Co、Zr、Cu在K4169合金中作用的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
铸造K4169合金与美国Inconel718合金成分基本相同,是以体心四方γ"相和面心立方γ'相沉淀强化的铁-镍基高温合金,在-253~700℃温度范围内有良好的综合性能,但使用温度超过650℃时,合金中的主要强化相γ"会与基体失去共格,聚集粗化长大继而向稳定的δ相转变,导致合金的强度、塑性等一系列性能迅速下降。高温合金的性能主要取决于它的化学成分和组织,国内外研究工作者尝试通过调整Al、Ti、Nb、Fe、Mo、Cr、Ta、W等主要合金元素含量以期获得更好的组织稳定性和更高的使用温度。但是,K4169合金中除了上述主要合金元素外还含有少量的Co和微量的Zr、Cu等元素,这些元素对合金组织和性能也会造成一定的影响。目前这些元素在K4169合金中的作用还不是很清楚,因此有必要进行深入研究和分析。本文以K4169合金为研究对象,利用手工电弧炉熔炼制备了14种不同Al、Co、Zr、Cu含量的合金,并采用金相显微镜、扫描电镜、透射电镜、电子探针、X射线衍射和力学性能测试等方法,研究了Al、Co、Zr、Cu对铸态、标准热处理态以及长时时效态合金组织和力学性能的影响,着重研究了这些元素对合金晶界和晶内析出相的影响,得到以下主要结论:
     (1)合金中Co的加入量从0.1wt%增加到0.3wt%时,促使Mo、Ti、Nb等元素向晶界偏析。因此Co强烈促进合金铸态组织中Laves相的析出,缩小合金枝晶间偏析区,降低Nb、Mo、Ti在基体中的溶解度而提高这些元素在Laves相中的浓度;Co的加入提高了Laves相初熔温度,而使合金的熔点稍有降低。
     (2)同时调整合金中Al和Co的加入量时,由于Al减轻Nb、Mo、Ti的偏析,因此Al和Co的交互作用减少了Laves相的析出且基本不改变Laves相初熔温度,降低了合金的熔点。合金经标准热处理后,Al和Co之间的交互作用减小了Co对合金晶界析出相的不利影响,并且使晶内析出相以纳米多晶的形式析出,晶内析出相呈球形,但没能形成γ′/γ″包覆组织。在长时时效过程中,Al和Co的交互作用增加了γ″相的稳定性,降低了合金晶内析出相的粗化程度。
     (3)Zr促进碳原子向晶界偏聚,因而促进晶界碳化物析出,同时Zr促进Nb、Mo等原子向MC中偏聚,抑制了晶界Laves相的析出。Zr的加入提高了Laves相初熔温度,降低了合金的熔点。Zr强烈改变γ′和γ″相析出形貌和大小。在长时时效过程中,Zr的加入可以提高γ″相的高温稳定性;当Zr质量分数为0.03wt%时,合金中形成了γ′/γ″包覆组织,没有形成盘片状δ相。
     (4)Cu促进Nb、Mo等元素的偏析,因此强烈促进Laves相的析出;Cu的加入降低了Laves相初熔温度,同时降低了合金的熔点。Cu的加入改变了γ″相和γ′的析出形貌,随着Cu质量分数的增加,γ″相尺寸呈先增加后减小的趋势;在长时时效过程中Cu有抑制γ″相向δ相转变的作用,即Cu增加了γ″相的稳定性。
     (5)单独调整Co的加入量对K4169合金室温硬度的影响较小但降低了合金的屈服强度;同时调整合金中Al和Co的加入量时,Al含量的增加提高了合金的硬度和屈服强度,但在长期时效过程中出现了过时效,导致合金硬度降低了;Zr的加入降低了合金的硬度和屈服强度;Cu的加入也降低了合金的硬度和屈服强度。
     综上所述,对于K4169合金来说,Co的含量要严格控制;Al的加入量可以适当提高,本文中Al含量为1.1wt%时合金的组织和性能较好;Zr对合金晶内析出相的改善是有利的,但综合考虑晶界析出相及合金的性能,Zr的加入量应小于0.03wt%;考虑Cu促进Laves相的析出以及Cu增加γ″相的稳定性,Cu在K4169合金中可以适量存在,但含量应控制在0.1wt%左右为宜。
As-cast K4169 alloy has the same composition with Inconel 718, which is the iron-nickel superalloy strengthened by precipitated phase B.C.T.γ" and F.C.C.γ'. K4169 alloy has good comprehensive performance between -253°C to 650°C. However, when the service temperature is above 650°C, theγ" phase becomes incoherent with matrix alloy, and then aggregates, grows up and transforms to stableδphase, so many properties such as strength and plasticity rapidly deteriorate. The properties of superalloys depend on the chemical composition and microstructure. To improve the properties at elevated temperature, alloying methods were applied to increase the structure stability of K4169 alloy by adjust the content of Al, Ti, Nb, Fe, Mo, Cr, Ta, W, et al. Except above elements, there are small amounts of Co and trace quantities of Zr and Cu in K4169 alloys to influence the microstructure and properties. However, the effect of these trace elements in K4169 alloys is not clearly understood and need further research and analyse. In this paper, 14 kinds of superalloys with different Al, Co, Zr and Cu addition were prepared by manual electric arc furnace. The effect of Al, Co, Zr and Cu on microstructure and properties of as-cast, standard heat treatment and long-time aging K4169 supperalloy, especially on the precipitates in grain and boundaries, were investigated by metallurgical microscopy (OM), scanning electronic microscope (SEM), transmission electron microscopy (TEM), electron microprobe analysis (EMPA), X-ray diffractometer (XRD) and mechanics performance testings. The research conclusions are as follows:
     (1) When the addition of Co element increases from 0.1wt% to 0.3wt%, the elements of Mo, Ti, Nb segregate to grain boundaries. So Co promotes the precipitation of Laves phase, reduces interdendritic microsegregation area, decreases the solubility of Nb, Mo, Ti in matrix and increases the solubility in Laves phase. The addition of Co increases the incipient melting temperature of Laves phase and slightly decreases the melting temperature of alloys.
     (2) When the additions of Al and Co vary simultaneously, the segregation of Mo, Ti, Nb are reduced. The interaction of Al and Co decreases the precipitation of Laves phase without changing the incipient melting temperature of Laves phase, but the melting temperature of alloys is reduced. After standard heat treatment, the interaction of Al and Co eliminates the unfavorable effects of Co on the precipitation phases at grain boundaries; the precipitation phases in grains are precipitated as nano polycrystalline; theγ″phases are precipitated as spherical shape but theγ′/γ″clad structure isn’t gotten. In the long-time aging process, the interaction of Al and Co increases the stability ofγ″phases and decreases the coarsening rate of precipitation phases in grains.
     (3) The addition of Zr element promotes the segregation of C atoms to grain boundaries and precipitation of carbides at grain boundaries. In the meantime, the segregation of Nb, Mo in MC phases inhibits the precipitation of Laves phases at grain boundaries. The addition of Zr increases the incipient melting temperature of Laves phase and decreases the melting temperature of alloys. The Zr element strongly changes morphology and size ofγ′andγ″phases. In the process of long-time aging, the addition of Zr can increase the high temperature stability ofγ″phase; theγ″/γ′clad structure is formed and no flakyδphase is generated when the Zr addition is 0.03wt%.
     (4) The addition of Cu element promotes the segregation of Nb, Mo and precipitation of Laves phase. The addition of Cu decreases the incipient melting temperature of Laves phase and decreases the melting temperature of alloys. The addition of Cu changes the morphology ofγ″andγ′precipitation. With the increasing of Cu addition, the size ofγ″phase shows the trend of increasing firstly and then decreasing. In the process of long-time aging, Cu shows the effect of inhibiting the change ofγ″toδphase, so the Cu element increases the high temperature stability ofγ″phase.
