GEFT调节晶状体上皮细胞分化的机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
GEFT是Rho家族小GTP酶特定的鸟嘌呤核苷酸交换因子,在成人易兴奋组织包括脑、心脏和骨骼肌中有高水平的表达。以前研究发现GEFT在成年小鼠海马和小脑中表达,过度表达GEFT蛋白质能导致神经轴突和树突重塑。这一发现促使本文探索GEFT在其它组织中的表达,这些组织与神经系统有着共同的祖先,特别是在视觉系统中。
     本文通过免疫组织化学法分析GEFT特定蛋白的表达,我们观察到在小鼠的晚期胚胎眼部,GEFT在成神经细胞层和分化中的晶状体纤维中表达水平最高,并在后生角膜上皮、晶状体上皮细胞,及整个视网膜中均有表达。
     在N/N1003A兔晶状体上皮细胞中,GEFT的外源表达诱导晶状体纤维细胞的分化,体现在细胞的伸长和眼球系统形成,同时还导致β-晶状体蛋白和晶状体蛋白微丝表达显著增强。GEFT转染晶状体上皮细胞还导致由RAC-1介导的αA-、αB-、βB-、γC-、和γF-晶状体蛋白启动子活性上调,这种活性部分依赖于Rac1的核定位。此外,药物抑制Rac1可阻断GEFT诱导的N/N1003A晶状体纤维分化和β-晶状体蛋白在体外小鼠晶状体移植体中的表达。
     这些结果第一次表明了GEFT在晶状体细胞分化和小鼠眼发育中的作用,揭示了GEFT调控晶状体的分化和眼的发育基于依赖Rac1的机制。
The Rho-family of small GTPase specific guanine nucleotide exchange factor, GEFT, is expressed at high levels in adult human excitable tissues including the brain, heart, and skeletal muscle. Previously, we demonstrated that GEFT is specifically expressed in the adult mouse hippocampus and cerebellum, and that overexpression of this protein can result in neurite and dendrite remodeling. This finding prompted us to explore the expression of GEFT in other tissues, which share common developmental ancestry to the nervous system, specifically the ocular system.
     Using immunohistochemical analysis specific for GEFT protein expression, we observed the highest ocular expression of GEFT occurring in the neuroblastic layer and differentiating lens fibers of the late-stage mouse embryo, and in the postnatal corneal epithelium, lens epithelium, and throughout the retina. Exogenous expression of GEFT in N/N1003A
     rabbit lens epithelial cells induced lens fiber differentiation as reflected by cell elongation and lentoid formation, as well as a strong increase inβ-crystallin and filensin expression. Moreover, transfection of lens epithelial cells with GEFT resulted in a Rac-1 mediated up-regulation ofαA-,αB-,βB-,γC-,orγF-crystallin promoter activities that is in part dependent on the nuclear localization of Rac1. Furthermore, pharmacological inhibition of Racl blocked GEFT-induced N/N1003A lens fiber differentiation andβB-crystallin expression in ex vivo mouse lens explants.
     These results demonstrate for the first time a role for GEFT in lens cell differentiation and mouse eye development. Moreover, GEFT regulation of lens differentiation and eye development occurs through a Rac1-dependent mechanism.
引文
[1]. Jaffe, A.B. and A. Hall, Rho GTPases:biochemistry and biology. Annu Rev Cell Dev Biol,2005.21:p.247-69.
    [2]. Lundquist, E.A., Small GTPases. WormBook,2006:p.1-18.
    [3]. Boureux, A., et al., Evolution of the Rho family of ras-like GTPases in eukaryotes. Mol Biol Evol,2007.24(1):p.203-16.
    [4]. Aspenstrom, P., A. Ruusala, and D. Pacholsky, Taking Rho GTPases to the next level:the cellular functions of atypical Rho GTPases. Exp Cell Res,2007. 313(17):p.3673-9.
    [5]. Chardin, P., Function and regulation of Rnd proteins. Nat Rev Mol Cell Biol, 2006.7(1):p.54-62.
    [6]. Bos, J.L., H. Rehmann, and A. Wittinghofer, GEFs and GAPs:critical elements in the control of small G proteins. Cell,2007.129(5):p.865-77.
    [7]. Dovas, A. and J.R. Couchman, RhoGDI:multiple functions in the regulation of Rho family GTPase activities. Biochem J,2005.390(Pt 1):p.1-9.
    [8]. Rolli-Derkinderen, M., et al., Phosphorylation of serine 188 protects RhoA from ubiquitin/proteasome-mediated degradation in vascular smooth muscle cells. Circ Res,2005.96(11):p.1152-60.
    [9]. Heasman, S.J. and A.J. Ridley, Mammalian Rho GTPases:new insights into their functions from in vivo studies. Nat Rev Mol Cell Biol,2008.9(9):p. 690-701.
    [10]. Watanabe, N. and T.J. Mitchison, Single-molecule speckle analysis of actin filament turnover in lamellipodia. Science,2002.295(5557):p.1083-6.
    [11]. Pollard, T.D., Regulation of actin filament assembly by Arp2/3 complex and formins. Annu Rev Biophys Biomol Struct,2007.36:p.451-77.
    [12]. Urban, E., et al., Electron tomography reveals unbranched networks of actin filaments in lamellipodia. Nat Cell Biol.12(5):p.429-35.
    [13]. Machacek, M., et al., Coordination of Rho GTPase activities during cell protrusion. Nature,2009.461(7260):p.99-103.
    [14]. Alexandrova, A.Y., et al., Comparative dynamics of retrograde actin flow and focal adhesions:formation of nascent adhesions triggers transition from fast to slow flow. PLoS One,2008.3(9):p. e3234.
    [15]. Vicente-Manzanares, M., et al., Non-muscle myosin Ⅱ takes centre stage in cell adhesion and migration. Nat Rev Mol Cell Biol,2009.10(11):p.778-90.
    [16]. Kohno, H., et al., Bnilp implicated in cytoskeletal control is a putative target of Rholp small GTP binding protein in Saccharomyces cerevisiae. EMBO J,1996. 15(22):p.6060-8.
    [17]. Nicholson-Dykstra, S., H.N. Higgs, and E.S. Harris, Actin dynamics:growth from dendritic branches. Curr Biol,2005.15(9):p. R346-57.
    [18]. Chesarone, M.A., A.G. DuPage, and B.L. Goode, Unleashing formins to remodel the actin and microtubule cytoskeletons. Nat Rev Mol Cell Biol.11(1): p.62-74.
    [19]. Rose, R., et al., Structural and mechanistic insights into the interaction between Rho and mammalian Dia. Nature,2005.435(7041):p.513-8.
    [20]. Faix, J., et al., Filopodia:Complex models for simple rods. Int J Biochem Cell Biol,2009.41(8-9):p.1656-64.
    [21]. Lammers, M., et al., Specificity of interactions between mDia isoforms and Rho proteins. J Biol Chem,2008.283(50):p.35236-46.
    [22]. Yang, C., et al., Novel roles of formin mDia2 in lamellipodia and filopodia formation in motile cells. PLoS Biol,2007.5(11):p. e317.
    [23]. Drees, F. and F.B. Gertler, Ena/VASP:proteins at the tip of the nervous system. Curr Opin Neurobiol,2008.18(1):p.53-9.
    [24]. Kurisu, S. and T. Takenawa, The WASP and WAVE family proteins. Genome Biol,2009.10(6):p.226.
    [25]. Ismail, A.M., et al., The WAVE regulatory complex is inhibited. Nat Struct Mol Biol,2009.16(5):p.561-3.
    [26]. Pocha, S.M. and G.O. Cory, WAVE2 is regulated by multiple phosphorylation events within its VCA domain. Cell Motil Cytoskeleton,2009.66(1):p.36-47.
    [27]. Takano, K., K. Toyooka, and S. Suetsugu, EFC/F-BAR proteins and the N-WASP-WIP complex induce membrane curvature-dependent actin polymerization. EMBO J,2008.27(21):p.2817-28.
    [28]. Feng, Y., et al., The Cdc42-interacting protein-4 (CIP4) gene knock-out mouse reveals delayed and decreased endocytosis. J Biol Chem.285(7):p.4348-54.
    [29]. Pak, C.W., K.C. Flynn, and J.R. Bamburg, Actin-binding proteins take the reins in growth cones. Nat Rev Neurosci,2008.9(2):p.136-47.
