得分值较高的20个蛋白质中,有10个为新发现的蛋白,值得进一步研究。初步分析表明,差异蛋白质的功能涉及糖代谢和脂代谢、炎症反应、NO合酶途径以及细胞骨架蛋白和分子伴侣蛋白等。
     本研究第三部分,应用western blot方法和间接免疫荧光(immunofluoresce,IMF)方法显示糖尿病大鼠神经视网膜组织αA-晶体蛋白表达上调。IMF显示αA-晶体蛋白主要分布在视网膜核层。验证了2DE的结果。
     本研究第四部分,应用组织学方法显示早期糖尿病大鼠视网膜神经节细胞密度降低。视网膜消化铺片方法没有发现微血管周细胞和内皮细胞有明显异常变化。提供了糖尿病早期视网膜神经细胞退行性病变的依据。
     本研究应用蛋白质组学的技术和方法,分离和鉴定了早期糖尿病大鼠神经视网膜差异表达蛋白。发现了一些新蛋白。用western blot和间接免疫荧光法验证2DE结果。组织学方法和视网膜消化铺片结果证明糖尿病早期视网膜神经组织退行性病变早于微血管病变。本研究实验方法先进,技术稳定,结果可靠,提供了DR发病机制的相关依据。
Diabetic retinopathy(DR), a common chronic complication ofdiabetes, is one of leading causes of blindness and visual disability inelderly worldwide. The data indicate that the prevalence rate of DR isabout 50.0% in diabetes. Approximately 10% of patients with diabetes formore than 15 years have developed severe visual impairment, and about2% have become blind.
     Although the pathological process and correlative pathologicmechanism of DR have been widely studied by using conventionalmethods, the biochemical and molecular pathways that underlie theinitiation and progression of diabetic retinopathy remain unresolved andthere is no effective means to prevent and cure DR even today.Proteomics, a new approach to study of diseases, is not to study ofindividual protein as traditionally, but rather to study the entirecomplement of proteins expressed by a cell or tissue at a given time.The multiple factors and the complex regulatory network that are responsible for pathological process of DR can be revealed by comparingthe protein expression profiles from normal tissue to those frompathological tissue, and also the cellular and molecular mechanism of DRbe unraveled.
     In the first section of the present study, neural retinas were dissectedfrom eyes of Sprague-Dawley (SD) rats and separated neural retinas wereidentified by histopathology and transmission electron microscope (TEM).Total proteins of neural retina were extracted and high-resolution 2DEwas used to separate total proteins. The experiments were repeated tooptimize the experiment conditions of the isoelectric focusing (IEF),SDS polyacrylamide gel electrophoresis(SDS-PAGE), silver staining(or coomassie-blue-staining) and 2DE techniques. Well resolved,reproducible 2DE profiles of rat neural retinas were establised. Theresults provide a basis for further research on the diabeticretinopathy.
     In section two, normal age-matched control SD rats and 8 weeksdiabetic rats induced by feeding a high-fat(HF) diet combined withintraperitoneal(i.p.) injection of streptozotocin (STZ) were researched.Total proteins were extracted from neural retinas of two groups of rats,then high-resolution 2DE was used to separate total proteins followed bysilver staining or coomassie-blue-staining. Computer assisted imageanalysis(Image Master 5.0) to quantitative compare and analyze the differences in protein expression between age-matched control rats anddiabetic rats. Total 3122±37(n=3) spots were detected in normal samplesand 2702±21(n=3) spots in diabetic rats. The average matching rate was76.8%. Most protein spots were visualized within a pI range of 4.0-8.0and a molecular mass range from 14.4 to 66.4 kDa. It was found byimage analysis that about 150 spots in 2DE gel of diabetic retinas thatexhibited statistically significant variations, including up-regulation of 68proteins in diabetic rat retinas, down-regulation of 82 compared withnormal rat retinas. Twenty differentially expressed proteins wereidentified by peptide mass fingerprinting (PMF) or peptide sequence, inwhich ten proteins were newly discovered proteins associated with DR.The functions of identified proteins were primary analyzed. Thedifferentially expressed proteins revealed by our experiments werediverse, including proteins involved in saccharide and lipid metabolism,inflammatory response, nitric oxide synthetase pathway, as well ascytoskeletal and molecular chaperone proteins.
     Then, the proteinαA-crystallin was chosen as a target for specificimmunodetection using western blot. Moreover, immunofluorescence(IMF) staining was carried out to demonstrate the expression and locationofαA-crystallin in the retina. The resultes corroborate the variation foundby 2DE.
     A histological method(HE staining)was used to detect the neuronal degeneration of diabetic retina and found the decreased density ofganglion cell in the retinas from diabetes group.
     In short, using a proteomics approach we separated and identifiedproteins differentially expressed in the diabetic retinas and find somespots were probably novel proteins. Western blot and immunofluore-scence staining were used to corroborate the variation found by 2DE. Ahistologic method demonstrated neuronal degeneration of diabetic retinain the early stage of diabetes. The methods applied in present study werestable and the results were reliable. All data provided a new understand tothe pathomechanism of the DR.
引文
1. Wild S, Roglic G, Green A, Sicree R, King H: Global prevalence of diabetes: estimates for the year 2000 and projections for 2030. Diabetes care 2004, 27(5): 1047-1053.
    2. Rathmann W, Giani G: Global prevalence of diabetes: estimates for the year 2000 and projections for 2030. Diabetes care 2004, 27 (10): 2568-2569; author reply 2569.
    3. Klein R, Klein BE, Moss SE, Davis MD, DeMets DL: The Wisconsin epidemiologic study of diabetic retinopathy. Ⅲ. Prevalence and risk of diabetic retinopathy when age at diagnosis is 30 or more years. Archives of ophthalmology 1984, 102 (4): 527-532.
    4. Nakajima M, Cooney MJ, Tu AH, Chang KY, Cao J, Ando A, An GJ, Melia M, de Juan E, Jr.: Normalization of retinal vascular permeability in experimental diabetes with genistein. Investigative ophthalmology & visual science 2001, 42 (9): 2110-2114.
    5. Fong DS, Aiello L, Gardner TW, King GL, Blankenship G, Cavallerano JD, Ferris FL, 3rd, Klein R: Diabetic retinopathy. Diabetes care 2003, 26 (1): 226-229.
    6.中华医学会糖尿病学分会糖尿病慢性并发症调查组:全国住院糖尿病患者慢性并发症及其相关危险因素10年回顾性调查分析.中国糖尿病杂志2003,11:2322-2371.
