退行性脊柱侧凸间充质干细胞比较蛋白质组学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究背景:
     退行性脊柱侧凸(degenerative scoliosis, DS)随着人口老龄化及老年人生活方式的转变,已成为导致脊柱畸形、功能障碍、影响生活质量的一种重要的腰椎退行性疾病。DS的病因尚不明确,可能与椎间盘、关节突关节的不对称退变、骨质疏松和遗传学因素有关,但均没有明确证据可以解释其病因。目前关于该病的研究绝大多数都是针对该病的治疗,涉及病因学方面的基础研究很少,而且还没有分子生物学方面的报道。因此,弄清DS的病因及发病机制具有重要意义。
     骨髓间充质干细胞(bone merrow-derived mesenchymal stem cell,BM-MSC)是成骨细胞的干/祖细胞,可以在体内不断分化为骨组织的各种成分,成骨相关的疾病很可能是在干细胞水平上发生了异常而产生疾病,因此从MSC水平对骨病成因进行研究很有必要。
     蛋白质组学是一项新兴的实验技术,能从蛋白质的整体水平,更深入、更接近生命本质的层次去发现和探讨生命活动的规律及其重要生理病理现象的本质。而MSC的蛋白质组学研究刚刚起步,尤其是对于疾病的比较蛋白质组学研究更是少有报道。2D-DIGE是近年来发展成熟的蛋白质组技术,是目前定量蛋白质组学研究中可信度和准确性最高的技术之一。
     本研究旨在首先培养和鉴定DS患者和对照组(腰椎管狭窄患者)的MSC,然后采用蛋白质组技术从MSC的水平寻找DS与对照组的差异蛋白,并对DS的发病机制和病因进行探讨,为进一步从基因层面研究提供依据。
     研究目的:
     1.分离和培养扩增DS患者和对照组的MSC,并对其进行鉴定。
     2.构建DS患者与对照间MSC差异蛋白质组图谱。
     3.应用质谱鉴定技术,对差异蛋白质点进行鉴定。
     4.结合蛋白功能网络研究成果,分析所鉴定的蛋白质在DS发生发展中的作用,并为在基因层面的进一步研究提供依据。
     研究方法:
     1.采集12例退行性脊柱侧凸患者和12例年龄、性别匹配的腰椎管狭窄患者的骨髓,分离、培养扩增MSC,制备MSC蛋白质样品。并采用流式细胞仪检测细胞表面抗原,成骨诱导体系及脂肪诱导体系分别诱导MSC定向分化,通过细胞形态观察及免疫化学染色进行鉴定。
     2. CyDye染料交叉标记,然后进行荧光双向差异凝胶电泳、图像扫描,并用DeCyderv.5.02图像分析软件对DIGE图像进行分析和寻找差异点。
     3.对筛选出的差异点进行基质辅助激光解吸/电离飞行时间质谱(MALDI-TOF-MS)分析,检索IPI-HUMAN数据库鉴定蛋白。
     研究结果:
     1.从DS和腰椎管狭窄患者的骨髓液中分离出MSC。这些MSC稳定表达CD29、CD44、CD105,不表达CD31、CD34、CD45。定向诱导的成骨细胞表达碱性磷酸酶活性,脂肪细胞内出现明显的脂滴。
     2.经过荧光双向差异凝胶电泳、DeCyder软件分析发现,DS患者和腰椎管狭窄患者MSC中共有115个蛋白质差异点,两者之间的差异有统计学意义。其中有70个点在DS干细胞中上调,有45个点表达下调。
     3.115个蛋白质差异点经质谱分析,IPI-HUMAN数据库鉴定44个差异蛋白。
     结论:
     1.应用密度梯度离心联合贴壁筛选法并通过流式细胞术检测及定向诱导分化,能够从DS和对照组患者的骨髓液中分离出MSC,并完成MSC表型和多向分化的初步鉴定。
     2.首次对DS患者进行MSC水平的蛋白质组研究,构建了MSC差异蛋白质组资料库。
     3.应用质谱鉴定技术,成功鉴定出44个差异表达蛋白质。这种蛋白质的差异表达可能更接近DS发生的使动因素。其具体意义、具体作用及其是否具有DS特异性尚需进一步研究以阐明。研究结果为DS的发病和进展机制研究奠定了理论基础,为在基因层面的进一步研究提供依据。
Background:
     As the population aging trends going on and the lifestyle changing of the elderly, Degenerative scoliosis (DS) has become more and more important in the degenerative lumbar disease causing spinal deformity, dysfunction and affecting quality of life of the elderly. Although osteoporosis, asymmetric degenerative disc disease, facet tropism and inheritance have been implicated as factors in the development of DS, none of these has been shown to be directly related. The pathogenesis of DS is still unknown. Most current researches on the DS are focused on the therapeusis, but the basic research on the etiology is few. Furthermore, there has no molecular biology study been reported. So it is of great importance to find out the true reason or pathogenesis of DS.
     Bone merrow-derived mesenchymal stem cells(BM-MSCs) are the stem/progenitor cells of the osteoblasts. They can differentiate into several components of the bone, and the diseases associated with osteogenesis could be caused by the abnormity of the MSCs. So we should investigate the bone disease on the level of MSCs.
     Proteomics is a newly emerging experiment technology, it can find the differences on the level of the whole proteins to investigate the rule or nature of several vital movements and physiology or pathology phenomenons. The proteomics researches on the MSCs are just starting and rare, particularly the comparative proteomics researches on the disease. The recently introduced differential in gel electrophoresis(DIGE) technology is believed to be a highly reliable and accurate tool for quantitative analysis of differentially expressed proteins.
     In our study, MSCs of patients of DS and the Control(lumbar spinal stenosis) were isolated, cultured and identified. Then, the Comparative Proteomics Research on MSCs was performed to find the differential proteins which was studied and discussed to provide effective biochemical evidence for the coming gene researches and help to undersand the pathogenesis of DS.
     Objectives:
     1. To isolate and culture the MSCs of the patients of DS and the Control, and to identify the MSCs.
     2. To establish two dimensional difference in gel electrophoresis(2D-DIGE) of MSCs of DS and the control.
     3. To identify the differential proteins expressed in MSCs of patients using mass spectrometry techniques.
     4. To analyze the role of the identified proteins in the development of degenerative scoliosis through the present protein functional network of research results.
     Methods:
     1. Bone marrow was collected from 12 degenerative scoliosis patients and 12 age-and gender-matched patients with lumbar spinal stenosis. Then the MSCs was harvested after being differentiated, cultured and identified.
     2. The samples were labeled with different CyDye, followed by 2D-DIGE, map scanning, and then the maps of protein spots were compared using specific software DeCyder v5.02.
     3. The differentially expressed spots were identified by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry and IPI-HUMAN data base.
     Results:
     l.By gradient centrifugation and adhesion culture, MSCs could be isolated and culture-expanded from human bone marrow aspirate. These cells were uniformly negative for CD31、CD34、CD45 and positive for CD29、CD44、CD105. The osteogenic differentiated cells were positive for alkaline phosphatase(ALP) and the adipogenic differentiated cells displayed accumulation of lipid vacuoles as detected by oil red O.
     2.115 spots that were differently expressed in the MSC of DS patients were found and identified. There were 70 proteins significantly up-regulated and 45 spots significantly down-regulated in MSC of DS patients.
     3. The differentially expressed spots were identified by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry(MALDI-TOF-MS).44 proteins were identified from samples of DS and Control.
     Conclusions:
     1. MSCs can be isolated and expand-cultured from adult human bone marrow aspirate and committedly differentiate into osteoblasts and adipocytes. MSCs primary identification can be accomplished by flow cytometry and induced differentiation.
     2. This is the first time to study comparative proteomics on MSC of DS. And the MSC 2D-DIGE of DS patients and lumbar spinal stenosis were successfully settled.