    [30]. Chan, C., C.C. Beltzner, and T.D. Pollard, Cofilin dissociates Arp2/3 complex and branches from actin filaments. Curr Biol,2009.19(7):p.537-45.
    [31]. Delorme, V., et al., Cofilin activity downstream of Pakl regulates cell protrusion efficiency by organizing lamellipodium and lamella actin networks. Dev Cell,2007.13(5):p.646-62.
    [32]. Sellers, J.R., M.D. Pato, and R.S. Adelstein, Reversible phosphorylation of smooth muscle myosin, heavy meromyosin, and platelet myosin. J Biol Chem, 1981.256(24):p.13137-42.
    [33]. Totsukawa, G., et al., Distinct roles of MLCK and ROCK in the regulation of membrane protrusions and focal adhesion dynamics during cell migration of fibroblasts. J Cell Biol,2004.164(3):p.427-39.
    [34]. Conti, M.A. and R.S. Adelstein, Nonmuscle myosin II moves in new directions. J Cell Sci,2008.121(Pt 1):p.11-8.
    [35]. Tan, I., et al., A tripartite complex containing MRCK modulates lamellar actomyosin retrograde flow. Cell,2008.135(1):p.123-36.
    [36]. Vicente-Manzanares, M., et al., Regulation of protrusion, adhesion dynamics, and polarity by myosins IIA and IIB in migrating cells. J Cell Biol,2007. 176(5):p.573-80.
    [37]. Schlessinger, K., E.J. McManus, and A. Hall, Cdc42 and noncanonical Wnt signal transduction pathways cooperate to promote cell polarity. J Cell Biol, 2007.178(3):p.355-61.
    [38]. Desai, R.A., et al., Cell polarity triggered by cell-cell adhesion via E-cadherin. J Cell Sci,2009.122(Pt 7):p.905-11.
    [39]. Gaggioli, C., et al., Fibroblast-led collective invasion of carcinoma cells with differing roles for RhoGTPases in leading and following cells. Nat Cell Biol, 2007.9(12):p.1392-400.
    [40]. Molli, P.R., et al., PAK signaling in oncogenesis. Oncogene,2009.28(28):p. 2545-55.
    [41]. Gally, C., et al., Myosin Ⅱ regulation during C. elegans embryonic elongation: LET-502/ROCK, MRCK-1 and PAK-1, three kinases with different roles. Development,2009.136(18):p.3109-19.
    [42]. Niggli, V. and J. Rossy, Ezrin/radixin/moesin:versatile controllers of signaling molecules and of the cortical cytoskeleton. Int J Biochem Cell Biol,2008. 40(3):p.344-9.
    [43]. Weernink, P.A., et al., Activation of type Ⅰ phosphatidylinositol 4-phosphate 5-kinase isoforms by the Rho GTPases, RhoA, Racl, and Cdc42. J Biol Chem, 2004.279(9):p.7840-9.
    [44]. Shimada, A., et al., Curved EFC/F-BAR-domain dimers are joined end to end into a filament for membrane invagination in endocytosis. Cell,2007.129(4):p. 761-72.
    [45]. Faix, J. and K. Rottner, The making of filopodia. Curr Opin Cell Biol,2006. 18(1):p.18-25.
    [46]. Scita, G., et al., IRSp53:crossing the road of membrane and actin dynamics in the formation of membrane protrusions. Trends Cell Biol,2008.18(2):p. 52-60.
    [47]. Disanza, A., et al., Regulation of cell shape by Cdc42 is mediated by the synergic actin-bundling activity of the Eps8-IRSp53 complex. Nat Cell Biol, 2006.8(12):p.1337-47.
    [48]. Robens, J.M., et al., Regulation of IRSp53-dependent filopodial dynamics by antagonism between 14-3-3 binding and SH3-mediated localization. Mol Cell Biol.30(3):p.829-44.
    [49]. Aronheim, A., et al., Chp, a homologue of the GTPase Cdc42Hs, activates the JNK pathway and is implicated in reorganizing the actin cytoskeleton. Curr Biol,1998.8(20):p.1125-8.
    [50]. Gomez del Pulgar, T., et al., Rho GTPase expression in tumourigenesis: evidence for a significant link. Bioessays,2005.27(6):p.602-13.
    [51]. Gouw, L.G., et al., Expression of the Rho-family GTPase gene RHOF in lymphocyte subsets and malignant lymphomas. Br J Haematol,2005.129(4):p. 531-3.
    [52]. Benitah, S.A., et al., Rho GTPases in human cancer:an unresolved link to upstream and downstream transcriptional regulation. Biochim Biophys Acta, 2004.1705(2):p.121-32.
    [53]. Merajver, S.D. and S.Z. Usmani, Multifaceted role of Rho proteins in angiogenesis. J Mammary Gland Biol Neoplasia,2005.10(4):p.291-8.
    [54]. Wheelock, M.J., et al., Cadherin switching. J Cell Sci,2008.121(Pt 6):p. 727-35.
    [55]. Friedl, P. and K. Wolf, Tumour-cell invasion and migration:diversity and escape mechanisms. Nat Rev Cancer,2003.3(5):p.362-74.
    [56]. Wolf, K., et al., Multi-step pericellular proteolysis controls the transition from individual to collective cancer cell invasion. Nat Cell Biol,2007.9(8):p. 893-904.
    [57]. Braga, V.M. and A.S. Yap, The challenges of abundance:epithelial junctions and small GTPase signalling. Curr Opin Cell Biol,2005.17(5):p.466-74.
    [58]. Wildenberg, G.A., et al., p120-catenin and p190RhoGAP regulate cell-cell adhesion by coordinating antagonism between Rac and Rho. Cell,2006.127(5): p.1027-39.
    [59]. Labouesse, M., Epithelium-mesenchyme:a balancing act of RhoGAP and RhoGEF. Curr Biol,2004.14(13):p. R508-10.
    [60]. Lozano, E., M. Betson, and V.M. Braga, Tumor progression:Small GTPases and loss of cell-cell adhesion. Bioessays,2003.25(5):p.452-63.
    [61]. Bellovin, D.I., et al., Reciprocal regulation of RhoA and RhoC characterizes the EMT and identifies RhoC as a prognostic marker of colon carcinoma. Oncogene,2006.25(52):p.6959-67.
    [62]. Pille, J.Y., et al., Anti-RhoA and anti-RhoC siRNAs inhibit the proliferation and invasiveness of MDA-MB-231 breast cancer cells in vitro and in vivo. Mol Ther,2005.11(2):p.267-74.
    [63]. Hakem, A., et al., RhoC is dispensable for embryogenesis and tumor initiation but essential for metastasis. Genes Dev,2005.19(17):p.1974-9.
    [64]. Clark, E.A., et al., Genomic analysis of metastasis reveals an essential role for RhoC. Nature,2000.406(6795):p.532-5.
    [65]. Kleer, C.G., et al., RhoC GTPase expression as a potential marker of lymph node metastasis in squamous cell carcinomas of the head and neck. Clin Cancer Res,2006.12(15):p.4485-90.
    [66]. Simpson, K.J., A.S. Dugan, and A.M. Mercurio, Functional analysis of the contribution of RhoA and RhoC GTPases to invasive breast carcinoma. Cancer Res,2004.64(23):p.8694-701.
    [67]. Hwang, S.L., et al., Racl gene mutations in human brain tumours. Eur J Surg Oncol,2004.30(1):p.68-72.
    [68]. Jordan, P., et al., Cloning of a novel human Rac1b splice variant with increased expression in colorectal tumors. Oncogene,1999.18(48):p.6835-9.
    [69]. Matos, P. and P. Jordan, Rac1, but not Rac1B, stimulates Re1B-mediated gene transcription in colorectal cancer cells. J Biol Chem,2006.281(19):p. 13724-32.
    [70]. Visvikis, O., et al., Activated Rac1, but not the tumorigenic variant Rac1b, is ubiquitinated on Lys 147 through a JNK-regulated process. FEBS J,2008. 275(2):p.386-96.
    [71]. Sugihara, K., et al., Rac1 is required for the formation of three germ layers during gastrulation. Oncogene,1998.17(26):p.3427-33.