    7. Klein R, Klein BE, Moss SE, Davis MD, DeMets DL: The Wisconsin epidemiologic study of diabetic retinopathy. II. Prevalence and risk of diabetic retinopathy when age at diagnosis is less than 30 years. Archives of ophthalmology 1984, 102 (4) :520-526.
    8. Keen H: The Diabetes Control and Complications Trial (DCCT) . Health Trends 1994,26 (2) :41-43.
    9. Implications of the United Kingdom Prospective Diabetes Study. American Diabetes Association. Diabetes care 1998, 21 (12) :2180-2184.
    10. Ferris FL, 3rd, Chew EY, Hoogwerf BJ: Serum lipids and diabetic retinopathy. Early Treatment Diabetic Retinopathy Study Research Group. Diabetes care 1996, 19 (11) :1291-1293.
    11. de Fine Olivarius N, Nielsen NV, Andreasen AH: Diabetic retinopathy in newly diagnosed middle-aged and elderly diabetic patients. Prevalence and interrelationship with microalbuminuria and triglycerides. Graefes Arch Clin Exp Ophthalmol 2001, 239 (9) :664-672.
    12. Van Heyningen R: Formation of polyols by the lens of the rat with sugar cataract. Nature 1959, 184 : 194 - 195.
    13. Greene DA, Lattimer SA, Sima AA: Sorbitol, phosphoinositides, and sodium-potassium-ATPase in the pathogenesis of diabetic complications. N Engl J Med 1987, 316 (10) :599-606.
    14. Li WY, Zhou Q, Qin M, Tao L, Lou M, Hu TS: Reduced absolute rate of myo-inositol biosynthesis of cultured bovine retinal capillary pericytes in high glucose. Exp Eye Res 1991, 52 (5):569-573.
    15. King GL, Shiba T, Oliver J, Inoguchi T, Bursell SE: Cellular and molecular abnormalities in the vascular endothelium of diabetes mellitus. Annu Rev Med 1994, 45:179-188.
    16. Chibber R, Molinatti PA, Rosatto N, Lambourne B, Kohner EM: Toxic action of advanced glycation end products on cultured retinal capillary pericytes and endothelial cells: relevance to diabetic retinopathy. Diabetologia 1997, 40 (2):156-164.
    17. Adamis AP: Is diabetic retinopathy an inflammatory disease? Br J Ophthalmol 2002, 86 (4):363-365.
    18. Miyahara S, Kiryu J, Yamashiro K, Miyamoto K, Hirose F, Tamura H, Katsuta H, Nishijima K, Tsujikawa A, Honda Y: Simvastatin inhibits leukocyte accumulation and vascular permeability in the retinas of rats with streptozotocin-induced diabetes. Am J Pathol 2004, 164 (5):1697-1706.
    19.唐仕波,白宁艳,马静,等:白细胞对早期糖尿病视网膜病变作用的研究.中华眼底病杂志 2003,19:344-347.
    20. Joussen AM, Poulaki V, Le ML, Koizumi K, Esser C, Janicki H, Schraermeyer U, Kociok N, Fauser S, Kirchhof B et al: A central role for inflammation in the pathogenesis of diabetic retinopathy. Faseb J 2004, 18 (12):1450-1452.
    21. Boulton M, Foreman D, Williams G, McLeod D: VEGF in diabetic retinopathy. Br J Ophthalmol 1998, 82 (5) :561-568.
    22. Nicolucci A, Carinci F, Cavaliere D, Scorpiglione N, Belfiglio M, Labbrozzi D, Mari E, Benedetti MM, Tognoni G, Liberati A: A meta-analysis of trials on aldose reductase inhibitors in diabetic peripheral neuropathy. The Italian Study Group. The St. Vincent Declaration. Diabet Med 1996, 13 (12) :1017-1026.
    23. A randomized trial of sorbinil, an aldose reductase inhibitor, in diabetic retinopathy. Sorbinil Retinopathy Trial Research Group. Archives of ophthalmology 1990, 108 (9) :1234-1244.
    24. van Gerven JM, Boot JP, Lemkes HH, van Best JA: Effects of aldose reductase inhibition with tolrestat on diabetic retinopathy in a six months double blind trial. Doc Ophthalmol 1994, 87 (4) :355-365.
    25. Crabbe MJ, Goode D: Aldose reductase: a window to the treatment of diabetic complications? Prog Retin Eye Res 1998, 17 (3) :313-383.
    26. Aiello LP, Bursell SE, Clermont A, Duh E, Ishii H, Takagi C, Mori F, Ciulla TA, Ways K, Jirousek M et al: Vascular endothelial growth factor-induced retinal permeability is mediated by protein kinase C in vivo and suppressed by an orally effective beta-isoform-selective inhibitor. Diabetes 1997, 46 (9) :1473-1480
    27. Ishii H, Jirousek MR, Koya D, Takagi C, Xia P, Clermont A, Bursell SE, Kern TS, Ballas LM, Heath WF et al: Amelioration of vascular dysfunctions in diabetic rats by an oral PKC beta inhibitor. Science 1996,272 (5262) :728-731.
    28. Aiello LP: The potential role of PKC beta in diabetic retinopathy and macular edema. Surv Ophthalmol 2002, 47 Suppl 2:S263-269.
    29. Lang GE: Treatment of diabetic retinopathy with protein kinase C subtype Beta inhibitor. Dev Ophthalmol 2007, 39:157-165.
    30. Giardino I, Fard AK, Hatchell DL, Brownlee M: Aminoguanidine inhibits reactive oxygen species formation, lipid peroxidation, and oxidant-induced apoptosis. Diabetes 1998, 47 (7) :1114-1120.
    31. Stitt AW: Advanced glycation: an important pathological event in diabetic and age related ocular disease. Br J Ophthalmol 2001, 85 (6) :746-753.
    32. Hogeboom van Buggenum IM, Polak BC, Reichert-Thoen JW, de Vries- Knoppert WA, van Hinsbergh VW, Tangelder GJ: Angiotensin converting enzyme inhibiting therapy is associated with lower vitreous vascular endothelial growth factor concentrations in patients with proliferative diabetic retinopathy. Diabetologia 2002, 45 (2) :203-209.
    33.Funatsu H, Yamashita H, Nakanishi Y, Hori S: Angiotensin II and vascular endothelial growth factor in the vitreous fluid of patients with proliferative diabetic retinopathy. Br J Ophthalmol 2002, 86 (3) :311-315.