     3. There were 44 protein spots of significance between the MSC of patients with DS and lumbar spinal stenosis analyzed by mass spectrometry techniques. Though the result is preliminary, but this differences of the protein may be the original factors of DS. Further investigations are necessary to illustrate the functioning pathway, the specificity and the mechanism of how these proteins contribute to pathogenesis of DS. The information obtained with this proteomic analysis will be very useful in understanding the pathophysiology of DS and finding the pathogenic genes of DS.
引文
1 Kostuik JP, Bentivoglio J. The incidence of low-back pain in adult scoliosis. Spine (PhilaPa 1976),1981,6:268-73.
    2 Jackson RP, Simmons EH, Stripinis D. Coronal and sagittal plane spinal deformities correlating with back pain and pulmonary function in adult idiopathic scoliosis. Spine (Phila Pa 1976),1989,14:1391-7.
    3 C. Faldini, S. Pagkrati, G. Grandi, V. Digennaro, O. Faldini and S. Giannini. Degenerative lumbar scoliosis:features and surgical treatment. Journal of Orthopaedics and Traumatology,2006,7:67-71.
    4 Simotas AC, Dorey FJ, Hansraj KK, et al. Nonoperative treatment for lumbar spinal stenosis. Clinical and outcome results and a 3-year survivorship analysis. Spine (PhilaPa 1976),2000,25:197-203; discussions 203-4.
    5 Ploumis A, Transfledt EE, Denis F. Degenerative lumbar scoliosis associated with spinal stenosis. Spine J,2007,7:428-36.
    6 Chin KR, Furey C, Bohlman HH. Risk of progression in de novo low-magnitude degenerative lumbar curves:natural history and literature review. Am J Orthop (Belle Mead NJ),2009,38:404-9.
    7 Guillaumat M. [Natural history of scoliosis from childhood to old age]. Bull Acad Natl Med,1999,183:705-18; discussion 718-9.
    8 Schwab F, Dubey A, Pagala M, et al. Adult scoliosis:a health assessment analysis by SF-36. Spine (Phila Pa 1976),2003,28:602-6.
    9 Vanderpool DW, James JI, Wynne-Davies R. Scoliosis in the elderly. J Bone Joint SurgAm,1969,51:446-55.
    10 Robin GC, Span Y, Steinberg R, et al. Scoliosis in the elderly:a follow-up study. Spine (Phila Pa 1976),1982,7:355-9.
    11 Kobayashi T, Atsuta Y, Takemitsu M, et al. A prospective study of de novo scoliosis in a community based cohort. Spine (Phila Pa 1976),2006,31:178-82.
    12 Shufflebarger H, Suk SI, Mardjetko S. Debate:determining the upper instrumented vertebra in the management of adult degenerative scoliosis:stopping at T10 versus L1. Spine (Phila Pa 1976),2006,31:S 185-94.
    13 Gillespy T 3rd, Gillespy T Jr, Revak CS. Progressive senile scoliosis:seven cases of increasing spinal curves in elderly patients. Skeletal Radiol,1985,13:280-6.
    14 Murata Y, Takahashi K, Hanaoka E, et al. Changes in scoliotic curvature and lordotic angle during the early phase of degenerative lumbar scoliosis. Spine (Phila Pa 1976),2002,27:2268-73.
    15 Pritchett JW, Bortel DT. Degenerative symptomatic lumbar scoliosis. Spine (Phila Pa 1976),1993,18:700-3.
    16 Sapkas G, Efstathiou P, Badekas AT, et al. Radiological parameters associated with the evolution of degenerative scoliosis. Bull Hosp Jt Dis,1996,55:40-5.
    17 Tribus CB. Degenerative lumbar scoliosis:evaluation and management. J Am Acad OrthopSurg,2003,11:174-83.
    18 Grubb SA, Lipscomb HJ. Diagnostic findings in painful adult scoliosis. Spine (Phila Pa 1976),1992,17:518-27.
    19 Pappou IP, Girardi FP, Sandhu HS, et al. Discordantly high spinal bone mineral density values in patients with adult lumbar scoliosis. Spine (Phila Pa 1976), 2006,31:1614-20.
    20 Daffner SD, Vaccaro AR. Adult degenerative lumbar scoliosis. Am J Orthop (Belle Mead NJ),2003,32:77-82; discussion 82.
    21 Annunen S, Paassilta P, Lohiniva J, et al. An allele of COL9A2 associated with intervertebral disc disease. Science,1999,285:409-12.
    22 Takahashi M, Haro H, Wakabayashi Y, et al. The association of degeneration of the intervertebral disc with 5a/6a polymorphism in the promoter of the human matrix metalloproteinase-3 gene. J Bone Joint Surg Br,2001,83:491-5.
    23 Videman T, Gibbons LE, Battie MC, et al. The relative roles of intragenic polymorphisms of the vitamin d receptor gene in lumbar spine degeneration and bone density. Spine (Phila Pa 1976),2001,26:E7-E12.
    24 Cheung KM, Chan D, Karppinen J, et al. Association of the Taq I allele in vitamin D receptor with degenerative disc disease and disc bulge in a Chinese population. Spine (Phila Pa 1976),2006,31:1143-8.
    25 Ogilvie JW, Braun J, Argyle V, et al. The search for idiopathic scoliosis genes. Spine (Phila Pa 1976),2006,31:679-81.
    26 Friedenstein AJ, Chailakhyan RK, Gerasimov UV. Bone marrow osteogenic stem cells:in vitro cultivation and transplantation in diffusion chambers. Cell Tissue Kinet,1987,20:263-72.
    27 Friedenstein AJ, Chailakhjan RK, Lalykina KS. The development of fibroblast colonies in monolayer cultures of guinea-pig bone marrow and spleen cells. Cell Tissue Kinet,1970,3:393-403.
    28 Caplan AI. Review:mesenchymal stem cells:cell-based reconstructive therapy in orthopedics. Tissue Eng,2005,11:1198-211.
    29 Gori F, Hofbauer LC, Dunstan CR, et al. The expression of osteoprotegerin and RANK ligand and the support of osteoclast formation by stromal-osteoblast lineage cells is developmentally regulated. Endocrinology,2000,141:4768-76.
    30 L. C. Hofbauer, D. L. Lacey, C. R. Dunstan, T. C. Spelsberg, B. L. Riggs and S. Khosla. Interleukin-lβ and tumor necrosis factor-a, but not interleukin-6, stimulate osteoprotegerin ligand gene expression in human osteoblastic cells. Bone, 1999,25:255-259.
    31 Mansilla E, Marin GH, Drago H, et al. Bloodstream cells phenotypically identical to human mesenchymal bone marrow stem cells circulate in large amounts under the influence of acute large skin damage:new evidence for their use in regenerative medicine. Transplant Proc,2006,38:967-9.
    32 Normanno N, De Luca A, Aldinucci D, et al. Gefitinib inhibits the ability of human bone marrow stromal cells to induce osteoclast differentiation:implications for the pathogenesis and treatment of bone metastasis. Endocr Relat Cancer, 2005,12:471-82.
    33 Giuliani N, Bataille R, Mancini C, et al. Myeloma cells induce imbalance in the osteoprotegerin/osteoprotegerin ligand system in the human bone marrow environment. Blood,2001,98:3527-33.
    34 Honczarenko M, Le Y, Swierkowski M, et al. Human bone marrow stromal cells express a distinct set of biologically functional chemokine receptors. Stem Cells, 2006,24:1030-41.
    35 Brandstrom H, Bjorkman T, Ljunggren O. Regulation of osteoprotegerin secretion from primary cultures of human bone marrow stromal cells. Biochem Biophys Res Commun,2001,280:831-5.