    [72]. Benninger, Y., et al., Essential and distinct roles for cdc42 and racl in the regulation of Schwann cell biology during peripheral nervous system development. J Cell Biol,2007.177(6):p.1051-61.
    [73]. Walmsley, M.J., et al., Critical roles for Racl and Rac2 GTPases in B cell development and signaling. Science,2003.302(5644):p.459-62.
    [74]. Kissil, J.L., et al., Requirement for Racl in a K-ras induced lung cancer in the mouse. Cancer Res,2007.67(17):p.8089-94.
    [75]. Malliri, A., et al., Mice deficient in the Rac activator Tiaml are resistant to Ras-induced skin tumours. Nature,2002.417(6891):p.867-71.
    [76]. Llano, E., et al., Identification and characterization of human MT5-MMP, a new membrane-bound activator of progelatinase a overexpressed in brain tumors. Cancer Res,1999.59(11):p.2570-6.
    [77]. van Hengel, J., et al., Continuous cell injury promotes hepatic tumorigenesis in cdc42-deficient mouse liver. Gastroenterology,2008.134(3):p.781-92.
    [78]. Murphy, G.A., et al., Cellular functions of TC10, a Rho family GTPase: regulation of morphology, signal transduction and cell growth. Oncogene,1999. 18(26):p.3831-45.
    [79]. Wu, W.J., S. Tu, and R.A. Cerione, Activated Cdc42 sequesters c-Cbl and prevents EGF receptor degradation. Cell,2003.114(6):p.715-25.
    [80]. Ridley, A.J., Rho GTPases and actin dynamics in membrane protrusions and vesicle trafficking. Trends Cell Biol,2006.16(10):p.522-9.
    [81]. Yasuda, S., et al., An essential role of Cdc42-like GTPases in mitosis of HeLa cells. FEBS Lett,2006.580(14):p.3375-80.
    [82]. Tao, W., et al., Wrch-1, a novel member of the Rho gene family that is regulated by Wnt-1. Genes Dev,2001.15(14):p.1796-807.
    [83]. Shutes, A., et al., Atypical mechanism of regulation of the Wrch-1 Rho family small GTPase. Curr Biol,2004.14(22):p.2052-6.
    [84]. Blasutig, I.M., et al., Phosphorylated YDXV motifs and Nck SH2/SH3 adaptors act cooperatively to induce actin reorganization. Mol Cell Biol,2008.28(6):p. 2035-46.
    [85]. Bektic, J., et al., Small G-protein RhoE is underexpressed in prostate cancer and induces cell cycle arrest and apoptosis. Prostate,2005.64(4):p.332-40.
    [86]. Gress, T.M., et al., A pancreatic cancer-specific expression profile. Oncogene, 1996.13(8):p.1819-30.
    [87]. Ongusaha, P.P., et al., RhoE is a pro-survival p53 target gene that inhibits ROCK Ⅰ-mediated apoptosis in response to genotoxic stress. Curr Biol,2006. 16(24):p.2466-72.
    [88]. Villalonga, P., et al., RhoE inhibits cell cycle progression and Ras-induced transformation. Mol Cell Biol,2004.24(18):p.7829-40.
    [89]. Pellegrin, S. and H. Mellor, The Rho family GTPase Rif induces filopodia through mDia2. Curr Biol,2005.15(2):p.129-33.
    [90]. Gaidano, G., et al., Aberrant somatic hypermutation in multiple subtypes of AIDS-associated non-Hodgkin lymphoma. Blood,2003.102(5):p.1833-41.
    [91]. Gu, Y., et al., RhoH GTPase recruits and activates Zap70 required for T cell receptor signaling and thymocyte development. Nat Immunol,2006.7(11):p. 1182-90.
    [92]. Gu, Y., et al., RhoH, a hematopoietic-specific Rho GTPase, regulates proliferation, survival, migration, and engraftment of hematopoietic progenitor cells. Blood,2005.105(4):p.1467-75.
    [93]. Chae, H.D., et al., Cross-talk between RhoH and Racl in regulation of actin cytoskeleton and chemotaxis of hematopoietic progenitor cells. Blood,2008. 111(5):p.2597-605.
    [94]. Li, X., et al., The hematopoiesis-specific GTP-binding protein RhoH is GTPase deficient and modulates activities of other Rho GTPases by an inhibitory function. Mol Cell Biol,2002.22(4):p.1158-71.
    [95]. Colomba, A., et al., Activation of Rac1 and the exchange factor Vav3 are involved in NPM-ALK signaling in anaplastic large cell lymphomas. Oncogene, 2008.27(19):p.2728-36.
    [96]. Knowles, M.A., et al., Mutation analysis of the 8p candidate tumour suppressor genes DBC2 (RHOBTB2) and LZTS1 in bladder cancer. Cancer Lett,2005. 225(1):p.121-30.
    [97]. Beder, L.B., et al., Identification of a candidate tumor suppressor gene RHOBTB1 located at a novel allelic loss region 10q21 in head and neck cancer. J Cancer Res Clin Oncol,2006.132(1):p.19-27.
    [98]. Ramos, S., et al., Genomic organization and expression profile of the small GTPases of the RhoBTB family in human and mouse. Gene,2002.298(2):p. 147-57.
    [99]. Berthold, J., K. Schenkova, and F. Rivero, Rho GTPases of the RhoBTB subfamily and tumorigenesis. Acta Pharmacol Sin,2008.29(3):p.285-95.
    [100]. Katzav, S., Flesh and blood:the story of Vavl, a gene that signals in hematopoietic cells but can be transforming in human malignancies. Cancer Lett,2007.255(2):p.241-54.
    [101]. Song, J.Y., et al., Microarray analysis of normal cervix, carcinoma in situ, and invasive cervical cancer:identification of candidate genes in pathogenesis of invasion in cervical cancer. Int J Gynecol Cancer,2008.18(5):p.1051-9.
    [102]. Jones, M.B., et al., Proteomic analysis and identification of new biomarkers and therapeutic targets for invasive ovarian cancer. Proteomics,2002.2(1):p. 76-84.
    [103]. Kamai, T., et al., Overexpression of RhoA, Rac1, and Cdc42 GTPases is associated with progression in testicular cancer. Clin Cancer Res,2004.10(14): p.4799-805.
    [104]. Salh, B., et al., Dysregulation of phosphatidylinositol 3-kinase and downstream effectors in human breast cancer. Int J Cancer,2002.98(1):p.148-54.
    [105]. Nassar, N., et al., Structure-function based design of small molecule inhibitors targeting Rho family GTPases. Curr Top Med Chem,2006.6(11):p.1109-16.
    [106]. Wiggin, G.R., J.P. Fawcett, and T. Pawson, Polarity proteins in axon specification and synaptogenesis. Dev Cell,2005.8(6):p.803-16.
    [107]. Van Aelst, L. and H.T. Cline, Rho GTPases and activity-dependent dendrite development. Curr Opin Neurobiol,2004.14(3):p.297-304.
    [108]. Nakahira, E. and S. Yuasa, Neuronal generation, migration, and differentiation in the mouse hippocampal primoridium as revealed by enhanced green fluorescent protein gene transfer by means of in utero electroporation. J Comp Neurol,2005.483(3):p.329-40.
    [109]. Noctor, S.C., et al., Cortical neurons arise in symmetric and asymmetric division zones and migrate through specific phases. Nat Neurosci,2004.7(2):p. 136-44.
    [110]. de Anda, F.C., et al., Centrosome localization determines neuronal polarity. Nature,2005.436(7051):p.704-8.
    [111]. Ye, B. and Y.N. Jan, Visualizing the breaking of symmetry. Dev Cell,2006. 10(4):p.411-2.
    [112]. Jiang, H. and Y. Rao, Axon formation:fate versus growth. Nat Neurosci,2005. 8(5):p.544-6.
    [113]. Jacobson, C., B. Schnapp, and G.A. Banker, A change in the selective translocation of the Kinesin-1 motor domain marks the initial specification of the axon. Neuron,2006.49(6):p.797-804.
    [114]. Da Silva, J.S., et al., Asymmetric membrane ganglioside sialidase activity specifies axonal fate. Nat Neurosci,2005.8(5):p.606-15.
    [115]. Baas, P.W., Neuronal polarity:microtubules strike back. Nat Cell Biol,2002. 4(8):p. E194-5.