    34.Moravski CJ, Kelly DJ, Cooper ME, Gilbert RE, Bertram JF, Shahinfar S, Skinner SL, Wilkinson-Berka JL: Retinal neovascularization is prevented by blockade of the renin-angiotensin system. Hypertension 2000, 36 (6) :1099-1104.
    35. Randomised placebo-controlled trial of lisinopril in normotensive patients with insulin-dependent diabetes and normoalbuminuria or microalbuminuria. The EUCLID Study Group. Lancet 1997, 349 (9068) :1787-1792.
    36. Li Q, Zemel E, Miller B, Perlman I: Early retinal damage in experimental diabetes: electroretinographical and morphological observations. Exp Eye Res 2002, 74 (5) :615-625.
    37. Daley ML, Watzke RC, Riddle MC: Early loss of blue-sensitive color vision in patients with type I diabetes. Diabetes care 1987, 10 (6) :777-781.
    38. Tokuda H, Yasuma T, Ichikawa H: [Color vision defects in diabetic retinopathy (2) . Correlation with clinical findings]. Nippon Ganka GakkaiZasshi 1984,88 (2) :266-274.
    39. Nickells RW: Apoptosis of retinal ganglion cells in glaucoma: an update of the molecular pathways involved in cell death. Surv Ophthalmol 1999, 43 Suppl 1:S151-161.
    40. Barber AJ, Lieth E, Khin SA, Antonetti DA, Buchanan AG, Gardner TW: Neural apoptosis in the retina during experimental and human diabetes. Early onset and effect of insulin. J Clin Invest 1998, 102 (4) :783-791.
    1. O'Farrell PH. High resolution two-dimensional electrophoresis of proteins. The Journal of biological chemistry 1975;250 (10) :4007-4021.
    2. Klose J. Protein mapping by combined isoelectric focusing and electrophoresis of mouse tissues. A novel approach to testing for induced point mutations in mammals. Humangenetik 1975;26(3) :231-243.
    3. Miyagi M, Sakaguchi H, Darrow RM et al. Evidence that light modulates protein nitration in rat retina. Mol Cell Proteomics 2002; 1(4) :293-303.
    4. Delmelle M, Noell WK, Organisciak DT. Hereditary retinal dystrophy in the rat: rhodopsin, retinol, vitamin A deficiency. Exp Eye Res 1975;21 (4) :369-380.
    5. Politi LE, Lehar M, Adler R. Development of neonatal mouse retinal neurons and photoreceptors in low density cell culture. Invest Ophthalmol Vis Sci 1988;29 (4) :534-543.
    6. Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 1976;72:248-254.
    7. Shevchenko A, Wilm M, Vorm O, Mann M. Mass spectrometric sequencing of proteins silver-stained polyacrylamide gels. Anal Chem 1996;68 (5) :850-858.
    8. Hauck SM, Ekstrom PA, Ahuja-Jensen P et al. Differential modification of phosducin protein in degenerating rd1 retina is associated with constitutively active Ca2+/calmodulin kinase II in rod outer segments. Mol Cell Proteomics 2006;5 (2) :324-336.
    9. Rubin GM. The draft sequences. Comparing species. Nature 2001; 409 (6822) : 820-821.
    10. Wasinger VC, Cordwell SJ, Cerpa-Poljak A et al. Progress with gene-product mapping of the Mollicutes: Mycoplasma genitalium. Electrophoresis 1995;16 (7) : 1090-1094.
    11. Crabb JW, Miyagi M, Gu X et al. Drusen proteome analysis: an approach to the etiology of age-related macular degeneration. Proc Natl Acad Sci U S A 2002;99 (23) :14682-14687.
    12. Schutt F, Ueberle B, Schnolzer M et al. Proteome analysis of lipofuscin in human retinal pigment epithelial cells. FEBS Lett 2002; 528 (1-3) :217-221.
    13. Heth CA, Schmidt SY. Protein phosphorylation in retinal pigment epithelium of Long-Evans and Royal College of Surgeons rats. Invest Ophthalmol Vis Sci 1992;33 (10) :2839-2847.
    14. Maeda A, Ohguro H, Maeda T et al. Low expression of alphaA-crystallins and rhodopsin kinase of photoreceptors in retinal dystrophy rat. Invest Ophthalmol Vis Sci 1999;40 (12) :2788-2794.
    15. Okumichi H, Kanamoto T, Souchelnytskyi N et al. Proteomic analyses of retina of excitatory amino acid carrier 1 deficient mice. Proteome Sci 2007;5:13.
    16. Zhao J, Izumi T, Nunomura K et al. MARCKS-like protein, a membrane protein identified for its expression in developing neural retina, plays a role in regulating retinal cell proliferation. Biochem J 2007; 408 (1) :51-9
    17. Li D, Sun F, Wang K. Protein profile of aging and its retardation by caloric restriction in neural retina. Biochem Biophys Res Commun 2004;318 (1) :253-258.
    18. Bonilha VL, Rayborn ME, Shadrach K et al. Characterization of semenogelin proteins in the human retina. Exp Eye Res 2006;83 (1) :120-127.
    19. Seow TK , Ong SE , Liang RC et al. Two-dimensional electrophoresis map of the human hepatocellular carcinoma cell line, HCC-M, and identification of the separated proteins by mass spectrometry. Electrophoresis 2000;21 (9) : 1787-1813.
    20. Bakhtiar R, Nelson RW. Electrospray ionization and matrix-assisted laser desorption ionization mass spectrometry. Emerging technologies in biomedical sciences. Biochem Pharmacol 2000;59 (8) :891-905.
    21. Szallasi Z. Bioinformatics. Gene expression patterns and cancer. Nat Biotechnol 1998;16 (13) :1292-1293.
    22. Gorg A, Postel W, Gunther S. The current state of two-dimensional electrophoresis with immobilized pH gradients. Electrophoresis 1988;9 (9) :531-546.
    23. Gorg A, Boguth G, Obermaier C et al. Two-dimensional polyacrylamide gel electrophoresis with immobilized pH gradients in the first dimension (IPG-Dalt) : the state of the art and the controversy of vertical versus horizontal systems. Electrophoresis 1995;16 (7) : 1079-1086.
    24. Ory RL, Kircher HW, Altschul AM. Separation of a heat-stable protein activator for the castor bean lipase. Biochimica et biophysica acta 1967; 147 (2) :200-207.
    25. Teixeira-Gomes AP, Cloeckaert A, Bezard G et al. Mapping and identification of Brucella melitensis proteins by two-dimensional electrophoresis and microsequencing. Electrophoresis 1997; 18 (1) : 156-162.
