B、Q型烟粉虱传毒与植物防御特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
烟粉虱是一种分布最广的世界性农业害虫。近年来,Q型烟粉虱入侵中国,在许多地域逐渐取代B型烟粉虱,并且在多数地区,烟粉虱爆发后随之产生了番茄黄化曲叶病毒病(TYLCV)的大爆发。
     本文以烟粉虱-植物-病毒互作关系为研究对象,通过比较B、Q型烟粉虱带病毒前后取食引起的植物防御反应的变化,以及增加植物防御反应对B、Q型烟粉虱产生的不同影响,寻找造成B、Q型烟粉虱与病毒互作差异的机制。
     测定了烟粉虱取食引起的植物内源茉莉酸(JA)和水杨酸(SA)含量及基因相对表达量,发现带毒Q型烟粉虱取食后JA含量显著低于不带毒Q型及带毒B型和不带毒B型烟粉虱取食,JA相关的上下游基因LOX和PIⅡ也表现出相同趋势。与JA不同,带毒B型取食后SA显著高于带毒Q型烟粉虱取食后的SA,然而不带毒B、Q型烟粉虱取食后无显著差异,带毒B型取食引起了较高的SA相关的基因相对表达量,而带毒Q型烟粉虱取食没有引起显著变化。
     测定了烟粉虱在带毒和不带毒时,其中一种烟粉虱取食后的植物对后取食的另外一种烟粉虱的产卵量、寿命及选择性的影响。结果发现,不带毒B型和Q型烟粉虱取食后的植物没有显著影响后来取食的另一种烟粉虱。带毒B型烟粉虱取食也没有影响带毒Q型烟粉虱,相反,带毒Q型取食后显著增加了带毒B、Q型烟粉虱的产卵量和寿命。且带毒Q型烟粉虱取食后叶片酶抑制剂活性显著低于其他三种烟粉虱取食后的酶抑制剂活性。
     外源SA对烟粉虱的生长发育有显著不利作用。在SA处理过的植物上,烟粉虱产卵量下降,寿命缩短,发育历期延长,卵存活率降低。与对照相比,在SA处理植物上烟粉虱的卵巢发育速度减慢,卵子数目减少,且带毒B型烟粉虱卵子数显著低于带毒Q型烟粉虱。外源SA处理增加了挥发物浓度,改变了挥发物成分,因此改变了烟粉虱的选择性。
     外源JA处理结果表明外源JA能降低烟粉虱的产卵量、寿命、发育历期和卵存活率,其中带毒Q型烟粉虱比其他三种烟粉虱表现出较好的生物学特性。外源JA处理增加了挥发物的浓度,改变了挥发物的成分,因此改变了烟粉虱的选择性。
     利用JA过表达的突变体研究了烟粉虱取食植物引起的不同反应。结果表明不带毒Q型烟粉虱取食降低了JA升高了SA,而带毒Q型烟粉虱取食更大程度抑制了JA却没有升高SA。不带毒Q型烟粉虱取食增加了挥发物的含量,然而,带毒Q型烟粉虱取食没有显著增加挥发物的含量,却改变了挥发物的成分。在突变体和对照植物上,带毒Q型烟粉虱的生物学特性都高于不带毒Q型烟粉虱,但是对两种植物的选择性却低于不带毒Q型烟粉虱。
The whitefly, Bemisia tabaci (Hemiptera:Aleyrodidae), is one of the most widely distributed agricultural pests. In recent years, B, tabaci Q has invaded China, and Q has gradually displaced B in many areas now. In a number of regions of the world, invasion by B and/or Q has been followed by outbreaks of tomato yellow leaf curl virus (TYLCV).
     In this study, we investigated the interaction of whitefly-plant-virus. We compared the plant defense responses induced by B and Q Bemisia tabaci with virus or not, and determined the different effects of increased plant defense on whiteflies, to find the mechnism of the mutualistic relationship between TYLCV and Q Bemisia tabaci.