    [116]. Arimura, N. and K. Kaibuchi, Key regulators in neuronal polarity. Neuron, 2005.48(6):p.881-4.
    [117]. Govek, E.E., S.E. Newey, and L. Van Aelst, The role of the Rho GTPases in neuronal development. Genes Dev,2005.19(1):p.1-49.
    [118]. Kishi, M., et al., Mammalian SAD kinases are required for neuronal polarization. Science,2005.307(5711):p.929-32.
    [119]. Schmidt, A. and A. Hall, Guanine nucleotide exchange factors for Rho GTPases:turning on the switch. Genes Dev,2002.16(13):p.1587-609.
    [120]. Bernards, A., GAPs galore! A survey of putative Ras superfamily GTPase activating proteins in man and Drosophila. Biochim Biophys Acta,2003. 1603(2):p.47-82.
    [121]. Gundersen, G.G., E.R. Gomes, and Y. Wen, Cortical control of microtubule stability and polarization. Curr Opin Cell Biol,2004.16(1):p.106-12.
    [122]. Newey, S.E., et al., Rho GTPases, dendritic structure, and mental retardation. J Neurobiol,2005.64(1):p.58-74.
    [123]. Jaffe, A.B., P. Aspenstrom, and A. Hall, Human CNK1 acts as a scaffold protein, linking Rho and Ras signal transduction pathways. Mol Cell Biol,2004. 24(4):p.1736-46.
    [124]. Schwamborn, J.C. and A.W. Puschel, The sequential activity of the GTPases Rap1B and Cdc42 determines neuronal polarity. Nat Neurosci,2004.7(9):p. 923-9.
    [125]. Watabe-Uchida, M., et al., The Rac activator DOCK7 regulates neuronal polarity through local phosphorylation of stathmin/Op18. Neuron,2006.51(6): p.727-39.
    [126]. Ng, J. and L. Luo, Rho GTPases regulate axon growth through convergent and divergent signaling pathways. Neuron,2004.44(5):p.779-93.
    [127]. Rodriguez, O.C., et al., Conserved microtubule-actin interactions in cell movement and morphogenesis. Nat Cell Biol,2003.5(7):p.599-609.
    [128]. Boulton, M. and J. Albon, Stem cells in the eye. Int J Biochem Cell Biol,2004. 36(4):p.643-57.
    [129]. Zhou, M., et al., A hierarchy of proliferative cells exists in mouse lens epithelium:implications for lens maintenance. Invest Ophthalmol Vis Sci,2006. 47(7):p.2997-3003.
    [130]. Yamamoto, N., K. Majima, and T. Marunouchi, A study of the proliferating activity in lens epithelium and the identification of tissue-type stem cells. Med Mol Morphol,2008.41(2):p.83-91.
    [131]. Yamada, T., et al., Age-related changes of p75 neurotrophin receptor-positive adipose-derived stem cells. J Dermatol Sci.58(1):p.36-42.
    [132]. Raji, B., et al., The RNA-binding protein Musashi-1 is produced in the developing and adult mouse eye. Mol Vis,2007.13:p.1412-27.
    [133]. Van Schoore, G., et al., Expression pattern of the orphan receptor LGR4/GPR48 gene in the mouse. Histochem Cell Biol,2005.124(1):p.35-50.
    [134]. Colitz, C.M., et al., ERalpha increases expression and interacts with TERT in cataractous canine lens epithelial cells. Mol Vis,2009.15:p.2259-67.
    [135]. Oka, M., et al., Characterization and localization of side population cells in the lens. Mol Vis.16:p.945-53.
    [136]. Bozanic, D., I. Bocina, and M. Saraga-Babic, Involvement of cytoskeletal proteins and growth factor receptors during development of the human eye. Anat Embryol (Berl),2006.211(5):p.367-77.
    [137]. Song, S., et al., Functions of the intermediate filament cytoskeleton in the eye lens. J Clin Invest,2009.119(7):p.1837-48.
    [138]. Yap, A.S., M.S. Crampton, and J. Hardin, Making and breaking contacts:the cellular biology of cadherin regulation. Curr Opin Cell Biol,2007.19(5):p. 508-14.
    [139]. Pontoriero, G.F., et al., Co-operative roles for E-cadherin and N-cadherin during lens vesicle separation and lens epithelial cell survival. Dev Biol,2009. 326(2):p.403-17.
    [140]. Sugiyama, Y., et al., Expression and localisation of apical junctional complex proteins in lens epithelial cells. Exp Eye Res,2008.87(1):p.64-70.
    [141]. Gilleron, J., et al., Molecular reorganization of Cx43, Zo-1 and Src complexes during the endocytosis of gap junction plaques in response to a non-genomic carcinogen. J Cell Sci,2008.121(Pt 24):p.4069-78.
    [142]. Suzuki, A. and S. Ohno, The PAR-aPKC system:lessons in polarity. J Cell Sci, 2006.119(Pt 6):p.979-87.
    [143]. Sugiyama, Y., et al., A cell polarity protein aPKClambda is required for eye lens formation and growth. Dev Biol,2009.336(2):p.246-56.
    [144]. Sharma, S., et al., Nance-Horan syndrome protein, NHS, associates with epithelial cell junctions. Hum Mol Genet,2006.15(12):p.1972-83.
    [145]. Sharma, S., et al., Novel causative mutations in patients with Nance-Horan syndrome and altered localization of the mutant NHS-A protein isoform. Mol Vis,2008.14:p.1856-64.
    [146]. Nguyen, M.M., C. Rivera, and A.E. Griep, Localization of PDZ domain containing proteins Discs Large-1 and Scribble in the mouse eye. Mol Vis, 2005.11:p.1183-99.
    [147]. Rivera, C., et al., Cell-autonomous requirements for Dlg-1 for lens epithelial cell structure and fiber cell morphogenesis. Dev Dyn,2009.238(9):p. 2292-308.
    [148]. Rong, P., et al., Disruption of Gja8 (alpha8 connexin) in mice leads to microphthalmia associated with retardation of lens growth and lens fiber maturation. Development,2002.129(1):p.167-74.
    [149]. Himi, M., et al., A case of oculodentodigital dysplasia syndrome with novel GJA1 gene mutation. Jpn J Ophthalmol,2009.53(5):p.541-5.
    [150]. Vitiello, C., et al., A novel GJA1 mutation causes oculodentodigital dysplasia without syndactyly. Am J Med Genet A,2005.133A(1):p.58-60.
    [151]. Gong, X., C. Cheng, and C.H. Xia, Connexins in lens development and cataractogenesis. J Membr Biol,2007.218(1-3):p.9-12.
    [152]. Sellitto, C., L. Li, and T.W. White, Connexin50 is essential for normal postnatal lens cell proliferation. Invest Ophthalmol Vis Sci,2004.45(9):p.3196-202.
    [153]. White, T.W., Unique and redundant connexin contributions to lens development. Science,2002.295(5553):p.319-20.
    [154]. White, T.W., et al., Optimal lens epithelial cell proliferation is dependent on the connexin isoform providing gap junctional coupling. Invest Ophthalmol Vis Sci, 2007.48(12):p.5630-7.
    [155]. Boswell, B.A., A.C. Le, and L.S. Musil, Upregulation and maintenance of gap junctional communication in lens cells. Exp Eye Res,2009.88(5):p.919-27.
    [156]. Shakespeare, T.I., et al., Interaction between Connexin50 and mitogen-activated protein kinase signaling in lens homeostasis. Mol Biol Cell, 2009.20(10):p.2582-92.
    [157]. Boswell, B.A., P.J. Lein, and L.S. Musil, Cross-talk between fibroblast growth factor and bone morphogenetic proteins regulates gap junction-mediated intercellular communication in lens cells. Mol Biol Cell,2008.19(6):p. 2631-41.
    [158]. Mathias, R.T., T.W. White, and X. Gong, Lens gap junctions in growth, differentiation, and homeostasis. Physiol Rev.90(1):p.179-206.
    [159]. Lang, R.A., Pathways regulating lens induction in the mouse. Int J Dev Biol, 2004.48(8-9):p.783-91.
    [160]. Kozmik, Z., Pax genes in eye development and evolution. Curr Opin Genet Dev,2005.15(4):p.430-8.