    36 Brandstrom H, Jonsson KB, Ohlsson C, et al. Regulation of osteoprotegerin mRNA levels by prostaglandin E2 in human bone marrow stroma cells. Biochem Biophys Res Commun,1998,247:338-41.
    37 Le Blanc K, Rasmusson I, Gotherstrom C, et al. Mesenchymal stem cells inhibit the expression of CD25 (interleukin-2 receptor) and CD38 on phytohaemagglutinin-activated lymphocytes. Scand J Immunol,2004,60:307-15.
    38 Neville-Webbe HL, Cross NA, Eaton CL, et al. Osteoprotegerin (OPG) produced by bone marrow stromal cells protects breast cancer cells from TRAIL-induced apoptosis. Breast Cancer Res Treat,2004,86:269-79.
    39 Mbalaviele G, Abu-Amer Y, Meng A, et al. Activation of peroxisome proliferator-activated receptor-gamma pathway inhibits osteoclast differentiation. J Biol Chem,2000,275:14388-93.
    40 Cao JJ, Wronski TJ, Iwaniec U, et al. Aging increases stromal/osteoblastic cell-induced osteoclastogenesis and alters the osteoclast precursor pool in the mouse. J Bone Miner Res,2005,20:1659-68.
    41 Makhluf HA, Mueller SM, Mizuno S, et al. Age-related decline in osteoprotegerin expression by human bone marrow cells cultured in three-dimensional collagen sponges. Biochem Biophys Res Commun,2000,268:669-72.
    42 Kudlacek S, Schneider B, Woloszczuk W, et al. Serum levels of osteoprotegerin increase with age in a healthy adult population. Bone,2003,32:681-6.
    43 Pulsatelli L, Dolzani P, Silvestri T, et al. Soluble receptor activator of nuclear factor-kappaB Ligand (sRANKL)/osteoprotegerin balance in ageing and age-associated diseases. Biogerontology,2004,5:119-27.
    44 Shirley D, Marsh D, Jordan G, et al. Systemic recruitment of osteoblastic cells in fracture healing. J Orthop Res,2005,23:1013-21.
    45 Bruder SP, Kraus KH, Goldberg VM, et al. The effect of implants loaded with autologous mesenchymal stem cells on the healing of canine segmental bone defects. J Bone Joint Surg Am,1998,80:985-96.
    46 Bruder SP, Kurth AA, Shea M, et al. Bone regeneration by implantation of purified, culture-expanded human mesenchymal stem cells. J Orthop Res,1998,16:155-62.
    47 Livingston TL, Gordon S, Archambault M, et al. Mesenchymal stem cells combined with biphasic calcium phosphate ceramics promote bone regeneration. J Mater Sci Mater Med,2003,14:211-8.
    48 Cowan CM, Shi YY, Aalami OO, et al. Adipose-derived adult stromal cells heal critical-size mouse calvarial defects. Nat Biotechnol,2004,22:560-7.
    49 Wagner W, Wein F, Seckinger A, et al. Comparative characteristics of mesenchymal stem cells from human bone marrow, adipose tissue, and umbilical cord blood. Exp Hematol,2005,33:1402-16.
    50 Bader GD, Heilbut A, Andrews B, et al. Functional genomics and proteomics: charting a multidimensional map of the yeast cell. Trends Cell Biol, 2003,13:344-56.
    51 Moritz RL, Ji H, Schutz F, et al. A proteome strategy for fractionating proteins and peptides using continuous free-flow electrophoresis coupled off-line to reversed-phase high-performance liquid chromatography. Anal Chem, 2004,76:4811-24.
    52 Alban A, David SO, Bjorkesten L, et al. A novel experimental design for comparative two-dimensional gel analysis:two-dimensional difference gel electrophoresis incorporating a pooled internal standard. Proteomics,2003,3:36-44.
    53 Friedman DB, Hill S, Keller JW, et al. Proteome analysis of human colon cancer by two-dimensional difference gel electrophoresis and mass spectrometry. Proteomics, 2004,4:793-811.
    54 Chromy BA, Gonzales AD, Perkins J, et al. Proteomic analysis of human serum by two-dimensional differential gel electrophoresis after depletion of high-abundant proteins. J Proteome Res,2004,3:1120-7.
    55 Starita-Geribaldi M, Roux F, Garin J, et al. Development of narrow immobilized pH gradients covering one pH unit for human seminal plasma proteomic analysis. Proteomics,2003,3:1611-9.
    56 Eun JP, Ma TZ, Lee WJ, et al. Comparative analysis of serum proteomes to discover biomarkers for ossification of the posterior longitudinal ligament. Spine (Phila Pa 1976),2007,32:728-34.
    57 Tan X, Cai D, Wu Y, et al. Comparative analysis of serum proteomes:discovery of proteins associated with osteonecrosis of the femoral head. Transl Res, 2006,148:114-9.
    58 Wang D, Park JS, Chu JS, et al. Proteomic profiling of bone marrow mesenchymal stem cells upon transforming growth factor betal stimulation. J Biol Chem, 2004,279:43725-34.
    59 Feldmann RE Jr, Bieback K, Maurer MH, et al. Stem cell proteomes:a profile of human mesenchymal stem cells derived from umbilical cord blood. Electrophoresis, 2005,26:2749-58.
    60 Foster LJ, Zeemann PA, Li C, et al. Differential expression profiling of membrane proteins by quantitative proteomics in a human mesenchymal stem cell line undergoing osteoblast differentiation. Stem Cells,2005,23:1367-77.
    61 Caplan Al. Mesenchymal stem cells. J Orthop Res,1991,9:641-50.
    62 Guo H, Fang B, Liao L, et al. Hemangioblastic characteristics of fetal bone marrow-derived Flk1(+)CD31(-)CD34(-) cells. Exp Hematol,2003,31:650-8.
    63 Zhang W, Ge W, Li C, et al. Effects of mesenchymal stem cells on differentiation, maturation, and function of human monocyte-derived dendritic cells. Stem Cells Dev,2004,13:263-71.
    64 Zhou H, Guo M, Bian C, et al. Efficacy of bone marrow-derived mesenchymal stem cells in the treatment of sclerodermatous chronic graft-versus-host disease:clinical report. Biol Blood Marrow Transplant,2010,16:403-12.
    65 Pittenger MF, Mackay AM, Beck SC, et al. Multilineage potential of adult human mesenchymal stem cells. Science,1999,284:143-7.
    66 Rao MS, Mattson MP. Stem cells and aging:expanding the possibilities. Mech Ageing Dev,2001,122:713-34.
    67吴洁莹,廖灿,许遵鹏,陈劲松,辜少玲.人骨髓间充质干细胞分离鉴定方法的改进.中国实验血液学杂志,2006,14.
    68 Tominaga S, Yamaguchi T, Takahashi S, et al. Negative regulation of adipogenesis from human mesenchymal stem cells by Jun N-terminal kinase. Biochem Biophys Res Commun,2005,326:499-504.
    69 Jaiswal RK, Jaiswal N, Bruder SP, Mbalaviele G, Marshak DR, Pittenger MF. Adult human mesenchymal stem cell differentiation to the osteogenic or adipogenic lineage is regulated by mitogen-activated protein kinase. J Biol Chem, 2000,275:9645-52.
    70 Nuttall ME, Gimble JM. Controlling the balance between osteoblastogenesis and adipogenesis and the consequent therapeutic implications. Curr Opin Pharmacol, 2004,4:290-4.
    71 Rosen ED, Walkey CJ, Puigserver P, et al. Transcriptional regulation of adipogenesis. Genes Dev,2000,14:1293-307.
    72 Bradford MM. A rapid and sensitive method for the quantitation of micro gram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem, 1976,72:248-54.
    73 Wu RW, Wang FS, Ko JY, et al. Comparative serum proteome expression of osteonecrosis of the femoral head in adults. Bone,2008,43:561-6.