     We quantified the jasmonic acid (JA) and salicylic acid (SA) titers and relative gene expression of JA and SA in tomato leaves that were infested with viruliferous or non-viruliferous B and Q. Jasmonic acid content was significantly lower in leaves infested with viruliferous Q than in noninfested leaves or in leaves infested with nonviruliferous Q, viruliferous B, or nonviruliferous B. The expression of LOX and PI Ⅱ genes showed the same trend, i.e., the expression was much lower with viruliferous Q than with nonviruliferous Q, viruliferous B, or nonviruliferous B. SA titer was always higher in leaves that were infested with viruliferous B than with viruliferous Q, whereas the SA titer did not differ between leaves infested with non-viruliferous B and Q. The relative gene expression of SA signaling was increased by feeding of viruliferous B but was not increased by feeding of viruliferous Q.
     We examined the performance and effects of B. tabaci B and Q on plants previously attacked by nonviruliferous or viruliferous Q or B. Fecundity and longevity were similar for nonviruliferous whiteflies on plants previously attacked by nonviruliferous whiteflies. Fecundity and longevity were also similar for viruliferous Q on plants previously attacked by viruliferous B. In contrast, fecundity and longevity were greater for viruliferous B and Q on plants previously attacked by viruliferous Q. With regard to protease inhibitor (PI), PI activity was significantly lower in leaves infested with viruliferous Q than in noninfested leaves or in leaves infested with nonviruliferous Q, viruliferous B, or nonviruliferous B.
     The life history traits of B and Q were adversely affected on SA-treated plants. On SA-treated plants, both B and Q had lower fecundity, shorter longevity, longer developmental time and lower survival rate than on untreated plants. Compared with whiteflies feeding on control plants, those feeding on SA-treated plants had fewer oocytes and slower ovary development. On SA-treated plants, viruliferous B had fewer oocytes than viruliferous Q. Exogenous SA also increased the content and changed the composition of plant volatiles, resulting in altered choice behavior of whiteflies.
     The exogenous JA treatment showed reduced whitefly fecundity, longevity, developmental time, and survival rate. Viruliferous Q showed a higher performance than nonviruliferous Q, viruliferous B, or nonviruliferous B. Exogenous JA also increased the content and changed the composition of plant volatiles, resulting in altered choice behavior of whiteflies.
     The JA-overexpress plant was used to determine the difference defense response induced by non-viruliferous and viruliferous Q. The results showed that non-viruliferous Q reduced endogenous JA and induced endogenous SA However, viruliferous Q greatly reduced the endogenous JA while not induced endogenous SA compared with non-viruliferous Q. Infestion of non-viruliferous Q increased level of plant volatile substance. In contrast, infestion of viruliferous Q didn't induce the content but changed the component of plant volatiles. Furthermore, on JA-overexpress plant and control plant, viruliferous Q B. tabaci showed a higher fecundity, longevity and survival rate but a lower preference than non-viruliferous Q B. tabaci.
引文
Abe H, Ohnishi J, Narusaka M, et al. Function of jasmonate in response and tolerance of Arabidopsis to thrp feeding. Plant Cell Physiol.,2008,49 (1):68-80.
    Abe H, Tomitaka Y, Shimoda T, et al. Antagonistic plant defense system regulated by phytohormones assists interactions among vector insect, thrips and a tospovirus. Plant Cell Physiol.,2012,53: 204-212.
    Alba JM, Glas JJ, Schimmel BCJ, et al. Avoidance and suppression of plant defenses by herbivores and pathogens. J. Plant Interact.,2011,6:1-7.
    Alborn HJ, Jounes TH, Stenhagen GS, et al. Identification and synthesis of volicitin and related components from beet army wormoralsecretions. J. Chem, Ecol.,2000,26:203-220.
    Amin I, Patil BL, Briddon RW, et al. Comparison of phenotypes produced in response to transient expression of genes encoded by four distinct begomoviruses in Nicotiana benthamiana and their correlation with the levels of developmental miRNAs. Virol. J.,2011,8:238.
    Andret-Link P, Fuchs M. Transmission specificity of plant viruses by vectois. J. Plant Pathol,2005,87: 153-165.
    Antoniw JF, White RF. The effects of aspirin and polyacrylic acid on soluble leaf proteins and resistance to virus infection in five cultivars of tobacco. Phytopathol. Z.,1980,98:331-341.