    [161]. Hever, A.M., K.A. Williamson, and V. van Heyningen, Developmental malformations of the eye:the role of Pax6, SOX2 and OTX2. Clin Genet,2006. 69(6):p.459-70.
    [162]. Tsonis, P.A. and E.J. Fuentes, Focus on molecules:Pax-6, the eye master. Exp Eye Res,2006.83(2):p.233-4.
    [163]. Yang, Y., et al., Transcriptional regulation of mouse alphaB- and gammaF-crystallin genes in lens:opposite promoter-specific interactions between Pax6 and large Maf transcription factors. J Mol Biol,2004.344(2):p. 351-68.
    [164]. Yang, Y., et al., Regulation of alphaA-crystallin via Pax6, c-Maf, CREB and a broad domain of lens-specific chromatin. EMBO J,2006.25(10):p.2107-18.
    [165]. Duncan, M.K., et al., Ectopic Pax6 expression disturbs lens fiber cell differentiation. Invest Ophthalmol Vis Sci,2004.45(10):p.3589-98.
    [166]. Duncan, M.K., et al., Overexpression of PAX6(5a) in lens fiber cells results in cataract and upregulation of (alpha)5(beta)1 integrin expression. J Cell Sci, 2000.113 (Pt 18):p.3173-85.
    [167]. Lovicu, F.J., et al., Aberrant lens fiber differentiation in anterior subcapsular cataract formation:a process dependent on reduced levels of Pax6. Invest Ophthalmol Vis Sci,2004.45(6):p.1946-53.
    [168]. de Iongh, R.U., et al., Transforming growth factor-beta-induced epithelial-mesenchymal transition in the lens:a model for cataract formation. Cells Tissues Organs,2005.179(1-2):p.43-55.
    [169]. Wolf, L.V., et al., Identification of pax6-dependent gene regulatory networks in the mouse lens. PLoS One,2009.4(1):p. e4159.
    [170]. Dunker, N. and K. Krieglstein, Reduced programmed cell death in the retina and defects in lens and cornea of Tgfbeta2(-/-) Tgfbeta3(-/-) double-deficient mice. Cell Tissue Res,2003.313(1):p.1-10.
    [171]. Semina, E.V., et al., Deletion in the promoter region and altered expression of Pitx3 homeobox gene in aphakia mice. Hum Mol Genet,2000.9(11):p. 1575-85.
    [172]. Addison, P.K., et al., Posterior polar cataract is the predominant consequence of a recurrent mutation in the PITX3 gene. Br J Ophthalmol,2005.89(2):p. 138-41.
    [173]. Berry, V., et al., Recurrent 17 bp duplication in PITX3 is primarily associated with posterior polar cataract (CPP4). J Med Genet,2004.41(8):p. e109.
    [174]. Chauhan, B.K., et al., Identification of differentially expressed genes in mouse Pax6 heterozygous lenses. Invest Ophthalmol Vis Sci,2002.43(6):p.1884-90.
    [175]. Ohtaka-Maruyama, C., F. Hanaoka, and A.B. Chepelinsky, A novel alternative spliced variant of the transcription factor AP2alpha is expressed in the murine ocular lens. Dev Biol,1998.202(1):p.125-35.
    [176]. Pontoriero, G.F., et al., Cell autonomous roles for AP-2alpha in lens vesicle separation and maintenance of the lens epithelial cell phenotype. Dev Dyn, 2008.237(3):p.602-17.
    [177]. Makhani, L.F., T. Williams, and J.A. West-Mays, Genetic analysis indicates that transcription factors AP-2alpha and Pax6 cooperate in the normal patterning and morphogenesis of the lens. Mol Vis,2007.13:p.1215-25.
    [178]. West-Mays, J.A., et al., Ectopic expression of AP-2alpha transcription factor in the lens disrupts fiber cell differentiation. Dev Biol,2002.245(1):p.13-27.
    [179]. Blixt, A., et al., A forkhead gene, FoxE3, is essential for lens epithelial proliferation and closure of the lens vesicle. Genes Dev,2000.14(2):p.245-54.
    [180]. Blixt, A., et al., Foxe3 is required for morphogenesis and differentiation of the anterior segment of the eye and is sensitive to Pax6 gene dosage. Dev Biol, 2007.302(1):p.218-29.
    [181]. Ormestad, M., et al., Foxe3 haploinsufficiency in mice:a model for Peters' anomaly. Invest Ophthalmol Vis Sci,2002.43(5):p.1350-7.
    [182]. Valleix, S., et al., Homozygous nonsense mutation in the FOXE3 gene as a cause of congenital primary aphakia in humans. Am J Hum Genet,2006.79(2): p.358-64.
    [183]. Medina-Martinez, O., et al., Severe defects in proliferation and differentiation of lens cells in Foxe3 null mice. Mol Cell Biol,2005.25(20):p.8854-63.
    [184]. Medina-Martinez, O. and M. Jamrich, Foxe view of lens development and disease. Development,2007.134(8):p.1455-63.
    [185]. Rajagopal, R., et al., The type Ⅰ BMP receptors, Bmprla and Acvrl, activate multiple signaling pathways to regulate lens formation. Dev Biol,2009.335(2): p.305-16.
    [186]. Ogino, H., M. Fisher, and R.M. Grainger, Convergence of a head-field selector Otx2 and Notch signaling:a mechanism for lens specification. Development, 2008.135(2):p.249-58.
    [187]. Yoshimoto, A., et al., Regulation of ocular lens development by Smad-interacting protein 1 involving Foxe3 activation. Development,2005. 132(20):p.4437-48.
    [188]. Reza, H.M. and K. Yasuda, Roles of Maf family proteins in lens development. Dev Dyn,2004.229(3):p.440-8.
    [189]. Yang, Y. and A. Cvekl, Large Maf Transcription Factors:Cousins of AP-1 Proteins and Important Regulators of Cellular Differentiation. Einstein J Biol Med,2007.23(1):p.2-11.
    [190]. Sakai, M., et al., Regulation of c-maf gene expression by Pax6 in cultured cells. Nucleic Acids Res,2001.29(5):p.1228-37.
    [191]. Ring, B.Z., et al., Regulation of mouse lens fiber cell development and differentiation by the Maf gene. Development,2000.127(2):p.307-17.
    [192]. Takeuchi, T., et al., Neither MafA/L-Maf nor MafB is essential for lens development in mice. Genes Cells,2009.14(8):p.941-7.
    [193]. Yoshida, T. and K. Yasuda, Characterization of the chicken L-Maf, MafB and c-Maf in crystallin gene regulation and lens differentiation. Genes Cells,2002. 7(7):p.693-706.
    [194]. Reza, H.M., et al., Sequential and combinatorial roles of maf family genes define proper lens development. Mol Vis,2007.13:p.18-30.
    [195]. Reza, H.M., et al., L-Maf regulates p27kipl expression during chick lens fiber differentiation. Differentiation,2007.75(8):p.737-44.
    [196]. Lengler, J. and J. Graw, Regulation of the human SIX3 gene promoter. Biochem Biophys Res Commun,2001.287(2):p.372-6.
    [197]. Goudreau, G., et al., Mutually regulated expression of Pax6 and Six3 and its implications for the Pax6 haploinsufficient lens phenotype. Proc Natl Acad Sci U S A,2002.99(13):p.8719-24.
    [198]. Wargelius, A., et al., Retinal expression of zebrafish six3.1 and its regulation by Pax6. Biochem Biophys Res Commun,2003.309(2):p.475-81.
    [199]. Liu, W., et al., Six3 activation of Pax6 expression is essential for mammalian lens induction and specification. EMBO J,2006.25(22):p.5383-95.
    [200]. Uchikawa, M., et al., Functional analysis of chicken Sox2 enhancers highlights an array of diverse regulatory elements that are conserved in mammals. Dev Cell,2003.4(4):p.509-19.
    [201]. Wiebe, M.S., et al., Isolation, characterization, and differential expression of the murine Sox-2 promoter. Gene,2000.246(1-2):p.383-93.
    [202]. Lengler, J., et al., Agonistic and antagonistic action of AP2, Msx2, Pax6, Prox1 AND Six3 in the regulation of Sox2 expression. Ophthalmic Res,2005.37(6): p.301-9.
    [203]. Bottcher, R.T. and C. Niehrs, Fibroblast growth factor signaling during early vertebrate development. Endocr Rev,2005.26(1):p.63-77.