     (5) The separately adjusting of Co addition has slight effect on the hardness at room temperature but decrease the yield strength of the test alloy. When the content of Al and Co is adjusted simultaneously, the hardness and yield strength of tested alloy increase with Al content. However, after long-time aging, the hardness is decreased due to the overaging. The Zr addition decreases the hardness and yield strength of the test alloy. The addition of Cu element decreases the hardness and yield strength too.
     In conclusion, in K4169 alloys, the Co content should be strictly limited; the addition of Al element can be properly increased, and the better content of Al is 1.1 wt% according to the experiments in this paper; the Zr element helps to improve the precipitated phases in grains, so small amounts of Zr can be added, but the content should be less than 0.03 wt% in consideration of precipitated phases at grain boundaries and property of alloy; because the Cu element can promote the precipitation of Laves phase and improve the stability ofγ″phase, the Cu elements can be properly added but the content need be strictly control less than 0.1 wt%.
引文
[1]李玉清,刘锦岩.高温合金晶界间隙相[M].北京:冶金工业出版社,1990:2-20.
    [2]姜文辉. DZ40M定向凝固钴基高温合金组织与力学性能的关系[D].沈阳:中国科学院金属研究所,1999:1.
    [3]徐强,张幸红,韩杰才.先进高温材料的研究现状和展望[J].固体火箭技术.2002,25(3):51-55.
    [4]赵永芹.类K445镍基合金的制备及组织与性能研究[D].西安:西安理工大学,2007:3.
    [5] Zrník J, Strunz P, Horňákl P,etal. Microstructural changes in long-time thermally exposed Ni-base superalloy studied by SANS[J]. Applied Physics A, 2002, 74:1155-1157.
    [6]李耀彪.高温熔体处理对M963合金组织及性能的影响[D].沈阳:中国科学院金属研究所,2002:1-9.
    [7]郑运荣,张德堂.高温合金与钢的彩色金相研究[M].北京:国防工业出版社, 1999:1-194.
    [8]郑亮.Ta和Ru对低Cr高W铸造镍基高温合金组织及性能的影响[D].西安:西安理工大学,2004:6-10.
    [9]黄乾尧,李汉康等.高温合金[M].北京:冶金工业出版社,2004:19-64.
    [10] K Hodor, P Zieba, B Olszowska-Sobieraj. Anaytical Electron Microscopy Eiainination of theγ′/γInterfaces in a Ni-Based Superalloy [J]. Interface Science, 2001, 9(3):243-248.
    [11]谭帅. K5镍基高温合金的显微组织研究[D].哈尔滨:哈尔滨大学,2002:20-22.
    [12]邱华.M91高温合金的研制及工艺优[D].重庆:重庆大学,2004:13-14.
    [13] Durst K,Goken M. Mciro-mechnacical characterization of the influence of rhenium on the mechanical properties in nickel-base superalloys[J]. Material Science and Engineernig, 2004(19):312-316.
    [14]朱日彰,卢亚轩.耐热钢和高温合金[M].北京:化学工业出版社,1996:168.
    [15] Razavi S H,Mirdamadi S H,Szpunar J,Arabai H. Improvement of age-hardening process of a nickel base superalloy IN738LC byinduction aging. Journal of Materials Sceince, 2002, 37(7):1461-1471.
    [16] Blavette D, Bostel A. Phase composition and long range order inγ′phase of nickel base single crystal superalloy CMSX2: An atom probe study [J]. Acta Metall, 1984, 32: 811-816.
    [17] Baldan A. Progress in Ostwald ripening theories and their applications to theγ′precipitates in nickel-base superalloys [J]. Journal of Materials Science, 2002, 37: 2379-240.