    26. Gharahdaghi F , Weinberg CR, Meagher DA et al. Mass spectrometric identification of proteins from silver-stained polyacrylamide gel: a method for the removal of silver ions to enhance sensitivity. Electrophoresis 1999;20 (3) :601-605.
    1. Foster A, Resnikoff S. The impact of Vision 2020 on global blindness. Eye 2005;19 (10) :1133-1135.
    2. Narendran V, John RK, Raghuram A et al. Diabetic retinopathy among self reported diabetics in southern India: a population based assessment. Br J Ophthalmol 2002;86 (9) :1014-1018.
    3. Wild , Roglic G, Green A et al. Global prevalence of diabetes: estimates for the year 2000 and projections for 2030. Diabetes Care 2004;27 (5) :1047-1053.
    4. Barber AJ. A new view of diabetic retinopathy: a neurodegenerative disease of the eye. Prog Neuropsychopharmacol Biol Psychiatry 2003;27 (2) :283-290.
    5. Lieth E, Gardner TW, Barber AJ, Antonetti DA. Retinal neurodegeneration: early pathology in diabetes. Clin Experiment Ophthalmol 2000;28 (1) :3-8.
    6. Abu El-Asrar AM, Desmet S, Meersschaert A et al. Expression of the inducible isoform of nitric oxide synthase in the retinas of human subjects with diabetes mellitus. Am J Ophthalmol 2001;132 (4) :551-556.
    7. Parisi V, Uccioli L. Visual electrophysiological responses in persons with type 1 diabetes. Diabetes Metab Res Rev 2001;17 (1) : 12-18.
    8. Papakostopoulos D, Hart JC, Corrall RJ, Harney B. The scotopic electroretinogram to blue flashes and pattern reversal visual evoked potentials in insulin dependent diabetes. Int J Psychophysiol 1996;21 (1) :33-43.
    9. Daley ML, Watzke RC, Riddle MC. Early loss of blue-sensitive color vision in patients with type I diabetes. Diabetes Care 1987;10 (6) :777-781.
    10. Li Q, Zemel E, Miller B, Perlman I. Early retinal damage in experimental diabetes: electroretinographical and morphological observations. Experimental eye research 2002;74 (5) :615-625.
    11. Roy MS, Gunkel RD, Podgor MJ. Color vision defects in early diabetic retinopathy. Arch Ophthalmol 1986; 104 (2) :225-228.
    12. Sokol S, Moskowitz A, Skarf B et al. Contrast sensitivity in diabetics with and without background retinopathy. Arch Ophthalmol 1985;103 (1) :51-54.
    13. Park SH, Park JW, Park SJ et al. Apoptotic death of photoreceptors in the streptozotocin-induced diabetic rat retina. Diabetologia 2003;46 (9) : 1260-1268.
    14. Barber AJ, Lieth E, Khin SA et al. Neural apoptosis in the retina during experimental and human diabetes. Early onset and effect of insulin. J Clin Invest 1998;102 (4) :783-791.
    15. Xiao Y, Junfeng H, Tianhong L et al. Cathepsin K in adipocyte differentiation and its potential role in the pathogenesis of obesity. J Clin Endocrinol Metab 2006;91 (11) :4520-4527.
    16. Reed MJ, Meszaros K, Entes LJ et al. A new rat model of type 2 diabetes: the fat-fed, streptozotocin-treated rat. Metabolism 2000;49 (11) :1390-1394.
    17. Ramadan W, Dewasmes G, Petitjean M et al. Spontaneous motor activity in fat-fed, streptozotocin-treated rats: a nonobese model of type 2 diabetes. Physiol Behav 2006;87 (4) :765-772.
    18. Srinivasan K, Viswanad B, Asrat L et al. Combination of high-fat diet-fed and low-dose streptozotocin-treated rat: a model for type 2 diabetes and pharmacological screening. Pharmacol Res 2005;52 (4) :313-320.
    19. Miyagi M, Sakaguchi H, Darrow RM et al. Evidence that light modulates protein nitration in rat retina. Mol Cell Proteomics 2002;l (4) :293-303.
    20. Delmelle M, Noell WK, Organisciak DT. Hereditary retinal dystrophy in the rat: rhodopsin, retinol, vitamin A deficiency. Exp Eye Res 1975;21 (4) :369-380.
    21. Politi LE, Lehar M, Adler R. Development of neonatal mouse retinal neurons and photoreceptors in low density cell culture. Invest Ophthalmol Vis Sci 1988;29 (4) :534-543.
    22. Shevchenko A, Wilm M, Vorm O, Mann M. Mass spectrometric sequencing of proteins silver-stained polyacrylamide gels. Anal Chem 1996;68 (5) :850-858.
    23. Hauck SM, Ekstrom PA, Ahuja-Jensen P et al. Differential modification of phosducin protein in degenerating rdl retina is associated with constitutively active Ca2+/calmodulin kinase II in rod outer segments. Mol Cell Proteomics 2006;5 (2) :324-336.
    24. Neuhoff V, Arold N, Taube D, Ehrhardt W. Improved staining of proteins in polyacrylamide gels including isoelectric focusing gels with clear background at nanogram sensitivity using Coomassie Brilliant Blue G-250 and R-250. Electrophoresis 1988;9 (6) :255-262.
    25. Ward LD, Reid GE, Moritz RL, Simpson RJ. Strategies for internal amino acid sequence analysis of proteins separated by polyacrylamide gel electrophoresis. J Chromatogr 1990;519 (1) : 199-216.
    26. Ethen CM, Reilly C, Feng X et al. The proteome of central and peripheral retina with progression of age-related macular degeneration. Invest Ophthalmol Vis Sci 2006;47 (6) :2280-2290.
    27. Medzihradszky KF, Campbell JM, Baldwin MA et al. The characteristics of peptide collision-induced dissociation using a high-performance MALDI-TOF/TOF tandem mass spectrometer. Anal Chem 2000;72 (3) :552-558.
    28. Fenn JB, Mann M, Meng CK et al. Electrospray ionization for mass spectrometry of large biomolecules. Science (New York, N.Y 1989;246 (4926) :64-71.
    29. Karas M, Hillenkamp F. Laser desorption ionization of proteins with molecular masses exceeding 10, 000 daltons. Analytical chemistry 1988;60 (20) :2299-2301.
    30. Mann M, Hojrup P, Roepstorff P. Use of mass spectrometric molecular weight information to identify proteins in sequence databases. Biological mass spectrometry 1993;22 (6) :338-345.