    [204]. Xie, L., P.A. Overbeek, and L.W. Reneker, Ras signaling is essential for lens cell proliferation and lens growth during development. Dev Biol,2006.298(2): p.403-14.
    [205]. Le, A.C. and L.S. Musil, FGF signaling in chick lens development. Dev Biol, 2001.233(2):p.394-411.
    [206]. Weber, G.F. and A.S. Menko, Phosphatidylinositol 3-kinase is necessary for lens fiber cell differentiation and survival. Invest Ophthalmol Vis Sci,2006. 47(10):p.4490-9.
    [207]. Lin, D. and D.J. Takemoto, Oxidative activation of protein kinase Cgamma through the Cl domain. Effects on gap junctions. J Biol Chem,2005.280(14): p.13682-93.
    [208]. Boros, J., et al., Sef and Sprouty expression in the developing ocular lens: implications for regulating lens cell proliferation and differentiation. Semin Cell Dev Biol,2006.17(6):p.741-52.
    [209]. Tsang, M. and I.B. Dawid, Promotion and attenuation of FGF signaling through the Ras-MAPK pathway. Sci STKE,2004.2004(228):p. pe17.
    [210]. Lovicu, F.J. and J.W. McAvoy, Growth factor regulation of lens development. Dev Biol,2005.280(1):p.1-14.
    [211]. Pan, Y., et al., Heparan sulfate biosynthetic gene Ndstl is required for FGF signaling in early lens development. Development,2006.133(24):p.4933-44.
    [212]. Pallerla, S.R., et al., Heparan sulfate Ndstl gene function variably regulates multiple signaling pathways during mouse development. Dev Dyn,2007. 236(2):p.556-63.
    [213]. Griep, A.E., Cell cycle regulation in the developing lens. Semin Cell Dev Biol, 2006.17(6):p.686-97.
    [214]. Robinson, M.L., An essential role for FGF receptor signaling in lens development. Semin Cell Dev Biol,2006.17(6):p.726-40.
    [215]. Garcia, C.M., et al., Signaling through FGF receptor-2 is required for lens cell survival and for withdrawal from the cell cycle during lens fiber cell differentiation. Dev Dyn,2005.233(2):p.516-27.
    [216]. Iyengar, L., et al., Growth factors involved in aqueous humour-induced lens cell proliferation. Growth Factors,2009.27(1):p.50-62.
    [217]. Iyengar, L., et al., Duration of ERK1/2 phosphorylation induced by FGF or ocular media determines lens cell fate. Differentiation,2007.75(7):p.662-8.
    [218]. Lovicu, F.J. and J.W. McAvoy, FGF-induced lens cell proliferation and differentiation is dependent on MAPK (ERK1/2) signalling. Development, 2001.128(24):p.5075-84.
    [219]. Zhao, H., et al., Fibroblast growth factor receptor signaling is essential for lens fiber cell differentiation. Dev Biol,2008.318(2):p.276-88.
    [220]. Zhao, H., et al., Fibroblast growth factor receptor 1 (Fgfrl) is not essential for lens fiber differentiation in mice. Mol Vis,2006.12:p.15-25.
    [221]. Singh, D.P., et al., Lens epithelium-derived growth factor:effects on growth and survival of lens epithelial cells, keratinocytes, and fibroblasts. Biochem Biophys Res Commun,2000.267(1):p.373-81.
    [222]. Shinohara, T., D.P. Singh, and N. Fatma, LEDGF, a survival factor, activates stress-related genes. Prog Retin Eye Res,2002.21(3):p.341-58.
    [223]. Cohen, B., et al., Transcriptional regulation of vascular endothelial growth factor C by oxidative and thermal stress is mediated by lens epithelium-derived growth factor/p75. Neoplasia,2009.11(9):p.921-33.
    [224]. Takamura, Y., et al., Regulation of heavy subunit chain of gamma-glutamylcysteine synthetase by tumor necrosis factor-alpha in lens epithelial cells:role of LEDGF/p75. Am J Physiol Cell Physiol,2006.290(2):p. C554-66.
    [225]. Ganapathy, V., T. Daniels, and C.A. Casiano, LEDGF/p75:a novel nuclear autoantigen at the crossroads of cell survival and apoptosis. Autoimmun Rev, 2003.2(5):p.290-7.
    [226]. Engelman, A. and P. Cherepanov, The lentiviral integrase binding protein LEDGF/p75 and HIV-1 replication. PLoS Pathog,2008.4(3):p.e1000046.
    [227]. Dudley, A.T. and E.J. Robertson, Overlapping expression domains of bone morphogenetic protein family members potentially account for limited tissue defects in BMP7 deficient embryos. Dev Dyn,1997.208(3):p.349-62.
    [228]. Furuta, Y. and B.L. Hogan, BMP4 is essential for lens induction in the mouse embryo. Genes Dev,1998.12(23):p.3764-75.
    [229]. Wawersik, S., et al., BMP7 acts in murine lens placode development. Dev Biol, 1999.207(1):p.176-88.
    [230]. Sjodal, M., T. Edlund, and L. Gunhaga, Time of exposure to BMP signals plays a key role in the specification of the olfactory and lens placodes ex vivo. Dev Cell,2007.13(1):p.141-9.
    [231]. Huang, J., et al., FGF-regulated BMP signaling is required for eyelid closure and to specify conjunctival epithelial cell fate. Development,2009.136(10):p. 1741-50.
    [232]. Beebe, D., et al., Contributions by members of the TGFbeta superfamily to lens development. Int J Dev Biol,2004.48(8-9):p.845-56.
    [233]. Rajagopal, R., et al., Functions of the type 1 BMP receptor Acvrl (Alk2) in lens development:cell proliferation, terminal differentiation, and survival. Invest Ophthalmol Vis Sci,2008.49(11):p.4953-60.
    [234]. Dawes, L.J., et al., TGFbeta/Smad4-dependent and -independent regulation of human lens epithelial cells. Invest Ophthalmol Vis Sci,2009.50(11):p. 5318-27.
    [235]. Dawes, L.J., et al., TGF beta-induced contraction is not promoted by fibronectin-fibronectin receptor interaction, or alpha SMA expression. Invest Ophthalmol Vis Sci,2008.49(2):p.650-61.
    [236]. Liu, Y., New insights into epithelial-mesenchymal transition in kidney fibrosis. J Am Soc Nephrol.21(2):p.212-22.
    [237]. Vincan, E. and N. Barker, The upstream components of the Wnt signalling pathway in the dynamic EMT and MET associated with colorectal cancer progression. Clin Exp Metastasis,2008.25(6):p.657-63.
    [238]. Yao, K., et al., Involvement of PI3K/Akt pathway in TGF-beta2-mediated epithelial mesenchymal transition in human lens epithelial cells. Ophthalmic Res,2008.40(2):p.69-76.
    [239]. Nathu, Z., et al., Temporal changes in MMP mRNA expression in the lens epithelium during anterior subcapsular cataract formation. Exp Eye Res,2009. 88(2):p.323-30.
    [240]. Morarescu, D., J.A. West-Mays, and H.D. Sheardown, Effect of delivery of MMP inhibitors from PDMS as a model IOL material on PCO markers. Biomaterials.31(8):p.2399-407.
    [241]. Dwivedi, D.J., et al., Matrix metalloproteinase inhibitors suppress transforming growth factor-beta-induced subcapsular cataract formation. Am J Pathol,2006. 168(1):p.69-79.
    [242]. Andersson, M., et al., Decreased caspase-3 activity in human lens epithelium from posterior subcapsular cataracts. Exp Eye Res,2003.76(2):p.175-82.
    [243]. Ang, S.J., et al., Spatial and temporal expression of Wnt and Dickkopf genes during murine lens development. Gene Expr Patterns,2004.4(3):p.289-95.
    [244]. Martinez, G., et al., Conditional mutations of beta-catenin and APC reveal roles for canonical Wnt signaling in lens differentiation. Invest Ophthalmol Vis Sci, 2009.50(10):p.4794-806.
    [245]. Joo, J.H., et al., Disruption of mouse corneal epithelial differentiation by conditional inactivation of pnn. Invest Ophthalmol Vis Sci.51(4):p.1927-34.