    74 Jmeian Y, El Rassi Z. Micro-high-performance liquid chromatography platform for the depletion of high-abundance proteins and subsequent on-line concentration/capturing of medium and low-abundance proteins from serum. Application to profiling of protein expression in healthy and osteoarthritis sera by 2-D gel electrophoresis. Electrophoresis,2008,29:2801-11.
    75 Ling SM, Patel DD, Garnero P, et al. Serum protein signatures detect early radiographic osteoarthritis. Osteoarthritis Cartilage,2009,17:43-8.
    76 Xiang Y, Sekine T, Nakamura H, et al. Proteomic surveillance of autoimmunity in osteoarthritis:identification of triosephosphate isomerase as an autoantigen in patients with osteoarthritis. Arthritis Rheum,2004,50:1511-21.
    77 Xiang Y, Sekine T, Nakamura H, et al. Fibulin-4 is a target of autoimmunity predominantly in patients with osteoarthritis. J Immunol,2006,176:3196-204.
    78 Kato T, Xiang Y, Nakamura H, et al. Neoantigens in osteoarthritic cartilage. Curr Opin Rheumatol,2004,16:604-8.
    79 Li TW, Zheng BR, Huang ZX, et al. Screening disease-associated proteins from sera of patients with rheumatoid arthritis:a comparative proteomic study. Chin Med J (Engl),2010,123:537-43.
    80 Zhang N, Ahsan MH, Purchio AF, et al. Serum amyloid A-luciferase transgenic mice:response to sepsis, acute arthritis, and contact hypersensitivity and the effects of proteasome inhibition. J Immunol,2005,174:8125-34.
    81 Migita K, Koga T, Torigoshi T, et al. Serum amyloid A protein stimulates CCL20 production in rheumatoid synoviocytes. Rheumatology (Oxford),2009,48:741-7.
    82 Goeb V, Thomas-L'Otellier M, Daveau R, et al. Candidate autoantigens identified by mass spectrometry in early rheumatoid arthritis are chaperones and citrullinated glycolytic enzymes. Arthritis Res Ther,2009,11:R38.
    83 Saulot V, Vittecoq O, Charlionet R, et al. Presence of autoantibodies to the glycolytic enzyme alpha-enolase in sera from patients with early rheumatoid arthritis. Arthritis Rheum,2002,46:1196-201.
    84 Drynda S, Ringel B, Kekow M, et al. Proteome analysis reveals disease-associated marker proteins to differentiate RA patients from other inflammatory joint diseases with the potential to monitor anti-TNFalpha therapy. Pathol Res Pract, 2004,200:165-71.
    85 Li Y, Dang TA, Shen J, et al. Identification of a plasma proteomic signature to distinguish pediatric osteosarcoma from benign osteochondroma. Proteomics, 2006,6:3426-35.
    86 Bhattacharyya S, Epstein J, Suva LJ. Biomarkers that discriminate multiple myeloma patients with or without skeletal involvement detected using SELDI-TOF mass spectrometry and statistical and machine learning tools. Dis Markers, 2006,22:245-55.
    87 Benoy IH, Salgado R, Van Dam P, et al. Increased serum interleukin-8 in patients with early and metastatic breast cancer correlates with early dissemination and survival. Clin Cancer Res,2004,10:7157-62.
    88 Le L, Chi K, Tyldesley S, et al. Identification of serum amyloid A as a biomarker to distinguish prostate cancer patients with bone lesions. Clin Chem,2005,51:695-707.
    89 Seshi B. An integrated approach to mapping the proteome of the human bone marrow stromal cell. Proteomics,2006,6:5169-82.
    90 Kraus KH, Kirker-Head C. Mesenchymal stem cells and bone regeneration. Vet Surg,2006,35:232-42.
    91 Coronel MF, Musolino PL, Villar MJ. Selective migration and engraftment of bone marrow mesenchymal stem cells in rat lumbar dorsal root ganglia after sciatic nerve constriction. Neurosci Lett,2006,405:5-9.
    92 Rollin R, Marco F, Camafeita E, et al. Differential proteome of bone marrow mesenchymal stem cells from osteoarthritis patients. Osteoarthritis Cartilage, 2008,16:929-35.
    93 Chung CD, Liao J, Liu B, et al. Specific inhibition of Stat3 signal transduction by PIAS3. Science,1997,278:1803-5.
    94 Schmidt D, Muller S. PIAS/SUMO:new partners in transcriptional regulation. Cell Mol Life Sci,2003,60:2561-74.
    95 Shuai K, Liu B. Regulation of gene-activation pathways by PIAS proteins in the immune system. Nat Rev Immunol,2005,5:593-605.
    96 Rosas-Acosta G, Langereis MA, Deyrieux A, et al. Proteins of the PIAS family enhance the sumoylation of the papillomavirus El protein. Virology, 2005,331:190-203.
    97 Sharrocks AD. PIAS proteins and transcriptional regulation--more than just SUMO E3 ligases?. Genes Dev,2006,20:754-8.
    98 Hay RT. SUMO:a history of modification. Mol Cell,2005,18:1-12.
    99 Johnson ES. Protein modification by SUMO. Annu Rev Biochem,2004,73:355-82.
    100 Seeler JS, Dejean A. Nuclear and unclear functions of SUMO. Nat Rev Mol Cell Biol,2003,4:690-9.
    101 Gostissa M, Hengstermann A, Fogal V, et al. Activation of p53 by conjugation to the ubiquitin-like protein SUMO-1. EMBO J,1999,18:6462-71.
    102 Johnson ES, Blobel G. Cell cycle-regulated attachment of the ubiquitin-related protein SUMO to the yeast septins. J Cell Biol,1999,147:981-94.
    103 Poukka H, Karvonen U, Janne OA, et al. Covalent modification of the androgen receptor by small ubiquitin-like modifier 1 (SUMO-1). Proc Natl Acad Sci USA, 2000,97:14145-50.
    104 Rodriguez MS, Desterro JM, Lain S, et al. SUMO-1 modification activates the transcriptional response of p53. EMBO J,1999,18:6455-61.
    105 Takahashi K, Taira T, Niki T, et al. DJ-1 positively regulates the androgen receptor by impairing the binding of PIASx alpha to the receptor. J Biol Chem, 2001,276:37556-63.
    106 Liu B, Liao J, Rao X, et al. Inhibition of Statl-mediated gene activation by PIAS1. Proc Natl Acad Sci USA,1998,95:10626-31.
    107 Lee H, Quinn JC, Prasanth KV, et al. PIAS1 confers DNA-binding specificity on the Msxl homeoprotein. Genes Dev,2006,20:784-94.
    108 Sachdev S, Bruhn L, Sieber H, et al. PIASy, a nuclear matrix-associated SUMO E3 ligase, represses LEF1 activity by sequestration into nuclear bodies. Genes Dev, 2001,15:3088-103.
    109 Liu B, Mink S, Wong KA, et al. PIAS1 selectively inhibits interferon-inducible genes and is important in innate immunity. Nat Immunol,2004,5:891-8.
    110 Moilanen AM, Karvonen U, Poukka H, et al. A testis-specific androgen receptor coregulator that belongs to a novel family of nuclear proteins. J Biol Chem, 1999,274:3700-4.
    111 Kotaja N, Aittomaki S, Silvennoinen O, et al. ARIP3 (androgen receptor-interacting protein 3) and other PIAS (protein inhibitor of activated STAT) proteins differ in their ability to modulate steroid receptor-dependent transcriptional activation. Mol Endocrinol,2000,14:1986-2000.
    112 Tan J, Hall SH, Hamil KG, et al. Protein inhibitor of activated STAT-1 (signal transducer and activator of transcription-1) is a nuclear receptor coregulator expressed in human testis. Mol Endocrinol,2000,14:14-26.