    31. Yates JR, 3rd, Speicher S, Griffin PR, Hunkapiller T. Peptide mass maps: a highly informative approach to protein identification. Anal Biochem 1993;214 (2) :397-408.
    32. Pennington S.R., DumnM.j.,Translated by Qian Xiao-Hong. Proteomics:form Sequence to Function. (蛋白质组学: 从序列 到功能), Beijing,Science Press, 2002; 80-83.
    33. Roepstorff P. Mass spectrometry in protein studies from genome to function. Current opinion in biotechnology 1997;8 (1) :6-13.
    34. Sirover MA. Role of the glycolytic protein , glyceraldehyde-3 -phosphate dehydrogenase , in normal cell function and in cell pathology. J Cell Biochem 1997;66 (2) :133-140.
    35. Tatton NA. Increased caspase 3 and Bax immol/Lunoreactivity accompany nuclear GAPDH translocation and neuronal apoptosis in Parkinson's disease. Exp Neurol 2000; 166 (1) :29-43.
    36. Senatorov VV, Charles V, Reddy PH et al. Overexpression and nuclear accumulation of glyceraldehyde-3-phosphate dehydrogenase in a transgenic mouse model of Huntington's disease. Mol Cell Neurosci 2003;22 (3) :285-297.
    37. Mazzola JL, Sirover MA. Subcellular localization of human glyceraldehyde-3-phosphate dehydrogenase is independent of its glycolytic function. Biochim Biophys Acta 2003; 1622 (1) :50-56.
    38. Kusner LL, Sarthy VP, Mohr S. Nuclear translocation of glyceraldehyde-3-phosphate dehydrogenase: a role in high glucose-induced apoptosis in retinal Muller cells. Investigative ophthalmology & visual science 2004;45 (5) : 1553-1561.
    39. Wentzel P, Ejdesjo A, Eriksson UJ. Maternal diabetes in vivo and high glucose in vitro diminish GAPDH activity in rat embryos. Diabetes 2003 ;52 (5) :1222-1228.
    40. Du X, Matsumura T, Edelstein D et al. Inhibition of GAPDH activity by poly (ADP-ribose) polymerase activates three major pathways of hyperglycemic damage in endothelial cells. J Clin Invest 2003; 112 (7) :1049-1057.
    41. Wistow GJ, Piatigorsky J. Lens crystallins: the evolution and expression of proteins for a highly specialized tissue. Annu Rev Biochem 1988;57:479-504.
    42. Bloemendal H, de Jong WW. Lens proteins and their genes. Prog Nucleic Acid Res Mol Biol 1991 ;41:259-281.
    43. Sax CM, Piatigorsky J. Expression of the alpha-crystallin/small heat-shock protein/molecular chaperone genes in the lens and other tissues. Adv Enzymol Relat Areas Mol Biol 1994;69:155-201.
    44. Robinson ML, Overbeek PA. Differential expression of alpha A-and alpha B-crystallin during murine ocular development. Investigative ophthalmology & visual science 1996;37(11):2276-2284.
    45. Chiesa R , Gawinowicz-Kolks MA , Spector A. The phosphorylation of the primary gene products of alpha-crystallin. J Biol Chem 1987;262 (4) : 1438-1441.
    46. Kantorow M, Piatigorsky J. Alpha-crystallin/small heat shock protein has autokinase activity. Proc Natl Acad Sci U S A 1994;91 (8) :3112-3116.
    47. Jaenicke R, Slingsby C. Lens crystallins and their microbial homologs: structure, stability, and function. Crit Rev Biochem Mol Biol 2001;36 (5) :435-499.
    48. D'Alessio G. The evolution of monomeric and oligomeric betagammol/La-type crystallins. Facts and hypotheses. Eur J Biochem 2002;269 (13) :3122-3130.
    49. Bhat SP, Nagineni CN. alpha B subunit of lens-specific protein alpha-crystallin is present in other ocular and non-ocular tissues. Biochem Biophys Res Commol/Lun 1989;158 (1) :319-325.
    50. Dubin RA, Wawrousek EF, Piatigorsky J. Expression of the murine alpha B-crystallin gene is not restricted to the lens. Mol CellBiol 1989;9 (3) :1083-1091.
    51. Kato K, Shinohara H, Kurobe N et al. Immol/Lunoreactive alpha A crystallin in rat non-lenticular tissues detected with a sensitive immol/Lunoassay method. Biochim Biophys Acta 1991;1080 (2) :173-180.
    52. Srinivasan AN, Nagineni CN, Bhat SP. alpha A-crystallin is expressed in non-ocular tissues. J Biol Chem 1992;267 (32) : 23337-23341.
    53. Horwitz J. Alpha-crystallin can function as a molecular chaperone. ProcNatlAcad Sci U S A 1992;89 (21) :10449-10453.
    54. Arrigo AP, Paul C, Ducasse C et al. Small stress proteins: novel negative modulators of apoptosis induced independently of reactive oxygen species. Prog Mol Subcell Biol 2002;28:185-204.
    55. Kamradt MC, Lu M, Werner ME et al. The small heat shock protein alpha B-crystallin is a novel inhibitor of TRAIL-induced apoptosis that suppresses the activation of caspase-3. J Biol Chem 2005;280 (12) :11059-11066.
    56. Liu JP, Schlosser R, Ma WY et al. Human alphaA- and alphaB-crystallins prevent UVA-induced apoptosis through regulation of PKCalpha, RAF/MEK/ERK and AKT signaling pathways. Experimental eye research 2004;79 (6) :393-403.
    57. Jolly C, Morimoto RI. Role of the heat shock response and molecular chaperones in oncogenesis and cell death. J Natl Cancer Inst2000;92 (19) :1564-1572.
    58. Liang P , MacRae TH. Molecular chaperones and the cytoskeleton. J Cell Sci 1997; 110 (Pt 13) :1431-1440.
    59. Bluhm WF, Martin JL, Mestril R, Dillmann WH. Specific heat shock proteins protect microtubules during simulated ischemia in cardiac myocytes. Am J Physiol 1998;275 (6 Pt 2) :H2243-2249.
    60. Arai H, Atomi Y. Chaperone activity of alpha B-crystallin suppresses tubulin aggregation through complex formation. Cell Struct Funct 1997;22 (5) :539-544.
    61. Fujita Y , Ohto E , Katayama E , Atomi Y. alphaB-Crystallin-coated MAP microtubule resists nocodazole and calcium-induced disassembly. J Cell Sci 2004;117 (Pt 9) :1719- 1726.