    Arimura G, Ozawa R, Kugimiya S, et al. Herbivore-induced defense response in a model legume. Two-spotted spider mites induce emission of (E)-beta-ocimene and transcript accumulation of (E)-beta-ocimene synthase in Lotusjaponicas. Plant Physiol,2004,135(4):1976-1983.
    Arimura G, Ozawa R, Shimoda T, et al. Herbrvory-induced volatiles elicit defense genes in lima bean leaves. Nature,2000,406(6795):512-515.
    Atzmon G., van Hoss H, Czosnek H. PCR-amplification of tomato yellow leaf curl virus (TYLCV) from squashes of plants and insect vectors:application to the study of TYLCV acquisition and transmission. Eur. J. Plant Pathol.,1998,104:189-194.
    Ausubel FM. Are innate immune signaling pathways in plants and animals conserved? Nat. Immunol., 2005,6:973-979.
    Avdiushko SA, Brown GC, Dalman DL, et al. Methyl jasmonate exposure induces insect resistance in cabbage and tobacco. Environ. Entomol,1997,26 (13):642-654.
    Avila CA, Arevalo-Soliz LM, Jia LL, et al. Loss of function of FATTYACID DESATURASE7 in tomato enhances basal aphid resistance in a salicylate-dependent manner. Plant Physiol.,2012,158: 2028-2041.
    Baldwin IT, Zhang ZP, Diab N, et al. Quantification, correlations and manipulations of wound-induced changes in jasmonic acid and nicotine in Nicotiana sylvestris. Planta,1997,201:397-404.
    Banerjee S, Hess D, Majumder P, et al. The interactions of Allium sativum leaf agglutinin with a chaperonin group of unique receptor protein isolated from a bacterial endosymbiont of the mustard aphid. J. Biol. Chem.,2004,279(22):23782-23789.
    Belliure B, Janssen A, Maris PC, et al. Herbivore arthropods benefit from vectoring plant viruses. Ecol. Lett.,2005,8:70-79.
    Blua MJ, Perring TM. Effects of zucchini yellow mosaic virus on colonization and feeding behavior of Aphis gossypii (Homoptera:Aphididae) alatae. Environ. Entomol.,1992,21:578-585.
    Boland W, Hopke J, Donath J, et al. Jasmonic acid and coronatin induce odor production in plants. Angew. Chem. Int. Ed. Engl.,1995,34(15):1600-1603.
    Brault V, Uzest M, Monsion B, et al. Aphids as transport devices for plant viruses. C. R. Biol.,2010, 333(6-7):524-538.
    Broadway RM, Duffey SS. Plant proteinase inhibitors:mechanism of action and effect on the growth and digestive physiology of larval Heliothis zea and Spodoptera exigua. J. Insect Physiol.,1986, 32:827-833.
    Brown JK, Czosnek H. Whitefly transmission of plant viruses. Adv. Bot. Res.,2002,36:65-76.
    Brown JK, Frohlich DR, Rosell RC. The sweetpotato or silverleaf whiteflies:biotypes of Bemisia tabaci or a species complex? Annu.Rev. Entomoi.,1995,40:511-534.
    Brown JK. Phylogenetic biology of the Bemisia tabaci sibling species group. In:Stansly PA, Naranjo SE eds. Bionomics and Management of a Global Pest. Amsterdam:Springer,2010,31-67.
    Carolan JC, Fitzroy CIJ, Ashton PD, et al. The secreted salivary proteome of the pea aphid Acyrthosiphon pisum characterised by mass spectrometry. Proteomics,2009,9:2457-2467.
    Chen AYS, Walker GP, Carter D, et al. A virus capsid component mediates virion retention and transmission by its insect vector. P. Natl. Acad. Sci. U.S.A.,2011,108(40):16777-16782.
    Chu D, Wan FH, Zhang YJ, et al. Change in the biotype composition of Bemisia tabaci in Shandong Province of China from 2005 to 2008. Environ. Entomol.,2010 a,39:1028-1036.
    Chu D, Zhang YJ, Brown JK, et al. The introduction of the exotic biotype Q of Bemisia tabaci from the Mediterranean region into China on ornamental crops. Fla.Entomol.,2006,89:168-174.
    Chu D, Zhang YJ, Cong B, et al. Sequences analysis of mtDNA CO1 gene and molecular phylogeny of different geographical populations of Bemisia tabaci (Gennadius). Agr. Sci. China,2005,4: 533-541.