    113 Wu L, Wu H, Ma L, et al. Mizl, a novel zinc finger transcription factor that interacts with Msx2 and enhances its affinity for DNA. Mech Dev,1997,65:3-17.
    114 Santti H, Mikkonen L, Anand A, et al. Disruption of the murine PIASx gene results in reduced testis weight. J Mol Endocrinol,2005,34:645-54.
    115 Tussie-Luna MI, Michel B, Hakre S, et al. The SUMO ubiquitin-protein isopeptide ligase family member Mizl/PIASxbeta/Siz2 is a transcriptional cofactor for TFII-I. J Biol Chem,2002,277:43185-93.
    116 Tussie-Luna MI, Bayarsaihan D, Seto E, et al. Physical and functional interactions of histone deacetylase 3 with TFII-I family proteins and PIASxbeta. Proc Natl Acad Sci USA,2002,99:12807-12.
    117 Ducy P, Zhang R, Geoffroy V, et al. Osf2/Cbfal:a transcriptional activator of osteoblast differentiation. Cell,1997,89:747-54.
    118 Komori T, Yagi H, Nomura S, et al. Targeted disruption of Cbfal results in a complete lack of bone formation owing to maturational arrest of osteoblasts. Cell, 1997,89:755-64.
    119 Nakashima K, Zhou X, Kunkel G, et al. The novel zinc finger-containing transcription factor osterix is required for osteoblast differentiation and bone formation. Cell,2002,108:17-29.
    120 Mundlos S, Otto F, Mundlos C, et al. Mutations involving the transcription factor CBFA1 cause cleidocranial dysplasia. Cell,1997,89:773-9.
    121 Komori T. Regulation of skeletal development by the Runx family of transcription factors. J Cell Biochem,2005,95:445-53.
    122 Liu CJ, Chang E, Yu J, et al. The interferon-inducible p204 protein acts as a transcriptional coactivator of Cbfal and enhances osteoblast differentiation. J Biol Chem,2005,280:2788-96.
    123 Kang JS, Alliston T, Delston R, et al. Repression of Runx2 function by TGF-beta through recruitment of class Ⅱhistone deacetylases by Smad3. EMBO J, 2005,24:2543-55.
    124 Koga T, Matsui Y, Asagiri M, et al. NFAT and Osterix cooperatively regulate bone formation. Nat Med,2005,11:88O-5.
    125 Nishio Y, Dong Y, Paris M, et al. Runx2-mediated regulation of the zinc finger Osterix/Sp7 gene. Gene,2006,372:62-70.
    126 Meyer U, Kruse-Losler B, Wiesmann HP. Principles of bone formation driven by biophysical forces in craniofacial surgery. Br J Oral Maxillofac Surg, 2006,44:289-95.
    127 Burr DB, Robling AG, Turner CH. Effects of biomechanical stress on bones in animals. Bone,2002,30:781-6.
    128 Ikegame M, Ishibashi O, Yoshizawa T, et al. Tensile stress induces bone morphogenetic protein 4 in preosteoblastic and fibroblastic cells, which later differentiate into osteoblasts leading to osteogenesis in the mouse calvariae in organ culture. J Bone Miner Res,2001,16:24-32.
    129 Ali MM, Yoshizawa T, Ishibashi O, et al. PIASxbeta is a key regulator of osterix transcriptional activity and matrix mineralization in osteoblasts. J Cell Sci, 2007,120:2565-73.
    130 Cooper SC, Flaitz CM, Johnston DA, et al. A natural history of cleidocranial dysplasia. Am J Med Genet,2001,104:1-6.
    131 Codsi MJ, Kay RM, Masso P, et al. Unilateral absence of the clavicle with rapidly progressive scoliosis in an 8-year-old. Am J Orthop (Belle Mead NJ), 2000,29:383-6.
    132 Yang Z, Griffith JF, Leung PC, et al. Effect of osteoporosis on morphology and mobility of the lumbar spine. Spine (Phila Pa 1976),2009,34:E115-21.
    133 Smeitink J, van den Heuvel L, DiMauro S. The genetics and pathology of oxidative phosphorylation. Nat Rev Genet,2001,2:342-52.
    134 Pitkanen S, Feigenbaum A, Laframboise R, et al. NADH-coenzyme Q reductase (complex I) deficiency:heterogeneity in phenotype and biochemical findings. J Inherit Metab Dis,1996,19:675-86.
    135 Loeffen JL, Smeitink JA, Trijbels JM, et al. Isolated complex I deficiency in children:clinical, biochemical and genetic aspects. Hum Mutat,2000,15:123-34.
    136 Loeffen J, Smeitink J, Triepels R, et al. The first nuclear-encoded complex I mutation in a patient with Leigh syndrome. Am J Hum Genet,1998,63:1598-608.
    137 Loeffen J, Elpeleg O, Smeitink J, et al. Mutations in the complex INDUFS2 gene of patients with cardiomyopathy and encephalomyopathy. Ann Neurol, 2001,49:195-201.
    138 Benit P, Slama A, Cartault F, et al. Mutant NDUFS3 subunit of mitochondrial complex I causes Leigh syndrome. J Med Genet,2004,41:14-7.
    139 van den Heuvel L, Ruitenbeek W, Smeets R, et al. Demonstration of a new pathogenic mutation in human complex I deficiency:a 5-bp duplication in the nuclear gene encoding the 18-kD (AQDQ) subunit. Am J Hum Genet, 1998,62:262-8.
    140 Kirby DM, Salemi R, Sugiana C, et al. NDUFS6 mutations are a novel cause of lethal neonatal mitochondrial complex I deficiency. J Clin Invest,2004,114:837-45.
    141 Triepels RH, van den Heuvel LP, Loeffen JL, et al. Leigh syndrome associated with a mutation in the NDUFS7 (PSST) nuclear encoded subunit of complex I. Ann Neurol,1999,45:787-90.
    142 Schuelke M, Smeitink J, Mariman E, et al. Mutant NDUFV1 subunit of mitochondrial complex I causes leukodystrophy and myoclonic epilepsy. Nat Genet, 1999,21:260-1.
    143 Benit P, Beugnot R, Chretien D, et al. Mutant NDUFV2 subunit of mitochondrial complex I causes early onset hypertrophic cardiomyopathy and encephalopathy. Hum Mutat,2003,21:582-6.
    144 Fernandez-Moreira D, Ugalde C, Smeets R, et al. X-linked NDUFA1 gene mutations associated with mitochondrial encephalomyopathy. Ann Neurol, 2007,61:73-83.
    145 Benit P, Chretien D, Kadhom N, et al. Large-scale deletion and point mutations of the nuclear NDUFV1 and NDUFS1 genes in mitochondrial complex I deficiency. Am J Hum Genet,2001,68:1344-52.
    146 Berger I, Hershkovitz E, Shaag A, et al. Mitochondrial complex I deficiency caused by a deleterious NDUFA11 mutation. Ann Neurol,2008,63:405-8.
    147 Ogilvie I, Kennaway NG, Shoubridge EA. A molecular chaperone for mitochondrial complex I assembly is mutated in a progressive encephalopathy. J Clin Invest, 2005,115:2784-92.
    148 Dunning CJ, McKenzie M, Sugiana C, et al. Human CIA30 is involved in the early assembly of mitochondrial complex I and mutations in its gene cause disease. EMBO J,2007,26:3227-37.
    149 Saada A, Edvardson S, Rapoport M, et al. C6ORF66 is an assembly factor of mitochondrial complex I. Am J Hum Genet,2008,82:32-8.
    150 Brockmann C, Diehl A, Rehbein K, et al. The oxidized subunit B8 from human complex I adopts a thioredoxin fold. Structure,2004,12:1645-54.