    62. Kumar PA, Haseeb A, Suryanarayana P et al. Elevated expression of alphaA- and alphaB-crystallins in streptozotocin-induced diabetic rat. Archives of biochemistry and biophysics 2005;444 (2) :77-83.
    63. Medori R, Jenich H, Autilio-Gambetti L, Gambetti P. Experimental diabetic neuropathy: similar changes of slow axonal transport and axonal size in different animal models. J Neurosci 1988;8 (5): 1814-1821.
    64. Macioce P, Filliatreau G, Figliomeni B et al. Slow axonal transport impairment of cytoskeletal proteins in streptozocin-induced diabetic neuropathy. Journal of neurochemistry 1989;53 (4) :1261-1267.
    65. de Syllos RW, SandrimVC, Lisboa HR et al. Endothelial nitric oxide synthase genotype and haplotype are not associated with diabetic retinopathy in diabetes type 2 patients. Nitric Oxide 2006;15 (4) :417-422.
    66. Park JW, Park SJ, Park SH et al. Up-regulated expression of neuronal nitric oxide synthase in experimental diabetic retina. Neurobiol Dis 2006;21 (1) :43-49.
    67. Okubo K, Hayashi K, Wakino S et al. Role of asymmol/Letrical dimethylarginine in renal microvascular endothelial dysfunction in chronic renal failure with hypertension. Hypertens Res 2005;28 (2) :181-189.
    68. Konishi H , Sydow K , Cooke JP. Dimethylarginine dimethylaminohydrolase promotes endothelial repair after vascular injury. Journal of the American College of Cardiology 2007;49 (10) :1099-1105.
    69. Lin KY, Ito A, Asagami T et al. Impaired nitric oxide synthase pathway in diabetes mellitus: role of asymmol/Letric dimethylarginine and dimethylarginine dimethylaminohydrolase. Circulation 2002; 106 (8) :987-992.
    70. Rerup CC. Drugs producing diabetes through damage of the insulin secreting cells. Pharmacol Rev 1970;22 (4) :485-518.
    71. Kissebah AH, Kohner EM, Lewis B et al. Plasma-lipids and glucose/insulin relationship in non-insulin-requiring diabetics with and without retinopathy. Lancet 1975;1 (7916) :1104-1108.
    72. Doman TL, Carter RD, Bron AJ et al. Low density lipoprotein cholesterol: an association with the severity of diabetic retinopathy. Diabetologia 1982;22 (3) :167-170.
    73. StrattonIM, Kohner EM, Aldington SJ et al. UKPDS 50: risk factors for incidence and progression of retinopathy in Type II diabetes over 6 years from diagnosis. Diabetologia 2001 ;44 (2) : 156-163.
    74. Tight blood pressure control and risk of macrovascular and micro vascular complications in type 2 diabetes: UKPDS 38. UK Prospective Diabetes Study Group. Bmj 1998;317 (7160) :703-713.
    75. Saltiel AR, Olefsky JM. Thiazolidinediones in the treatment of insulin resistance and type II diabetes. Diabetes 1996;45 (12) : 1661-1669.
    76. Lebovitz HE, Banerji MA. Treatment of insulin resistance in diabetes mellitus. Eur J Pharmacol 2004;490 (1-3) : 135-146.
    1. Brunekreef GA, van Genesen ST, Destree OH, Lubsen NH: Extralenticular expression of Xenopus laevis alpha-, beta-, and gamma-crystallin genes. Investigative ophthalmology & visual science 1997, 38 (13) :2764-2771.
    2. DereticD, Aebersold RH, Morrison HD, Papermaster DS: Alpha A- and alpha B-crystallin in the retina. Association with the post-Golgi compartment of frog retinal photoreceptors. The Journal of biological chemistry 1994, 269 (24) :16853-16861.
    3. Dirks RP, Van Genesen ST, KrUse JJ, Jorissen L, Lubsen NH: Extralenticular expression of the rodent betaB2-crystallin gene. Experimental eye research 1998, 66 (2) :267-269.
    4. Head MW, Peter A, Clayton RM: Evidence for the extralenticular expression of members of the beta-crystallin gene family in the chick and a comparison with delta-crystallin during differentiation and transdifferentiation. Differentiation; research in biological diversity 1991, 48 (3) :147-156.
    5. Head MW, Sedowofia K, Clayton RM: Beta B2-crystallin in the mammalian retina. Experimental eye research 1995, 61(4):423-428.
    6. Jones SE, Jomary C, Grist J, Makwana J, Neal MJ: Retinal expression of gamma-crystallins in the mouse. Investigative ophthalmology & visual science 1999, 40 (12) :3017-3020.
    7. Maeda A, Ohguro H, Maeda T, Nakagawa T, Kuroki Y:Low expression of alphaA-crystallins and rhodopsin kinase of photoreceptors in retinal dystrophy rat. Investigative ophthalmology & visual science 1999, 40 (12) :2788-2794.
    8. Magabo KS, Horwitz J, Piatigorsky J, Kantorow M: Expression of betaB (2) -crystallin mRNA and protein in retina, brain, and testis. Investigative ophthalmology & visual science 2000, 41 (10) :3056-3060.
    9. Sinha D, Esumi N, Jaworski C, Kozak CA, Pierce E, Wistow G: Cloning and mapping the mouse Crygs gene and non-lens expression of [gamma]S-crystallin. Molecular vision 1998, 4:8.
    10. Smolich BD, Tarkington SK, Sana MS, Grainger RM: Xenopus gamma-crystallin gene expression: evidence that the gamma-crystallin gene family is transcribed in lens and nonlens tissues. Molecular and cellular biology 1994, 14(2) : 1355-1363.
    11. Sakaguchi H, Miyagi M, Darrow RM, Crabb JS, Hollyfield JG, Organisciak DT, Crabb JW: Intense light exposure changes the crystallin content in retina. Experimental eye research 2003, 76 (1) :131-133.
    12. Crabb JW, Miyagi M, GuX, ShadrachK, West KA, Sakaguchi H, Kamei M, Hasan A, Yan L, Rayborn ME et al: Drusen proteome analysis: an approach to the etiology of age-related macular degeneration. Proceedings of the National Academy of Sciences of the United States of America 2002, 99 (23) :14682-14687.
    13. Horwitz J: Alpha-crystallin can function as a molecular chaperone. Proceedings of the National Academy of Sciences of the United States of America 1992, 89 (21) :10449-10453.