    Chu D, Zhang YJ, Wan FH. Cryptic invasion of the exotic Bemisia tabaci biotype Q occurred widespread in Shandong Province of China. Fla. Entomol.,2010 b,93:203-207.
    Chung SH, Rosa C, Scully ED, et al. Herbivore exploits orally secreted bacteria to suppress plant defenses. P. Natl. Acad. Sci. U.S.A.,2013,110:15728-15733.
    Cohen S, Duffus JE, Liu HY Acquisition, interference, and retention of cucurbit leaf curl viruses in whiteflies. Phytopathology,1989,79(1):109-113.
    Creehnan RA, Mullet JE. Biosynthsis and action of jasmonates in plants. Annu. Rev. Plant Physiol. PlantMol. Biol,1997,48:355-381.
    Creehman RA. Jasmonic acid distribution and action in plants:regulation during development and response to biotic and abiotic stress. P. Natl. Acad. Sci. U.S.A.,1995,92 (10):4114-419.
    Cui H, Sun Y, Su J, et al. Elevated O3 reduces the fitness of Bemisia tabaci via enhancement of the SA-dependent defense of the tomato plant. Arthropod-Plant Inte.,2012,6:425-437.
    Czosnek H, Ghanim H, Morin S, et al. Whiteflies:vectors, and victims (?), of geminiviruses. Adv. Virus Res.,2001,56:291-332.
    Danks HV. Short life cycles in insects and mites. Can. Entomol,2006,138:407-463.
    De Barro PJ, Liu SS, Boykin LM, et al. Bemisia tabaci:a statement of species status. Annu. Rev. Entomol,2011,56:1-19.
    De Barro PJ. Genetic structure of the whitefiy Bemisia tabaci in the Asia-Pacific region revealed using microsatellite markers. Mol. Ecol.,2005,14:3695-3718.
    Delaney TP, Uknes S,Vernooij B, et al. A central role of salicylic acid in plant disease resistance. Science,1994,266:1247-1250.
    Dicke M, Sabelis MW, Takabayashi J, et al. Plant strategies of manipulating predator-prey interactions through allele chemicals:prospects for application in pest control. J. Chem. Ecol.,1990,16(11): 3091-3118.
    Dicke M. Are herbivore-induced plant volatiles reliable indicators of herbivore identity to foraging carnivorous arthropods? Entomol. Exp. Appl.,1999,91:131-142.
    Dinsdale A, Cook L, Riginos C, et al. Refined global analysis of Bemisia tabaci (Hemiptera: Sternorrhyncha:Aleyrodoidea:Aleyrodidae) mitochondrial cytochrome oxidase I to identify species level genetic boundaries. Ann. Entomol.Soc. Am.,2010,103:196-208.
    Donovan MP, Nabity PD, DeLucia EH. Salicylic acid-mediated reductions in yield in Nicotiana attenuate challenged by aphid herbivory. Arthropod-Plant Inte.,2013,7:45-52.
    Drucker M, Froissart R, Hebrard E, et al. Intracellular distribution of viral gene products regulates a complex mechanism of cauliflower mosaic virus acquisition by its aphid vector. P. Natl Acad. Sci. U.S.A.,2002,99(4):2422-2427.
    Du PV Cabunagan RC, Cabauatan PQ, et al. Yellowing syndrome of rice:etiology, current status, and future challenges. Omonrice,2007,15:94-101.
    El Oirdi M, El Rahman TA, Rigano L, et al. Botrytis cinerea manipulates the antagonistic effects between immune pathways to promote disease development in tomato. Plant Cell,2011,23: 2405-2021.
    Eraslan F, Inal A, Gunes A, et al. Impact of exogenous salicylic acid on growth, antioxidant activity and physiology of carrot plants subjected to combined salinity and boron toxicity.Sci. Hort.,2007, 113:120-128
    Erb M, Meldau S, Howe GA. Role of phytohormones in insect-specific plant reactions. Trends Plant Sci.,2012,17 (5):250-259.
    Farmer EE, Ryan CA Interplant communication:airborne methyl-jasmonate induces synthesis of proteinase inhibitors in plant leaves. P. Natl. Acad. Sci. U.S.A.,1990,87(19):7713-7716.