    151 Hoefs SJ, Dieteren CE, Distelmaier F, et al. NDUFA2 complex I mutation leads to Leigh disease. Am J Hum Genet,2008,82:1306-15.
    152 Reymond A, Meroni G, Fantozzi A, et al. The tripartite motif family identifies cell compartments. EMBO J,2001,20:2140-51.
    153 Meroni G, Diez-Roux G. TRIM/RBCC, a novel class of'single protein RING finger1 E3 ubiquitin ligases. Bioessays,2005,27:1147-57.
    154 Billaut-Mulot O, Cocude C, Kolesnitchenko V, et al. SS-56, a novel cellular target of autoantibody responses in Sjogren syndrome and systemic lupus erythematosus. J Clin Invest,2001,108:861-9.
    155 Frank MB. Characterization of DNA binding properties and sequence specificity of the human 52 kDa Ro/SS-A (Ro52) zinc finger protein. Biochem Biophys Res Commun,1999,259:665-70.
    156 Kong HJ, Anderson DE, Lee CH, et al. Cutting edge:autoantigen Ro52 is an interferon inducible E3 ligase that ubiquitinates IRF-8 and enhances cytokine expression in macrophages. J Immunol,2007,179:26-30.
    157 Espinosa A, Zhou W, Ek M, et al. The Sjogren's syndrome-associated autoantigen Ro52 is an E3 ligase that regulates proliferation and cell death. J Immunol, 2006,176:6277-85.
    158 Miyajima N, Maruyama S, Bohgaki M, et al. TRIM68 regulates ligand-dependent transcription of androgen receptor in prostate cancer cells. Cancer Res, 2008,68:3486-94.
    159 Vanderschueren D, Vandenput L, Boonen S, et al. Androgens and bone. Endocr Rev, 2004,25:389-425.
    160 Huber DM, Bendixen AC, Pathrose P, et al. Androgens suppress osteoclast formation induced by RANKL and macrophage-colony stimulating factor. Endocrinology,2001,142:3800-8.
    161 Turner RT, Wakley GK, Hannon KS. Differential effects of androgens on cortical bone histomorphometry in gonadectomized male and female rats. J Orthop Res, 1990,8:612-7.
    162 Vandenput L, Boonen S, Van Herck E, et al. Evidence from the aged orchidectomized male rat model that 17beta-estradiol is a more effective bone-sparing and anabolic agent than 5alpha-dihydrotestosterone. J Bone Miner Res, 2002,17:2080-6.
    163 Vandenput L, Swinnen JV, Van Herck E, Verstuyf A, Boonen S, Bouillon R, Vanderschueren D. The estrogen receptor ligand ICI 182,780 does not impair the bone-sparing effects of testosterone in the young orchidectomized rat model. Calcif Tissue Int,200,70:170-5.
    164 Munoz-Torres M, Jodar E, Quesada M, et al. Bone mass in androgen-insensitivity syndrome:response to hormonal replacement therapy. Calcif Tissue Int, 1995,57:94-6.
    165 Bertelloni S, Baroncelli GI, Federico G, et al. Altered bone mineral density in patients with complete androgen insensitivity syndrome. Horm Res, 1998,50:309-14.
    166 Notini AJ, Davey RA, McManus JF, et al. Genomic actions of the androgen receptor are required for normal male sexual differentiation in a mouse model. J Mol Endocrinol,2005,35:547-55.
    167 Chiang C, Chiu M, Moore AJ, et al. Mineralization and bone resorption are regulated by the androgen receptor in male mice. J Bone Miner Res, 2009,24:621-31.
    1 Andersson GB. Epidemiological features of chronic low-back pain. Lancet, 1999,354:581-5.
    2 BoniM,Denaro V. Anatomo-clinical correlations in cervical spondylosis.In Kehr P, Weidner A, eds. Cervical Spine I. New York:Springer-Verlag,1987:3-20.
    3 Borenstein DG. Epidemiology, etiology, diagnostic evaluation, and treatment of low back pain. Curr Opin Rheumatol,2001,13:128-34.
    4 Frymoyer JW. Lumbar disk disease:epidemiology. Instr Course Lect, 1992,41:217-23.
    5 Battie MC, Videman T, Levalahti E, et al. Heritability of low back pain and the role of disc degeneration. Pain,2007,131:272-80.
    6 Ala-Kokko L. Genetic risk factors for lumbar disc disease. Ann Med,2002,34:42-7.
    7 Varlotta GP, Brown MD, Kelsey JL, et al. Familial predisposition for herniation of a lumbar disc in patients who are less than twenty-one years old. J Bone Joint Surg Am,1991,73:124-8.
    8 Matsui H, Terahata N, Tsuji H, et al. Familial predisposition and clustering for juvenile lumbar disc herniation. Spine (Phila Pa 1976),1992,17:1323-8.
    9 Battie MC, Videman T, Gibbons LE, et al.1995 Volvo Award in clinical sciences. Determinants of lumbar disc degeneration. A study relating lifetime exposures and magnetic resonance imaging findings in identical twins. Spine (Phila Pa 1976), 1995,20:2601-12.
    10 Matsui H, Maeda A, Tsuji H, et al. Risk indicators of low back pain among workers in Japan. Association of familial and physical factors with low back pain. Spine (Phila Pa 1976),1997,22:1242-7; discussion 1248.
    11 Videman T, Battie MC, Ripatti S, et al. Determinants of the progression in lumbar degeneration:a 5-year follow-up study of adult male monozygotic twins. Spine (Phila Pa 1976),2006,31:671-8.
    12 Sambrook PN, MacGregor AJ, Spector TD. Genetic influences on cervical and lumbar disc degeneration:a magnetic resonance imaging study in twins. Arthritis Rheum,1999,42:366-72.
    13 Patel AA, Spiker WR, Daubs M, et al. Evidence for an inherited predisposition to lumbar disc disease. J Bone Joint Surg Am,2011,93:225-9.
    14 Tabor HK, Risch NJ, Myers RM. Candidate-gene approaches for studying complex genetic traits:practical considerations. Nat Rev Genet,2002,3:391-7.
    15 Morris NP, Bachinger HP. Type XI collagen is a heterotrimer with the composition (1 alpha,2 alpha,3 alpha) retaining non-triple-helical domains. J Biol Chem, 1987,262:11345-50.
    16 Kimura T, Nakata K, Tsumaki N, et al. Progressive degeneration of articular cartilage and intervertebral discs. An experimental study in transgenic mice bearing a type IX collagen mutation. Int Orthop,1996,20:177-81.
    17 Annunen S, Paassilta P, Lohiniva J, et al. An allele of COL9A2 associated with intervertebral disc disease. Science,1999,285:409-12.
    18 Muragaki Y, Kimura T, Ninomiya Y, et al. The complete primary structure of two distinct forms of human alpha 1 (IX) collagen chains. Eur J Biochem, 1990,192:703-8.
    19 Jim JJ, Noponen-Hietala N, Cheung KM, et al. The TRP2 allele of COL9A2 is an age-dependent risk factor for the development and severity of intervertebral disc degeneration. Spine (Phila Pa 1976),2005,30:2735-42.
    20 Higashino K, Matsui Y, Yagi S, et al. The alpha2 type IX collagen tryptophan polymorphism is associated with the severity of disc degeneration in younger patients with herniated nucleus pulposus of the lumbar spine. Int Orthop, 2007,31:107-11.
    21 Seki S, Kawaguchi Y, Mori M, et al. Association study of COL9A2 with lumbar disc disease in the Japanese population. J Hum Genet,2006,51:1063-7.
    22 Paassilta P, Lohiniva J, Goring HH, et al. Identification of a novel common genetic risk factor for lumbar disk disease. JAMA,2001,285:1843-9.