    [246]. Cain, S., et al., Differential requirement for beta-catenin in epithelial and fiber cells during lens development. Dev Biol,2008.321(2):p.420-33.
    [247]. Jia, J., et al., The Notch signaling pathway controls the size of the ocular lens by directly suppressing p57Kip2 expression. Mol Cell Biol,2007.27(20):p. 7236-47.
    [248]. Rowan, S., et al., Notch signaling regulates growth and differentiation in the mammalian lens. Dev Biol,2008.321(1):p.111-22.
    [249]. Le, T.T., K.W. Conley, and N.L. Brown, Jagged 1 is necessary for normal mouse lens formation. Dev Biol,2009.328(1):p.118-26.
    [250]. Saravanamuthu, S.S., C.Y. Gao, and P.S. Zelenka, Notch signaling is required for lateral induction of Jaggedl during FGF-induced lens fiber differentiation. Dev Biol,2009.332(1):p.166-76.
    [251]. Harvey, K. and N. Tapon, The Salvador-Warts-Hippo pathway-an emerging tumour-suppressor network. Nat Rev Cancer,2007.7(3):p.182-91.
    [252]. Zhang, W., et al., Quantitation of PAX6 and PAX6(5a) transcript levels in adult human lens, cornea, and monkey retina. Mol Vis,2001.7:p.1-5.
    [253]. Truscott, R.J., Age-related nuclear cataract-oxidation is the key. Exp Eye Res, 2005.80(5):p.709-25.
    [254]. Long, A.C., C.M. Colitz, and J.A. Bomser, Apoptotic and necrotic mechanisms of stress-induced human lens epithelial cell death. Exp Biol Med (Maywood), 2004.229(10):p.1072-80.
    [255]. Seomun, Y., et al., Induction of p21Cip1-mediated G2/M arrest in H2O2-treated lens epithelial cells. Mol Vis,2005.11:p.764-74.
    [256]. Wu, M., et al., Sustained oxidative stress inhibits NF-kappaB activation partially via inactivating the proteasome. Free Radic Biol Med,2009.46(1):p. 62-9.
    [257]. Laan, L., et al., Force-generation and dynamic instability of microtubule bundles. Proc Natl Acad Sci U S A,2008.105(26):p.8920-5.
    [258]. Torres, M., Mitogen-activated protein kinase pathways in redox signaling. Front Biosci,2003.8:p. d369-91.
    [259]. Chen, K.C., et al., Platelet derived growth factor (PDGF)-induced reactive oxygen species in the lens epithelial cells:the redox signaling. Exp Eye Res, 2004.78(6):p.1057-67.
    [260]. Chamberlain, C.G., K.J. Mansfield, and A. Cerra, Glutathione and catalase suppress TGFbeta-induced cataract-related changes in cultured rat lenses and lens epithelial explants. Mol Vis,2009.15:p.895-905.
    [261]. Yao, K., et al., Reactive oxygen species mediates the apoptosis induced by transforming growth factor beta(2) in human lens epithelial cells. Biochem Biophys Res Commun,2007.354(1):p.278-83.
    [262]. Kubo, E., et al., Protein expression profiling of lens epithelial cells from Prdx6-depleted mice and their vulnerability to UV radiation exposure. Am J Physiol Cell Physiol.298(2):p. C342-54.
    [263]. Fatma, N., et al., Impaired homeostasis and phenotypic abnormalities in Prdx6-/-mice lens epithelial cells by reactive oxygen species:increased expression and activation of TGFbeta. Cell Death Differ,2005.12(7):p. 734-50.
    [264]. Kubo, E., et al., TAT-mediated PRDX6 protein transduction protects against eye lens epithelial cell death and delays lens opacity. Am J Physiol Cell Physiol, 2008.294(3):p. C842-55.
    [265]. Liu, D., et al., Genetic screens in mammalian cells by enhanced retroviral mutagens. Oncogene,2000.19(52):p.5964-72.
    [266]. Guo, X., et al., A Rac/Cdc42-specific exchange factor, GEFT, induces cell proliferation, transformation, and migration. J Biol Chem,2003.278(15):p. 13207-15.
    [267]. Bryan, B.A., et al., Modulation of muscle regeneration, myogenesis, and adipogenesis by the Rho family guanine nucleotide exchange factor GEFT. Mol Cell Biol,2005.25(24):p.11089-101.
    [268]. Rossman, K.L., C.J. Der, and J. Sondek, GEF means go:turning on RHO GTPases with guanine nucleotide-exchange factors. Nat Rev Mol Cell Biol, 2005.6(2):p.167-80.
    [269]. Bryan, B., et al., GEFT, a Rho family guanine nucleotide exchange factor, regulates neurite outgrowth and dendritic spine formation. J Biol Chem,2004. 279(44):p.45824-32.
    [270]. Cuenda, A. and P. Cohen, Stress-activated protein kinase-2/p38 and a rapamycin-sensitive pathway are required for C2C12 myogenesis. J Biol Chem, 1999.274(7):p.4341-6.
    [271]. Baeza-Raja, B. and P. Munoz-Canoves, p38 MAPK-induced nuclear factor-kappaB activity is required for skeletal muscle differentiation:role of interleukin-6. Mol Biol Cell,2004.15(4):p.2013-26.
    [272]. Buckingham, M., et al., The formation of skeletal muscle:from somite to limb. J Anat,2003.202(1):p.59-68.
    [273]. Cabane, C., et al., Regulation of C2C12 myogenic terminal differentiation by MKK3/p38alpha pathway. Am J Physiol Cell Physiol,2003.284(3):p. C658-66.
    [274]. Li, Y., et al., Myogenic differentiation requires signalling through both phosphatidylinositol 3-kinase and p38 MAP kinase. Cell Signal,2000. 12(11-12):p.751-7.
    [275]. Meriane, M., et al., Transforming growth factor beta activates Racl and Cdc42Hs GTPases and the JNK pathway in skeletal muscle cells. Biol Cell, 2002.94(7-8):p.535-43.
    [276]. Meriane, M., et al., Critical activities of Racl and Cdc42Hs in skeletal myogenesis:antagonistic effects of JNK and p38 pathways. Mol Biol Cell, 2000.11(8):p.2513-28.
    [277]. Rousse, S., et al., Transforming growth factor-beta inhibition of insulin-like growth factor-binding protein-5 synthesis in skeletal muscle cells involves a c-Jun N-terminal kinase-dependent pathway. J Biol Chem,2001.276(50):p. 46961-7.
    [278]. Saltiel, A.R., Muscle or fat? Rho bridges the GAP. Cell,2003.113(2):p.144-5.
    [279]. Sordella, R., et al., Modulation of CREB activity by the Rho GTPase regulates cell and organism size during mouse embryonic development. Dev Cell,2002. 2(5):p.553-65.
    [280]. Sordella, R., et al., Modulation of Rho GTPase signaling regulates a switch between adipogenesis and myogenesis. Cell,2003.113(2):p.147-58.
    [281]. O'Brien, S.P., et al., Skeletal muscle deformity and neuronal disorder in Trio exchange factor-deficient mouse embryos. Proc Natl Acad Sci U S A,2000. 97(22):p.12074-8.
    [282]. Debant, A., et al., The multidomain protein Trio binds the LAR transmembrane tyrosine phosphatase, contains a protein kinase domain, and has separate rac-specific and rho-specific guanine nucleotide exchange factor domains. Proc Natl Acad Sci U S A,1996.93(11):p.5466-71.
    [283]. Bryan, B.A., et al., The Rho family of small GTPases:crucial regulators of skeletal myogenesis. Cell Mol Life Sci,2005.62(14):p.1547-55.
    [284]. Carnac, G., et al., RhoA GTPase and serum response factor control selectively the expression of MyoD without affecting Myf5 in mouse myoblasts. Mol Biol Cell,1998.9(7):p.1891-902.
    [285]. Miralles, F., et al., Actin dynamics control SRF activity by regulation of its coactivator MAL. Cell,2003.113(3):p.329-42.
    [286]. Posern, G., et al., Mutant actins that stabilise F-actin use distinct mechanisms to activate the SRF coactivator MAL. EMBO J,2004.23(20):p.3973-83.
    [287]. Settleman, J., A nuclear MAL-function links Rho to SRF. Mol Cell,2003.11(5): p.1121-3.