    Farmer EE, Ryan CA Octadecanoid precursors of jasmonic acid activate the synthesis of wound-inducible proteinase inhibitors. Plant Cell,1992,4(2):129-134.
    Farmer EE. Surface-to-air signals. Nature,2001,411(6839):854-856.
    Fauquet CM, Stanley J. Geminivirus classification and nomenclature:progress and problems. Ann. Appl. Biol,2003,142:165-189.
    Felix Q Boller T. Systemin induces rapid ion fluxes and ethylene biosynthesis in Lycopersicon peruvianum cells. Plant J.,1995,7:381-389.
    Firmino AC, "Yuki VA, Moreira AG, et al. Tomato yellow vein streak virus:relationship with Bemisia tabaci biotype B and host range. Sci. Ag.,2009,66(6):793-799.
    Flors V, Ton J, van Doom R, et al. Interplay between JA, SA and ABA signalling during basal and induced resistance against Pseudomonas syringae and Alternaria brassicicola.Plant J.,2008,54(1): 81-92.
    Frankel, G. The raison d' etre of secondary plant substances. Science,1959,129:1466-1470.
    Franz A, Makkouk KM,Vetten HJ. Acquisition, retention and transmission of faba bean necrotic yellows virus by two of its aphid vectors, Aphis craccivora (Koch) and Acyrthosiphon pisum (Harris). J. Phytopathol.,1998,146(7):347-355.
    Froissart R, Doumayrou J, Vuillaume F, et al. The virulence transmission trade-off in vector-borne plant viruses:a review of (non-)existing studies. Phil. Trans. R. Soc. B.,2010,365:1907-1918.
    Galanihe LD, Harris MO. Plant volatiles mediate host-finding behavior of the apple leaf curling midge. J. Chem. Ecol.,1997,2312:2639-2655.
    Galanihe LD. Plant volatiles medite host-finding behavior of the apple leaf curling midge. J. Chem. Ecol.,1997,23(12):2639-2655.
    Gao LL, Anderson JP, Klingler JP, et al. Involvement of the octadecanoid pathway in bluegreen aphid resistance in Medicago truncatula. Mol. Plant-Microbe In.,2007,20 (1):82-93.
    Ghanim M, Morin S, Czosnek H. Rate of tomato yellow leaf curl virus trans location in the circulative transmission pathway of its vector, the whitefly Bemisia tabaci. Phytopathology,2001 a,91(2): 188-196.
    Ghanim M, Rosell RC, Canpbell LR, et al. Digestive salivary and reproductive organs of Bemisia tabaci (Gennadius) (Hemiptera:Aleyrodidae) biotype B. J. Morphol,2001 b,248(1):22-40.
    Gill R, Brown JK. Systematics of Bemisia and Bemisia relatives:can molecular techniques solve the Bemisia tabaci complex conundrum-a taxonomist's viewpoint. In:Stansly PA, Naranjo SE eds. Bionomics and Management of a Global Pest. Amsterdam:Springer,2010,5-29.
    Gillow FE. Evidence for receptor mediated endocytosis regulating ruteovirus acquisition by ahpids. Phytopathology,1993,83:270-277.
    Giordanengo P, Brunissen L, Rusterucci C, et al. Compatible plant-aphid interactions:how aphids manipulate plant responses.C. R. Biol.,2010,333:516-523.
    Glazebrook J. Contrasting mechanisms of defense against biotrophic and necrotphic pathogens. Ann. Rev. Phytopathol.2005,43:205-227.
    Gottlieb Y, Zchori-Fein E, Mozes-Daube N, et al. The transmission efficiency of tomato yellow leaf curl virus by the whitefly Bemisia tabaci is correlated with the presence of a specific symbiotic bacterium species. J. Vorol.,2010,84(18):9310-9317.
    Govier DA, Kassanis B. A virus-induced component of plant sap needed when aphids acquire potato virus Y from purified preparations. Virology,1974,61:420-426.
    Green TR, Ryan CA. Wound-induced proteinase inhibitor in plant leaves:a possible defense mechanism against insects. Science,1972,175:776-777.