    14. Chiesa R, Gawinowicz-Kolks MA, Spector A: The phosphorylation of the primary gene products of alpha-crystallin. The Journal of biological chemistry 1987, 262 (4) :1438-1441.
    15.Kantorow M, Piatigorsky J: Alpha-crystallin/small heat shock protein has autokinase activity. Proceedings of the National Academy of Sciences of the United States of America 1994, 91(8):3112-3116.
    16. FitzGerald PG, Graham D: Ultrastructural localization of alpha A-crystallin to the bovine lens fiber cell cytoskeleton. Current eye research 1991, 10 (5) :417-436.
    17. KlemenzR, FrohliE, SteigerRH, SchaferR, Aoyama A: Alpha B-crystallin is a small heat shock protein. Proceedings of the National Academy of Sciences of the United States of America 1991, 88 (9) :3652-3656.
    18. Vazquez-Chona F, Song BK, Geisert EE, Jr.: Temporal changes in gene expression after injury in the rat retina. Investigative ophthalmology & visual science 2004, 45 (8) :2737-2746.
    19. Kamradt MC, Chen F, Cryns VL: The small heat shock protein alpha B-crystallin negatively regulates cytochrome c- and caspase-8-dependent activation of caspase-3 by inhibiting its autoproteolytic maturation. The Journal of biological chemistry 2001, 276 (19) :16059-16063.
    20. Andley UP, Song Z, Wawrousek EF, Fleming TP, Bassnett S: Differential protective activity of alpha A- and alphaB-crystallin in lens epithelial cells. The Journal of biological chemistry 2000, 275 (47) :36823-36831.
    1. Amin RH, Frank RN, Kennedy A, Eliott D, Puklin JE, Abrams GW: Vascular endothelial growth factor is present in glial cells of the retina and optic nerve of human subjects with nonproliferative diabetic retinopathy. Invest Ophthalmol Vis Sci 1997, 38(1) :36-47.
    2. Bloodworm JM, Jr.: Diabetic retinopathy. Diabetes 1962, 11:1 -22.
    3. Arden GB, Wolf JE, Tsang Y: Does dark adaptation exacerbate diabetic retinopathy? Evidence and a linking hypothesis. Vision Res 1998,38 (11) :1723-1729.
    4. Dean FM, Arden GB, Dornhorst A: Partial reversal of protan and tritan colour defects with inhaled oxygen in insulin dependent diabetic subjects. Br J Ophthalmol 1997, 81(1) :27-30.
    5. Verrotti A, Lobefalo L, Petitti MT, Mastropasqua L, Morgese G, Chiarelli F, Gallenga PE: Relationship between contrast sensitivity and metabolic control in diabetics with and without retinopathy. Ann Med 1998,30 (4) :369-374.
    6. Hughes WF: Quantitation of ischemic damage in the rat retina. Exp Eye Res 1991,53 (5) :573-582.
    7. Barber AJ, Lieth E, Khin SA, Antonetti DA, Buchanan AG, Gardner TW: Neural apoptosis in the retina during experimental and human diabetes. Early onset and effect of insulin. J Clin Invest 1998, 102 (4) :783-791.
    8. Nakajima M, Yuge K, Senzaki H, Shikata N, Miki H, Uyama M, Tsubura A: Photoreceptor apoptosis induced by a single systemic administration of N-methyl-N-nitrosourea in the rat retina. Am J Pathol 1996, 148 (2) :631-641.
    9. Wolter JR: Diabetic retinopathy. Am J Ophthalmol 1961, 51:1123-1141.
    10. Scott TM, Foote J, Peat B, Galway G: Vascular and neural changes in the rat optic nerve following induction of diabetes with streptozotocin. JAnat 1986, 144:145-152.
    11. Gardner TW, Lieth E, Khin SA, Barber AJ, Bonsall DJ, Lesher T, Rice K, Brennan WA, Jr.: Astrocytes increase barrier properties and ZO-1 expression in retinal vascular endothelial cells. Invest Ophthalmol Vis Sci 1997, 38 (11): 2423-2427.
    12. Su JH, Anderson AJ, Cummings BJ, Cotman CW: Immunohistochemical evidence for apoptosis in Alzheimer's disease. Neuroreport 1994, 5 (18) :2529-2533.
    13. Mochizuki H, Goto K, Mori H, Mizuno Y: Histochemical detection of apoptosis in Parkinson's disease. J Neurol Sci 1996, 137 (2) : 120-123.
    14.Petito CK, Roberts B: Evidence of apoptotic cell death in HIV encephalitis. Am J Pathol 1995, 146 (5) :1121-1130.
    15. Anderson AJ, Su JH, Cotman CW: DNA damage and apoptosis in Alzheimer's disease: colocalization with c-Jun immunoreactivity, relationship to brain area, and effect of postmortem delay. J Neurosci 1996, 16 (5) :1710-1719.
    16. Chalmers-Redman RM, Fraser AD, Ju WY, Wadia J, Tatton NA, Tatton WG: Mechanisms of nerve cell death: apoptosis or necrosis after cerebral ischaemia. Int Rev Neurobiol 1997, 40:1-25.
    17. Kerr JF, Wyllie AH, Currie AR: Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br J Cancer 1972, 26 (4) :239-257.
    18. Majno G, Joris I: Apoptosis, oncosis, and necrosis. An overview of cell death. Am J Pathol 1995, 146 (1) :3-15.
    19. Wong P: Apoptosis, retinitis pigmentosa, and degeneration. Biochem Cell Biol 1994,72 (11-12) :489-498.
    20. Levin LA, Louhab A: Apoptosis of retinal ganglion cells in anterior ischemic optic neuropathy. Arch Ophthalmol 1996, 114 (4) :488-491.
    1. [No authors listed] The Diabetes Control and Complications Trial (DCCT). Design and methodologic considerations for the feasibility phase. The DCCT Research Group. Diabetes, 1986, 35 (5): 530-545.
    2. [No authors listed] Diabetes Control and Complications Trial (DCCT). Update. DCCT Research Group.Diabetes Care, 1990, 13 (4) :427-433.
    3. [No authors listed] Implementation of treatment protocols in the Diabetes Control and Complications Trial. Diabetes Care, 1995, 18 (3) :361-376.
    4. Keen H. The Diabetes Control and Complications Trial (DCCT) . Health Trends, 1994, 26 (2) :414-3.
    5. [No authors listed]. The relationship of glycemic exposure (HbA1c) to the risk of development and progression of retinopathy in the diabetes control and complications trial.Diabetes, 1995, 44 (8) :968-983.