    [18] Moshtagh IM R S, Asgar I S .The influence of thermal exposure on theγ′precipitates characteristics and tensile behavior of superalloy IN738LC[J].Journal of Materials Processing Technology, 2004, 147: 343-350.
    [19]谢文江.热处理对类K445高温合金组织及性能的影响[D].西安:西安理工大学,2007:3-8.
    [20] Frantz C, Gantols M. The Microstructure and Design of alloys[C], Proc. 3rd int. Conf. on the strength of Metals and alloys, Cambridge, England, 1973,l(1):331.
    [21]冶军.美国镍基高温合金[M].北京:科学出版社,1978:45-50.
    [22] Sundararaman P, Banerjee S. Some Aspects of the Precipitation of Metastable Intermetallic Phase in Inconel 718 [J]. Metall Trans 1992, 23 (7):2015-2028.
    [23] Dong J X, Xie X S, Zhand S H. Coarsening Behavior ofγ″Precipitates in modified Inconel 718 Superalloy. Scripta Mater. 1995, 33(12):1933-1939.
    [24] Kuppusami P, Murakami H. A comparative study of cyclic oxidized Ir aluminide and aluminized nickel base single crystal superalloy[J], Surface and Coatings Technology, 2004, 186(1):377-388.
    [25] Kong Y H, Chen Q Z. Effect of minor additions on the formation of TCP phases in modified RR2086SX superalloy[J], Materials Science and Engineering, 2004, A366(l):135-143.
    [26] Pete Hasen. Physical Metallurgy [M]. London: Cambridge University Press, 1978, 204.
    [27]陈国良.高温合金学[M].北京:冶金工业出版社,1988:166-198.
    [28]常连华.主要合金元素对镍基合金组织和性能的影响[J].汽轮机技术. 2001, 43(5):320.
    [29] Weber J H, and Bomford M J. Comparison of fatigue deformation andfracture in a dispersion-strengthened and a conventional Nickel-base superalloy, Metallurgical Transactions A(Physical Metallurgy and Materials Scienc).1976,7A(3):435-441.
    [30] May G J and Jones D R H. Production and properties of directionally solidified composites[J], Metals and Materials,1974,8(4):242-244.
    [31] Fuchs GE. Solution heat treatment response of a third generation crystal Ni-base superalloy [J], Materials Science and Engineering A. 2001, 300(I): 52-60.
    [32] Li Bo, Wang Zhixing, Yan Hongcai.Calculation on the yield strength of a precipitation strengthening Ni-base alloy[J], Trans Nonferrous Met. Soc. 1995, 5(4): 139-141.
    [33]胡壮麒,彭平等.镍基合金中γ′相界面的强化设计[J],金属学报. 2002, 38(11):1121-1126.
    [34] Merrick H F. Precipitation within gamma prime particles in Nickel-basesuperalloys [J], Metallurgical Transactions. 1973, 4(3):885-887
    [35]肖璇,周兰章,郭建亭.镍基高温合金U720Li的组织稳定性及蠕变行为[J].金属学报.2001, 37(11):1159-1165
    [36]谢世殊,王志兴,杨洪才,赵光普.一种高强度变形高温合金的成分设计[J].中国有色金属学报.1998, 19(6):167-170.
    [37]王志兴,林东君等.一种高强度合金成分的设计[J].东北大学学报.1994,15(2):166-170.
    [38]Masahiro Goto, David M. Knowles. Initiation and propagation behaviour of microcracks in Ni-base superalloy Udimet 720Li[J], Engineering Fracture Mechanics. 1998, 60(1):1-18.
    [39]Angeliu T M, Was GS. Behavior of Grain Boundary Chemistry and Precipitates upon Thermal Treatment of Conrtolled Purity Alloy [J]. Metallurgical Transactions. 1990, 162(3): 2097-2107.
    [40]谢世殊.变形盘材镍基合金的高温强度及疲劳裂纹扩展行为[D].沈阳:东北大学,1999.