    Guo JY, Ye GY, Dong SZ, et al. An invasive whitefly feeding on a virus-infected plant increased its egg production and realized fecundity. PLoS ONE,2010,5:e11713.
    Hayat Q, Hayat S, Irfan M, et al. Effect of exogenous salicylic acid under changing environment:a review. Environ. Exp. Bot.,2010,68:14-25.
    Hedges LM, Brownlie JC, O'Neill SL, et al. Wolbachia and virus protection in insects. Science,2008, 322(5902):702.
    HimLer AG, Adachi-Hagimori T, Bergen JE, et al. Rapid spread of a bacterial symbiont in an invasive whitefly is driven by fitness benefits and female bias. Science,2011,332:254-256.
    Hoffmann AA, Turelli M. Influential passengers:inherited microorganisms and arthropod reproduction, In:Oxford University eds. O'Neill SL, Hoffmann AA, Werren JH, New York,1997,42-80.
    Hogenhout S A, Ammar ED, Whitfield AE, et al. Insect vector interactions with persistently transmitted viruses. Ann. Rev. Phytopathol.,2008,46:327-359.
    Hohn T. Plant virus transmission from the insect point of view. P. Natl. Acad. Sci. U.S.A.,2007,104 (46): 17 905-17 906.
    Horiuchi JI, Arimura GI, Ozawa R, et al. Exogenous ACC enhances volatiles production mediated by jasmonic in lima bean leaves. FEBSLett.,2001,509(2):332-336.
    Hu J, De Barro P, Zhao H, et al. An extensive field survey combined with a phylogenetic analysis reveals rapid and widespread invasion of two alien whiteflies in China. PLoS ONE,2011,6: e16061.
    Huang CJ, Xie Y, Zhou XP. Efficient virus-induced gene silencing in plants using a modified geminivirus DNA1 component. Plant Biotechnol. J.,2009,7:254-265.
    Huang LC, Ren Q, Sun YC, et al. Lower incidence and severity of tomato virus in elevated CO2 is accompanied by modulated plant induced defense in tomato. Plant Biology,2012,14:905-913.
    Jaenike J. Host specialization in phytophagous insects. Annu. Rev. Ecol. Syst.,1990,21:243-273.
    Jones DR. Plant viruses transmitted by whiteflies. Eur. J. Plant Pathol,2003,109:195-219.
    Jung HW, Tschaplinski TJ, Wang L, et al. Priming in systemic plant immunity. Science,2009,324: 89-91.
    Kachroo A, Kachroo P. Fatty acid-derived signals in plant defense. Annu. Rev. Phytopathol.,2009,47: 153-176.
    Kachroo P, Yoshioka K, Shah J, Dooner HK, et al. Resistance to turnip crinkle virus in Arabidopsis is regulated by two host genes and is salicylic acid dependent but NPR1, ethylene, and jasmonate independent. Plant Cell,2000,12:677-690.
    Kadioglu A, Saruhan N, Saglam A, et al. Exogenous salicylic acid alleviates effects of long term drought stress and delays leaf rolling by inducing antioxidant system. Plant Gmwth Regul.,2010, 64(1):27-37.
    Kakade ML, Rackis JJ, McGhee JE, et al. Determination of trypsin-inhibitor activity of soy products-collaborative analysis of an improved procedure. Cereal Chem.,1974,51:376-382.
    Kant MR, Ament K, Sabelis MW, et al. Differential timing of spider mite-induced direct and indirect defenses in tomato plants. Plant Physiol.,2004,135(1):483-495.
    Kappers F, Aharoni A, van Herpen TW, et al. Genetic engineering of terpenoid metabolism attracts bodyguards to Arabidopsis. Science,2005,309(5743):2070-2072.
    Karban R, Baldwin IT. Book review:induced responses to herbivory. In:Karban R, Baldwined IT, eds. Pestic. Sci. Chicago:University of Chicago,1997,185-186.
    Karban R, Carey JR. Induced resistance of cotton seedlings to mites. Science,1984,225:53-54.
    Karban R, Myers JH. Induced plant responses to herbivory. Annu. Rev. Ecol. Syst.,1989,20:331-348.
    Karen-Beth GS, Scott A, Henryk C, et al. Top 10 plant viruses in molecular plant pathology. Mol. Plant Pathol,2011,12(9):938-954.