    23 Kales SN, Linos A, Chatzis C, et al. The role of collagen IX tryptophan polymorphisms in symptomatic intervertebral disc disease in Southern European patients. Spine (Phila Pa 1976),2004,29:1266-70.
    24 Solovieva S, Lohiniva J, Leino-Arjas P, et al. Intervertebral disc degeneration in relation to the COL9A3 and the IL-lss gene polymorphisms. Eur Spine J, 2006,15:613-9.
    25 Karppinen J, Paakko E, Paassilta P, et al. Radiologic phenotypes in lumbar MR imaging for a gene defect in the COL9A3 gene of type IX collagen. Radiology, 2003,227:143-8.
    26 Solovieva S, Lohiniva J, Leino-Arjas P, et al. COL9A3 gene polymorphism and obesity in intervertebral disc degeneration of the lumbar spine:evidence of gene-environment interaction. Spine (Phila Pa 1976),2002,27:2691-6.
    27 Pluijm SM, van Essen HW, Bravenboer N, et al. Collagen type I alphal Spl polymorphism, osteoporosis, and intervertebral disc degeneration in older men and women. Ann Rheum Dis,2004,63:71-7.
    28 Tilkeridis C, Bei T, Garantziotis S, et al. Association of a COL1A1 polymorphism with lumbar disc disease in young military recruits. J Med Genet,2005,42:e44.
    29 Mann V, Hobson EE, Li B, et al. A COL1A1 Sp1 binding site polymorphism predisposes to osteoporotic fracture by affecting bone density and quality. J Clin Invest,2001,107:899-907.
    30 Wang Xiangda, Chen Bohua, Hu Yougu. Expression of collagen type IV in human lumbar intervertebral discs. Journal of Qingdao University Medical College, 2005,41:207-209.
    31 Nerlich AG, Schleicher ED, Boos N.1997 Volvo Award winner in basic science studies. Immunohistologic markers for age-related changes of human lumbar intervertebral discs. Spine (Phila Pa 1976),1997,22:2781-95.
    32 Roughley P, Martens D, Rantakokko J, et al. The involvement of aggrecan polymorphism in degeneration of human intervertebral disc and articular cartilage. Eur Cell Mater,2006,11:1-7; discussion 7.
    33 Scott JE, Bosworth TR, Cribb AM, et al. The chemical morphology of age-related changes in human intervertebral disc glycosaminoglycans from cervical, thoracic and lumbar nucleus pulposus and annulus fibrosus. J Anat,1994,184 (Pt 1):73-82.
    34 Cs-Szabo G, Ragasa-San Juan D, Turumella V, et al. Changes in mRNA and protein levels of proteoglycans of the anulus fibrosus and nucleus pulposus during intervertebral disc degeneration. Spine (Phila Pa 1976),2002,27:2212-9.
    35 Doege KJ, Coulter SN, Meek LM, et al. A human-specific polymorphism in the coding region of the aggrecan gene. Variable number of tandem repeats produce a range of core protein sizes in the general population. J Biol Chem, 1997,272:13974-9.
    36 Roughley PJ, Alini M, Antoniou J. The role of proteoglycans in aging, degeneration and repair of the intervertebral disc. Biochem Soc Trans,2002,30:869-74.
    37 Solovieva S, Noponen N, Mannikko M, et al. Association between the aggrecan gene variable number of tandem repeats polymorphism and intervertebral disc degeneration. Spine (Phila Pa 1976),2007,32:1700-5.
    38 Cong L, Pang H, Xuan D, et al. Association between the expression of aggrecan and the distribution of aggrecan gene variable number of tandem repeats with symptomatic lumbar disc herniation in Chinese Han of Northern China. Spine (Phila Pa 1976),2010,35:1371-6.
    39 Mashayekhi F, Shafiee G, Kazemi M, et al. Lumbar disk degeneration disease and aggrecan gene polymorphism in northern Iran. Biochem Genet,2010,48:684-9.
    40 Wright E, Hargrave MR, Christiansen J, et al. The Sry-related gene Sox9 is expressed during chondrogenesis in mouse embryos. Nat Genet,1995,9:15-20.
    41 Bell DM, Leung KK, Wheatley SC, et al. SOX9 directly regulates the type-II collagen gene. Nat Genet,1997,16:174-8.
    42 Lefebvre V, Huang W, Harley VR, et al. SOX9 is a potent activator of the chondrocyte-specific enhancer of the pro alphal(II) collagen gene. Mol Cell Biol, 1997,17:2336-46.
    43 Sekiya I, Tsuji K, Koopman P, et al. SOX9 enhances aggrecan gene promoter/enhancer activity and is up-regulated by retinoic acid in a cartilage-derived cell line, TC6. J Biol Chem,2000,275:10738-44.
    44 Bridgewater LC, Lefebvre V, de Crombrugghe B. Chondrocyte-specific enhancer elements in the Coll Ia2 gene resemble the Col2al tissue-specific enhancer. J Biol Chem,1998,273:14998-5006.
    45 Genzer MA, Bridgewater LC. A Col9al enhancer element activated by two interdependent SOX9 dimers. Nucleic Acids Res,2007,35:1178-86.
    46 Sive JI, Baird P, Jeziorsk M, et al. Expression of chondrocyte markers by cells of normal and degenerate intervertebral discs. Mol Pathol,2002,55:91-7.
    47 Paul R, Haydon RC, Cheng H, et al. Potential use of Sox9 gene therapy for intervertebral degenerative disc disease. Spine (Phila Pa 1976),2003,28:755-63.
    48 Gruber HE, Norton HJ, Ingram JA, et al. The SOX9 transcription factor in the human disc:decreased immunolocalization with age and disc degeneration. Spine (Phila Pa 1976),2005,30:625-30.
    49 Videman T, Gibbons LE, Battie MC, et al. The relative roles of intragenic polymorphisms of the vitamin d receptor gene in lumbar spine degeneration and bone density. Spine (Phila Pa 1976),2001,26:E7-E12.
    50 Kawaguchi Y, Kanamori M, Ishihara H, et al. The association of lumbar disc disease with vitamin-D receptor gene polymorphism. J Bone Joint Surg Am, 2002,84-A:2022-8.
    51 Jones G, White C, Sambrook P, et al. Allelic variation in the vitamin D receptor, lifestyle factors and lumbar spinal degenerative disease. Ann Rheum Dis, 1998,57:94-9.
    52 Videman T, Leppavuori J, Kaprio J, et al. Intragenic polymorphisms of the vitamin D receptor gene associated with intervertebral disc degeneration. Spine (Phila Pa 1976),1998,23:2477-85.
    53 Cheung KM, Chan D, Karppinen J, et al. Association of the Taq I allele in vitamin D receptor with degenerative disc disease and disc bulge in a Chinese population. Spine (Phila Pa 1976),2006,31:1143-8.
    54 Amizuka N, Ozawa H. Intracellular localization and translocation of 1 alpha, 25-dihydroxyvitamin D3 receptor in osteoblasts. Arch Histol Cytol,1992,55:77-88.
    55 Balmain N, Hauchecorne M, Pike JW, et al. Distribution and subcellular immunolocalization of 1,25-dihydroxyvitamin D3 receptors in rat epiphyseal cartilage. Cell Mol Biol (Noisy-le-grand),1993,39:339-50.
    56 Corvol MT, Dumontier MF, Tsagris L, et al. [Cartilage and vitamin D in vitro (author's transl)]. Ann Endocrinol (Paris),1981,42:482-7.
    57 Pedeutour F, Merscher S, Durieux E, et al. Mapping of the 12q12-q22 region with respect to tumor translocation breakpoints. Genomics,1994,22:512-8.
    58 Labuda M, Fujiwara TM, Ross MV, et al. Two hereditary defects related to vitamin D metabolism map to the same region of human chromosome 12q13-14. J Bone Miner Res,1992,7:1447-53.