    [41] He L Z, Zheng Q. and et al. Low ductility at intermediate temperature of Ni-base superalloy M963[J]. Materials Science and Engineering. 2004, 380(1):340-348.
    [42] Xie X S, Dong T X, Xu C, etal. The weakening and embrittling effect in nickel base superalloy during long time exposure at high temperature[J]. Acta Metallurgica Sinica. 1999, 35(s):28-32.
    [43] Sondhi S K, Dyson B F., McLean M. Tension-compression creep asymmetry in a turbine disc superalloy: Roles of internal stress and thermal ageing [J].Acta Materialia. 2004, 52(7): 1761-1772.
    [44] Hirsch P B. The Physics of Metals[M]. Cambridge: Cambridge University Press. 1975,151.
    [45] Venkatesh V, Rack H J. Elevated temperature hardening of INCONEL690 [J], Mechanics of Materials. 1998, 30(1):69-81.
    [46] Zhou lanzhang, Lupinc Valentino, Guo Jianting. Evolution of microstructure and mechanical property during aging in Udimet 720Li[J]. Journal of Materials Science and Technology. 2001, 17(6): 633-637.
    [47] Luo J, Bowen P. Statistical aspects of fatigue behaviour in a PM Ni-base superalloy Udimet 720[J]. Acta Materialia.2003,51(1):3521 -3535.
    [48]邓波,张荣武,杨玉荣等.GH4169合金时效动力学与强韧化研究[J].北京科技大学学报.1991,13(增刊):253-259.
    [49] Malow T, ZHU J, Wahi R. Influence of heat treatment on the microstructure of the single-crystal nickel-base superalloy SC16[M]. Z. Metall. 1994, 85:9-19.
    [50] Ricks R A, Porter A J and Ecob R C. The growth ofγ′precipitates in nickel-base superalloys[J]. Acta Metall.. 1983, 31(1): 43-53.
    [51] M Durand-Charee. The microstructure of superalloy [M]. Gordon and Breach Science Publishers, Canada, 1997:60.
    [52] Mao J, Chang K, Yang W, Ray K, Vaze S, Furrer D. Cooling precipitation and strengthening study in powder metallurgy superalloy U720LI[J]. Metall. Mater. Trans. 2001, 32A: 2441-2452.
    [53] Furrer D, Fecht H.γ′formation in superalloy U720LI [M]. Scrapta. Mater.. 1999, 40: 1215-1220.
    [54] Diologent F and P. Caron. On the creep behavior at 1033 K of new generation single-crystal superalloys [J]. Mater Sci. Eng. A. 2004, 385(1-2): 245-257.
    [55] Murakumo T, Kobayashi T, Koizumi Y and Harada H. Creep behaviour of Ni-base single-crystal uperalloys with variousγ′volume fraction[J]. Acta Mater.. 2004, 52: 3737.
    [56]李爱兰,汤鑫,盖其东.热处理工艺对K4169合金微观组织的影响[J].航空材料学报. 2006, 26(3):312.
    [57]汤鑫,曹腊梅,盖其东等. K4169合金整体导向环精铸技术及热处理工艺研究[J].宇航材料工艺. 2007,(6):82-86.
    [58]杨爱民.K4169高温合金组织细化及性能优化研究[D].西安:西北工业大学,2002:17-19.
    [59]熊玉华.K4169高温合金化学法晶粒细化工艺及机理的研究[D].西安:西北工业大学,2000:11-15.
    [60] Radavich J F, Fort A. Effects of long-time exposure in Alloy 625 at 1200 F, 1400 F and 1600 F[C]. In proceedings of the International Symposium on Superalloys 718, 625, 706 and Various Derivatives, Warrendale: TMS, 1994:635-647.
    [61]宫磊,付书红,董建新.新型718合金的元素强化作用及组织稳定性研究[J].稀有金属材料与工程. 2007, 36(12):2180-2182.