    [288]. Sotiropoulos, A., et al., Signal-regulated activation of serum response factor is mediated by changes in actin dynamics. Cell,1999.98(2):p.159-69.
    [289]. Gallo, R., et al., Distinct effects of Racl on differentiation of primary avian myoblasts. Mol Biol Cell,1999.10(10):p.3137-50.
    [290]. Heller, H., E. Gredinger, and E. Bengal, Rac1 inhibits myogenic differentiation by preventing the complete withdrawal of myoblasts from the cell cycle. J Biol Chem,2001.276(40):p.37307-16.
    [291]. Luo, L., et al., Distinct morphogenetic functions of similar small GTPases: Drosophila Dracl is involved in axonal outgrowth and myoblast fusion. Genes Dev,1994.8(15):p.1787-802.
    [292]. Takano, H., et al., The Rho family G proteins play a critical role in muscle differentiation. Mol Cell Biol,1998.18(3):p.1580-9.
    [293]. Travaglione, S., et al., Cytotoxic necrotizing factor 1 hinders skeletal muscle differentiation in vitro by perturbing the activation/deactivation balance of Rho GTPases. Cell Death Differ,2005.12(1):p.78-86.
    [294]. Lutz, S., et al., The guanine nucleotide exchange factor p63RhoGEF, a specific link between Gq/11-coupled receptor signaling and RhoA. J Biol Chem,2005. 280(12):p.11134-9.
    [295]. Shepherd, P.R., Mechanisms regulating phosphoinositide 3-kinase signalling in insulin-sensitive tissues. Acta Physiol Scand,2005.183(1):p.3-12.
    [296]. Watson, R.T., et al., The exocytotic trafficking of TC10 occurs through both classical and nonclassical secretory transport pathways in 3T3L1 adipocytes. Mol Cell Biol,2003.23(3):p.961-74.
    [297]. Watson, R.T., et al., Entry of newly synthesized GLUT4 into the insulin-responsive storage compartment is GGA dependent. EMBO J,2004. 23(10):p.2059-70.
    [298]. Watson, R.T., M. Kanzaki, and J.E. Pessin, Regulated membrane trafficking of the insulin-responsive glucose transporter 4 in adipocytes. Endocr Rev,2004. 25(2):p.177-204.
    [299]. Watson, R.T. and J.E. Pessin, Subcellular compartmentalization and trafficking of the insulin-responsive glucose transporter, GLUT4. Exp Cell Res,2001. 271(1):p.75-83.
    [300]. Marcusohn, J., et al., The GTP-binding protein Rac does not couple PI 3-kinase to insulin-stimulated glucose transport in adipocytes. Curr Biol,1995.5(11):p. 1296-302.
    [301]. Usui, I., et al., Cdc42 is a Rho GTPase family member that can mediate insulin signaling to glucose transport in 3T3-L1 adipocytes. J Biol Chem,2003. 278(16):p.13765-74.
    [302]. Smith, T.K., et al., Bves directly interacts with GEFT, and controls cell shape and movement through regulation of Racl/Cdc42 activity. Proc Natl Acad Sci U S A,2008.105(24):p.8298-303.
    [303]. Hough, R.B., et al., Adaptive evolution of small heat shock protein/alpha B-crystallin promoter activity of the blind subterranean mole rat, Spalax ehrenbergi. Proc Natl Acad Sci U S A,2002.99(12):p.8145-50.
    [304]. Chen, Q., et al., Inhibition of crystallin expression and induction of apoptosis by lens-specific El A expression in transgenic mice. Oncogene,2002.21(7):p. 1028-37.
    [305]. Reddan, J.R., et al., Retention of lens specificity in long-term cultures of diploid rabbit lens epithelial cells. Differentiation,1986.33(2):p.168-74.
    [306]. Mao, Y.W., et al., Human bcl-2 gene attenuates the ability of rabbit lens epithelial cells against H2O2-induced apoptosis through down-regulation of the alpha B-crystallin gene. J Biol Chem,2001.276(46):p.43435-45.
    [307]. Araki-Sasaki, K., et al., An SV40-immortalized human corneal epithelial cell line and its characterization. Invest Ophthalmol Vis Sci,1995.36(3):p.614-21.
    [308]. Feng, H., et al., Human Bcl-2 activates ERK signaling pathway to regulate activating protein-1, lens epithelium-derived growth factor and downstream genes. Oncogene,2004.23(44):p.7310-21.
    [309]. Zelenka, P.S., C.Y. Gao, and S.S. Saravanamuthu, Preparation and culture of rat lens epithelial explants for studying terminal differentiation. J Vis Exp, 2009(31).
    [310]. Wang, J., et al., Human telomerase reverse transcriptase immortalizes bovine lens epithelial cells and suppresses differentiation through regulation of the ERK signaling pathway. J Biol Chem,2005.280(24):p.22776-87.
    [311]. Yan, Q., et al., Protein phosphatase-1 modulates the function of Pax-6, a transcription factor controlling brain and eye development. J Biol Chem,2007. 282(19):p.13954-65.
    [312]. Qin, J., et al., Protein phosphatase-2A is a target of epigallocatechin-3-gallate and modulates p53-Bak apoptotic pathway. Cancer Res,2008.68(11):p. 4150-62.
    [313]. Xiao, L., et al., Protein phosphatase-1 regulates Aktl signal transduction pathway to control gene expression, cell survival and differentiation. Cell Death Differ.17(9):p.1448-62.
    [314]. Yan, Q., et al., Sumoylation activates the transcriptional activity of Pax-6, an important transcription factor for eye and brain development. Proc Natl Acad Sci U S A.107(49):p.21034-9.
    [315]. Sengupta, N. and E. Seto, Regulation of histone deacetylase activities. J Cell Biochem,2004.93(1):p.57-67.
    [316]. Zelenka, P.S., Regulation of cell adhesion and migration in lens development. Int J Dev Biol,2004.48(8-9):p.857-65.
    [317]. Reza, H.M. and K. Yasuda, The involvement of neural retina pax6 in lens fiber differentiation. Dev Neurosci,2004.26(5-6):p.318-27.
    [318]. Reza, H.M. and K. Yasuda, Lens differentiation and crystallin regulation:a chick model. Int J Dev Biol,2004.48(8-9):p.805-17.
    [319]. Zhang, L., et al., Apoptosis:its functions and control in the ocular lens. Curr Mol Med.10(9):p.864-75.
    [320]. Bhat, S.P., Crystallins, genes and cataract. Prog Drug Res,2003.60:p.205-62.
    [321]. McAvoy, J.W., et al., Lens development. Eye (Lond),1999.13 (Pt 3b):p. 425-37.
    [322]. Slingsby, C. and N.J. Clout, Structure of the crystallins. Eye (Lond),1999.13 (Pt 3b):p.395-402.
    [323]. Bi, F., et al., Autoinhibition mechanism of proto-Dbl. Mol Cell Biol,2001. 21(5):p.1463-74.
    [324]. Peyssonnaux, C., et al., Induction of postmitotic neuroretina cell proliferation by distinct Ras downstream signaling pathways. Mol Cell Biol,2000.20(19):p. 7068-79.
    [325]. Williams, C.L., The polybasic region of Ras and Rho family small GTPases:a regulator of protein interactions and membrane association and a site of nuclear localization signal sequences. Cell Signal,2003.15(12):p.1071-80.
    [326]. Lanning, C.C., R. Ruiz-Velasco, and C.L. Williams, Novel mechanism of the co-regulation of nuclear transport of SmgGDS and Rac1. J Biol Chem,2003. 278(14):p.12495-506.
    [327]. Lanning, C.C., et al., The Racl C-terminal polybasic region regulates the nuclear localization and protein degradation of Rac1. J Biol Chem,2004. 279(42):p.44197-210.
    [328]. Michaelson, D., et al., Rac1 accumulates in the nucleus during the G2 phase of the cell cycle and promotes cell division. J Cell Biol,2008.181(3):p.485-96.
    [329]. Fanto, M., et al., Nuclear signaling by Rac and Rho GTPases is required in the establishment of epithelial planar polarity in the Drosophila eye. Curr Biol, 2000.10(16):p.979-88.
    [330]. SundarRaj, N., et al., A Rho-associated protein kinase:differentially distributed in limbal and corneal epithelia. Invest Ophthalmol Vis Sci,1998.39(7):p. 1266-72.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700