    59 Goupille P, Jayson MI, Valat JP, et al. Matrix metalloproteinases:the clue to intervertebral disc degeneration?. Spine (PhilaPa 1976),1998,23:1612-26.
    60 Handa T, Ishihara H, Ohshima H, et al. Effects of hydrostatic pressure on matrix synthesis and matrix metalloproteinase production in the human lumbar intervertebral disc. Spine (PhilaPa 1976),1997,22:1085-91.
    61 Ito A, Mukaiyama A, Itoh Y, et al. Degradation of interleukin lbeta by matrix metalloproteinases. J Biol Chem,1996,271:14657-60.
    62 Ye S, Watts GF, Mandalia S, et al. Preliminary report:genetic variation in the human stromelysin promoter is associated with progression of coronary atherosclerosis. Br Heart J,1995,73:209-15.
    63 Ye S, Eriksson P, Hamsten A, et al. Progression of coronary atherosclerosis is associated with a common genetic variant of the human stromelysin-1 promoter which results in reduced gene expression. J Biol Chem,1996,271:13055-60.
    64 Takahashi M, Haro H, Wakabayashi Y, et al. The association of degeneration of the intervertebral disc with 5a/6a polymorphism in the promoter of the human matrix metalloproteinase-3 gene. J Bone Joint Surg Br,2001,83:491-5.
    65 Lorenzo P, Aspberg A, Onnerfjord P, et al. Identification and characterization of asporin. a novel member of the leucine-rich repeat protein family closely related to decorin and biglycan. J Biol Chem,2001,276:12201-11.
    66 Henry SP, Takanosu M, Boyd TC, et al. Expression pattern and gene characterization of asporin. a newly discovered member of the leucine-rich repeat protein family. J Biol Chem,2001,276:12212-21.
    67 Kizawa H, Kou I, Iida A, et al. An aspartic acid repeat polymorphism in asporin inhibits chondrogenesis and increases susceptibility to osteoarthritis. Nat Genet, 2005,37:138-44.
    68 Iida A, Kizawa H, Nakamura Y, et al. High-resolution SNP map of ASPN, a susceptibility gene for osteoarthritis. J Hum Genet,2006,51:151-4.
    69 Shi D, Nakamura T, Dai J, et al. Association of the aspartic acid-repeat polymorphism in the asporin gene with age at onset of knee osteoarthritis in Han Chinese population. J Hum Genet,2007,52:664-7.
    70 Nakamura T, Shi D, Tzetis M, et al. Meta-analysis of association between the ASPN D-repeat and osteoarthritis. Hum Mol Genet,2007,16:1676-81.
    71 Rodriguez-Lopez J, Pombo-Suarez M, Liz M, et al. Lack of association of a variable number of aspartic acid residues in the asporin gene with osteoarthritis susceptibility: case-control studies in Spanish Caucasians. Arthritis Res Ther,2006,8:R55.
    72 Mustafa Z, Dowling B, Chapman K, et al. Investigating the aspartic acid (D) repeat of asporin as a risk factor for osteoarthritis in a UK Caucasian population. Arthritis Rheum,2005,52:3502-6.
    73 Song YQ, Cheung KM, Ho DW, et al. Association of the asporin D14 allele with lumbar-disc degeneration in Asians. Am J Hum Genet,2008,82:744-7.
    74 Seki S, Kawaguchi Y, Chiba K, et al. A functional SNP in CILP, encoding cartilage intermediate layer protein, is associated with susceptibility to lumbar disc disease. Nat Genet,2005,37:607-12.
    75盛业萌 贺学Asporin-骨关节炎易感基因在腰椎间盘退化人群中的表达.国外医学(医学地理分册),2010,31:197-200.
    76 Solovieva S, Kouhia S, Leino-Arjas P, et al. Interleukin 1 polymorphisms and intervertebral disc degeneration. Epidemiology,2004,15:626-33.
    77 Solovieva S, Leino-Arjas P, Saarela J, et al. Possible association of interleukin 1 gene locus polymorphisms with low back pain. Pain,2004,109:8-19.
    78 Ye W, Ma RF, Su PQ, et al. [Association of single nucleotide polymorphisms of IL-lb with lumbar disc disease]. Yi Chuan,2007,29:923-8.
    79 Valdes AM, Hassett G, Hart DJ, et al. Radiographic progression of lumbar spine disc degeneration is influenced by variation at inflammatory genes:a candidate SNP association study in the Chingford cohort. Spine (Phila Pa 1976),2005,30:2445-51.
    80 Yuan HY, Tang Y, Liang YX, et al. Matrix metalloproteinase-3 and vitamin d receptor genetic polymorphisms, and their interactions with occupational exposure in lumbar disc degeneration. J Occup Health,2010,52:23-30.
    81 Videman T, Gibbons LE, Kaprio J, et al. Challenging the cumulative injury model: positive effects of greater body mass on disc degeneration. Spine J,2010,10:26-31.
    82 Solomonow M. Challenging the cumulative injury model:positive effects of greater body mass on disc degeneration. Spine J 2010; 10:26-31. Spine J,2010,10:570; author reply 570-1.
    83 Kumar S. Challenging the cumulative injury model:positive effects of greater body mass on disc degeneration. Spine J 2010; 10:26-31. Spine J,2010,10:656; author reply 656-7.
    84 Williams FM, Popham M, Livshits G, et al. A response to Videman et al, "challenging the cumulative injury model:positive effects of greater body mass on disc degeneration". Spine J,2010,10:571-2; author reply 572.
    85 Thompson JP, Oegema TR Jr, Bradford DS. Stimulation of mature canine intervertebral disc by growth factors. Spine (Phila Pa 1976),1991,16:253-60.
    86 Li J, Kim KS, Park JS, et al. BMP-2 and CDMP-2:stimulation of chondrocyte production of proteoglycan. J Orthop Sci,2003,8:829-35.
    87 Takegami K, An HS, Kumano F, et al. Osteogenic protein-1 is most effective in stimulating nucleus pulposus and annulus fibrosus cells to repair their matrix after chondroitinase ABC-induced in vitro chemonucleolysis. Spine J,2005,5:231-8.
    88 Matsumoto T, An H, Thonar E, Andersson GBJ, Masuda K. Effect of osteogenic protein-1 on the metabolism of proteoglycan of intervertebral disc cells in aging. Transcripts of the Proceedings of the 48th Annual Meeting of the Orthopaedic Research Society,2002.
    89 Franceschi RT, Wang D, Krebsbach PH, et al. Gene therapy for bone formation:in vitro and in vivo osteogenic activity of an adenovirus expressing BMP7. J Cell Biochem,2000,78:476-86.
    90 Nishida K, Kang JD, Gilbertson LG, et al. Modulation of the biologic activity of the rabbit intervertebral disc by gene therapy:an in vivo study of adenovirus-mediated transfer of the human transforming growth factor beta 1 encoding gene. Spine (Phila Pa 1976),1999,24:2419-25.
    91 Le Maitre CL, Pockert A, Buttle DJ. Responsiveness of human intervertebral disc cells to adenovirus mediated transfer of TGF-βl cDNA in 2D and 3D culture systems:comparison to exogenous TGF-β1. Presented at:International Society for the Study of the Lumbar Spine meeting,2002.
    92 Wallach CJ, Sobajima S, Watanabe Y, et al. Gene transfer of the catabolic inhibitor TIMP-1 increases measured proteoglycans in cells from degenerated human intervertebral discs. Spine (Phila Pa 1976),2003,28:2331-7.
    93 Liu Y, Kong J, Chen BH, et al. Combined expression of CTGF and tissue inhibitor of metalloprotease-1 promotes synthesis of proteoglycan and collagen type II in rhesus monkey lumbar intervertebral disc cells in vitro. Chin Med J (Engl), 2010,123:2082-7.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700