    [62]谢锡善,董建新,陈卫.γ'和γ"复合析出强化新型镍基高温合金的研究[J].金属热处理学报. 1997, 18(3):37-46.
    [63] Xishan Xie, Gailian Wang, Jianxin Dong, et al. Structure stability study on a newly developed nickel-base superalloy-allvac? 718Plus? [C]. In proceedings of the International Symposium on Superalloys 718, 625, 706 and Various Derivatives, Warrendale: TMS, 2005: 179-191.
    [64]金永元,大雕?卡内洛.铌?高温应用[M].北京:冶金工业出版社.2005, 6:18-22
    [65] Eiselstein H L, Tillack D J. The Invention and Definition of Alloy 625 Superal[C]. In proceedings of the International Symposium on Super- alloys 718,625,706 and Various Derivatives, Warrendale: TMS, 1991: 1-14
    [66]熊玉华,杨爱民,李培杰等.K4169高温合金组织细化研究[J].航空材料学报,2001,9:25-28.
    [67] Dong J X, Xu Z C, Xie X S, et al .Research on microstructure and properties in modified inconel 718 superalloys[J].Materials Science Progress, 1993, 7(2): 105-109.
    [68] G A Salisbcbev, O N Senkov, R M Imayev, et al. Processing and Deformation Behavior of Galnma TiAl Alloys with Fine-Grained Equiaied Microstructures [J]. Advanced Performance Materials. 1999, 6(2):107-116.
    [69] Phillips JAMESC, Tien JOHNK, Collier JOHNP, et al. The effect of varying Al Ti and Nb content on the phase stability of inconel 718[J]. Metallurgical Transactions A-Physical Metallurgy and Materials Science, 1988, 19A: 1657-1666.
    [70] F. Xu, E. Guo, EA. Loria and P. Zhang. Thermal stability of modified 718 alloys aged for 2000 hours at 700°C[C]. In proceedings of the International Symposium on Superalloys 718, 625, 706 and Various Derivatives, Warrendale: TMS, 1997: 503-509.
    [71] V. B. Kireev and O. V. Makushok. Structure and mechanical properties of type 718 alloy with increased content of refractory elements[C]. In proceedings of the International Symposium on Superalloys 718, 625, 706 and Various Derivatives, Warrendale: TMS, 1991:955-964.
    [72] Rao G A, Kumar M, Srinivas M, et al. Effect of standard heat treatment on the microstructure and mechanical properties of hot isostatically pressed superalloy inconel 718[J].Materials Science and Engineering A. 2003,355(1/2):114-125.
    [73]徐自立.高温金属材料的性能、强度设计及工程应用[M].北京:化学工业出版社,2006.
    [74]李振瑞. C1032高温合金电子空位数与持久寿命的关系研究[J].金属材料研究, 2001, 27(1):40-43.
    [75] Mclean D.著,杨顺华译.金属中的晶粒间界[M].科学出版社.1965.
    [76]熊玉华,李培杰,杨爱民.铸造工艺参数和细化剂对K4169高温合金铸态组织的影响[J].金属学报, 2002, 38 (5):534-538.
    [77]刘芳,孙文儒,杨树林. Al含量对GH4169镍基合金组织及其稳定性的影响[J].金属学报. 2008, 44(7):791-798.
    [78] Decker R.F.and Smis C.T..Superalloys, Wiley, New York,1972.
    [79]Simonetti M. and Caron P. Role and behaviour ofμphase during deformation of a nickel-based single crystal superalloy[J]. Materials Science&Engineering.1998, 5:1-12
    [80]C.M.F.Rae and R.C.Reed.The precipitation of topologically close- packed phases in rhenium-containing superalloys[J]. Actamater. 2001, 49:4113-4125.
    [81]Q.Z.Chen, D.M.Knowles. Retardation ofσphase transformation in modified superalloy RR2072[J]. Metal. and Mater. Trans. 2002, l33(5): 1319-1330.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700