    Katsir L, Schilmiller AL, Staswick PE, et al. COI1 is a critical component of a receptor for jasmonate and the bacterial virulence factor coronatine. P. Natl. Acad. Sci. U.S.A.,2008,105:7100-7105.
    Khan ZR, Saxena RC. Mode of feeding and growth of Nephotettix verescens (Homoptera:Cicadellidae) on selected resistant and susceptible rice varieties. J. Econ. Entomol,1985,78:583-587.
    Kohler A, Schwindling S, Conrath U. Benzothiadiazole-induced priming for potentiated responses to pathogen infection, wounding, and infiltration of water into leaves require the NPR1/NIM1 gene in Arabidopsis. Plant Physiol,2002,128:1046-1056.
    Koornneef A, Pieterse CMJ. Cross-talk in defense signaling. Plant Physiol.,2008,146:839-844.
    LaFever RE, Croteau R. Hydride shifts in the biosynthesis of the p-menthane monoterpenes alpha-terpinene, gamma-terpinene, and beta-phellandrene. Arch. Biochem. Biophys.,1993,301(2): 361-366.
    Lamb C, Dixon RA. The oxidative burst in plant disease resistance. Annu. Rev. Plant Physiol. Plant Mol. Biol,1997,48:251-275.
    Lewsey MG, Gonzalez I, Kalinina NO, et al. Symptom induction and RNA silencing suppression by the cucumber mosaic virus 2b protein. Plant Signaling & Behavior,2010,5:705-708.
    Liechti R, Farmer EE. The jasmonate pathway. Science,2002,296(5573):1649-1650.
    Liu BM, Preisser EL, Chu D, et al. Multiple forms of vector manipulation by a plant-infecting virus: Bemisia tabaci and tomato yellow leaf curl virus. J. Virol,2013,87:4929.
    Liu SS, De Barro PJ, Xu J, et al. Asymmetric mating interactions drive widespread invasion and displacement in a whitefly. Science,2007,318:1769-1772.
    Luo C, Jones CM, Devine G, et al. Insecticide resistance in Bemisia tabaci biotype Q (Hemiptera: Aleyrodidae) from China. Crop Prot,2010,29:429-134.
    Makandar R, Essig JS, Schapaugh MA, et al. Genetically engineered resistance to Fusarium head blight in wheat by expression of Arabidopsis NPR1. Mol. Plant-Microbe In.,2006,19:123-129.
    Malamy J, Carr JP, Klessig DF. Salicylic acid:a likely endogenous signal in the resistance response of tobacco to viral infection. Science,1990,250:1002-1004.
    Malamy J, Hennig J, Klessig DF. Temperature depended induction of salicylic acid and its conjugates during the resistance response to tobacco mosaic virus infection. Plant Cell,1992,359-365.
    Manoussopoulos IN. Acquisition and retention of potato virus Y helper component in the transmission of potato aucuba mosaic virus by aphids.J. Phytopathol.,2001,149:103-106.
    Mascia T, Santovito E, Gallitelli D, et al. Evaluation of reference genes for quantitative reverse-transcription polymerase chain reaction normalization in infected tomato plants. Mol. Plant Pathol,2010,11:805-816.
    Matros A, Amme S, Kettig B, et al. Growth at elevated CO2 concentrations leads to modified profiles of secondary metabolites in tobacco cv. SamsunNN and to increased resistance against infection with Potato virus Y. Plant Cell Environ.,2006,29:126-137.
    Mauck KE, De Moraes CM, Mescher M. Deceptive chemical signals induced by a plant virus attract insect vectors to inferior hosts. P. Natl. Acad. Sci. U.S.A.,2010,107 (8):3600-3605.
    McGurl B, Orozco-Cardenas M, Pearce G, et al. Overexpression of the prosystemin gene in transgenic tomato plants generates a systemic signal that constitutively induces proteinase inhibitor synthesis. P. Natl. Acad. Sci. U.S.A.,1994,91:9799-9802.
    Meindl T, Boller T, Felix G The plant wound hormone systemin binds with the N-terminal part to its receptor but needs the C-terminal part to activate it. Plant Cell,1998,10:1561-1570.