    6. [No authors listed] .Retinopathy and nephropathy in patients with type 1 diabetes four years after a trial of intensive therapy. The Diabetes Control and Complications Trial/Epidemiology of Diabetes Interventions and Complications Research Group. N Engl J Med, 2000, 10;342 (6) :381-389.
    7. [No authors listed]. Effect of intensive diabetes management on macro vascular events and risk factors in the Diabetes Control and Complications Trial.Am J Cardiol, 1995, 75 (14) : 894-903.
    8. [No authors listed] .The absence of a glycemic threshold for the development of long-term complications: the perspective of the Diabetes Control and Complications Trial. Diabetes, 1996, 45 (10) :1289-1298.
    9. Diabetes Control and Complications Trial Research Group. Effect of pregnancy on microvascular complications in the diabetes control and complications trial. The Diabetes Control and Complications Trial Research Group.Diabetes Care, 2000, 23 (8) :1084-1091.
    10. [No authors listed]. Clustering of long-term complications in families with diabetes in the diabetes control and complications trial. The Diabetes Control and Complications Trial Research Group. Diabetes. 1997, 46 (11) : 1829-1839.
    11. [No authors listed]. Epidemiology of severe hypoglycemia in the diabetes control and complications trial. The DCCT Research Group. Am J Med, 1991, 90 (4) :450-459.
    12. [No authors listed].Adverse events and their association with treatment regimens in the diabetes control and complications trial.Diabetes Care, 1995, 18 (11) :14151427.
    13. Writing Team for the Diabetes Control and Complications Trial/Epidemiology of Diabetes Interventions and Complications Research Group.Effect of intensive therapy on the microvascular complications of type 1 diabetes mellitus. JAMA, 2002, 287 (19) :2563-9.
    14. [No authors listed].UK Prospective Diabetes Study (UKPDS) . VIII. Study design, progress and performance.Diabetologia, 1991, 34 (12) :878-890.
    15. [No authors listed].Intensive blood-glucose control with sulphonylureas or insulin compared with conventional treatment and risk of complications in patients with type 2 diabetes (UKPDS 33) . UK Prospective Diabetes Study (UKPDS) Group. Lancet, 1998, 8352 (9131) :837-53.
    16. Baldeweg SE, Yudkin JS. Implications of the United Kingdom prospective diabetes study. Prim Care, 1999, 26 (4) :809-827.
    17. Stratton IM, Kohner EM, Aldington SJ, et al. UKPDS 50: risk factors for incidence and progression of retinopathy in Type II diabetes over 6 years from diagnosis. Diabetologia., 2001, 44 (2) :156-163 .
    18. Kohner EM, Stratton IM, Aldington SJ, et al. Microaneurysms in the development of diabetic retinopathy (UKPDS 42) . UK Prospective Diabetes Study Group. Diabetologia, 1999, 42 (9) :1107-1112.
    19. [No authors listed]. Tight blood pressure control and risk of macrovascular and microvascular complications in type 2 diabetes: UKPDS 38. BMJ, 1998, 317:703-713.
    20. American Diabetes Association. Implications of the United Kingdom Prospective Diabetes Study. Diabetes Care, 1998, 21 (12) : 2180-2184.
    21. [No authors listed]. Early Treatment Diabetic Retinopathy Study design and baseline patient characteristics. ETDRS report number 7. Ophthalmology. 1991 May;98 (5 Suppl) :741-56.
    22. [No authors listed] Effects of aspirin treatment on diabetic retinopathy. ETDRS report number 8. Early Treatment Diabetic Retinopathy Study Research Group. Ophthalmology, 1991, 98 (5 Suppl) :757-765.
    23. [No authors listed]. Aspirin effects on mortality and morbidity in patients with diabetes mellitus. Early Treatment Diabetic Retinopathy Study report 14. ETDRS Investigators. JAMA, 1992, 268 (10) :1292-300.
    24. Ferris F. Early photocoagulation in patients with either type 1 or type II diabetes. Trans Am Ophthalmol Soc, 1996, 94:505-537.
    25. Fong DS, Ferris FL, Davis MD, et al. Causes of severe visual loss in the Early Treatment Diabetic Retinopathy Study (ETDRS Report No. 24. ETDRS Research Group) .Am J Ophthalmol, 1999, 127 (2) : 137-141.
    26. [No authors listed]. Photocoagulation for diabetic macular edema: Early Treatment Diabetic Retinopathy Study Report no. 4. The Early Treatment Diabetic Retinopathy Study Research Group. Int Ophthalmol Int Clin, 1987, 27 (4) :265-272.
    27. [No authors listed].Early vitrectomy for severe vitreous hemorrhage in diabetic retinopathy. Two-year results of a randomized trial. Diabetic Retinopathy Vitrectomy Study report 2. The Diabetic Retinopathy Vitrectomy Study Research Group. Arch Ophthalmol, 1985, 103 (11) :1644-1652.
    28. [No authors listed] .Early vitrectomy for severe vitreous hemorrhage in diabetic retinopathy. Four-year results of a randomized trial: Diabetic Retinopathy Vitrectomy Study Report 5.Arch Ophthalmol, 1990 , 108 (7) : 958-964.
    29. [No authors listed]. Two-year course of visual acuity in severe proliferative diabetic retinopathy with conventional management. Diabetic Retinopathy Vitrectomy Study (DRVS) report #1. Ophthalmology, 1985 , 92 (4) :492-502.
    30. [No authors listed]. Early vitrectomy for severe proliferative diabetic retinopathy in eyes with useful vision. Results of a randomized trial-Diabetic Retinopathy Vitrectomy Study Report 3. The Diabetic Retinopathy Vitrectomy Study Research Group. Ophthalmology, 1988, 95 (10) :1307-1320.
    31. Sone H, Katagiri A, Ishibashi S, et al. Effects of lifetyle modifications on patients with type 2 diabetes: the Japan Diabetes Complications Study (JDCS) study design, baseline analysis and three year-interim report. Horm Metab Res, 2002, 34 (9): 509-515.
    32.曾根博仁.日本糖尿病并发症研究(JDCS)中间分析显示的抑制并发症与治疗方法.日本医学介绍,2005,26(5):212-214.
    33. Sone H, Mizuno S, Ohashi Y, et al. Japan Diabetes Complications Study Group. Prevention and therapeutic strategy of metabolic syndrome--implications from the interim results of Japan Diabetes Complications Study (JDCS). Nippon Rinsho, 2004, 62 (6): 1150-1157.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700