    Mithofer A, Bo land W. Plant defense against herbivores:chemical aspects. Annu. Rev. Plant Biol.,2012, 63:251-252.
    Morin S, Ghanim M, Zeidan M, et al. A GroEL homologue from endosymbiotic bacteria of the whitefly Bemisia tabaci is implicated in the circulative transmission of tomato yellow leaf curl virus. Virology,1999,256:75-84.
    Morsello SC, Kennedy GG Spring temperature and precipitation affect tobacco thrips, Frankliniella fusca, population growth and tomato spotted wilt virus spread within patches of the winter annual weed stellaria media. Entomol. Exp. Appl.,2009,130:138-148.
    Mottram P, Kay BH, Kettle DS. The effect of temperature on eggs and immature stages of Culex annulirostris Skuse (Diptera:Culicidae). Aust. J. Entomol.,1986,25:131-136.
    Moyen C, Hammond-Kosack KE, Jones J, et al. Systemin triggers an increase of cytoplasmic calcium in tomato mesophyll cells:Ca2+ mobilization from intra- and extracellular compartments. Plant Cell Environ.,1998,21:1101-1111.
    Moyen C, Johannes E. Systemin transiently depolarizes the tomato mesophyll cell membrane and antagonises fusicoccin-induced extracellular acidification of mesophyll tissue. Plant Cell Environ., 1996,19:464-470.
    Mugiira RB, Liu SS, Zhou XP. Tomato yellow leaf curl virus and Tomato leaf curl Taiwan virus invade south-east coast of China. J. Phytopathol,2008,156:217-221.
    Muniyappa V,Venkatesh HM, Ramappa HK, et al. Tomato leaf curl virus from bangalore (ToLCV-Ban4):sequence comparison with Indian ToLCV isolates, detection in plants and insects, and vector relationships. Arch. Virol.,2000,145 (8):1583-1598.
    Nagata T, Inoue-Nagata AK, van Lent J, et al. Factors determing vector competence and specificity for transmission of tomato spotted wilt virus. J. Gen. Virol.,2002,83 (3):663-671.
    Nauen R, Stumpf N, Elbert A Toxicological and mechanistic studies on neonicotinoid cross resistance in Q-type Bemisia tabaci (Hemiptera:Aleyrodidae). Pest Manag. Sci.,2002,58:868-875.
    Ng JCK, Falk BW. Virus-vector interactions mediating nonpers istent and semipersistent transmission of plant viruses. Annu. Rev. Phytopathol.,2006,44:183-212.
    Nishimura MT, Stein M, Hou BH, et al. Loss of a callose synthase results in salicylic acid-dependent disease resistance. Science,2003,301:969-972.
    Norman-Setterblad C, Vidal S, Palva ET. Interacting signal pathways control defense gene expression in Arabidopsis in response to cell wall-degrading enzymes from Erwinia carotovora. Mol. Plant-Microbe In.,2000,13:430-438.
    O'Donnell PJ, Calvert C, Atzorn R, et al. Ethylene as a signal mediating the wound response of tomato plants. Science,1996,274:1914-1917.
    Omura T, Yan J, Zhong BX, et al. The P2 protein of rice dwarf phytoreovirus is required for adsorption of the virus to cells of the insect vector. J. Virol.,1998,72 (11):9370.
    Osborne SE, Leong YS, O'Neill SL, et al. "Variation in antiviral protection mediated by different Wolbachia strains in Drosophila simulans. PLoSPathog.,2009,5(11):e1000656.
    Palacios Ⅰ, Drucker M, Blanc S, et al. Cauliflower mosaic virus is preferentially acquired from the phloem by its aphid vectors. J.Gen. Virol,2002,83:3163-3171.
    Pan HP, Chu D, Ge DQ, et al. Further spread of and domination by Bemisia tabaci (Hemiptera: Aleyrodidae) biotype Q on field crops in China. J. Econ. Entomol,2011,104:978-985.
    Pan HP, Chu D, Liu BM, et al. Differential effects of an exotic plant virus on its two closely related vectors. Sci. Rep.,2013,3:2230.
    Pan HP, Chu D, Yan WQ, et al. Rapid spread of tomato yellow leaf curl virus in China is aided differentially by two invasive whiteflies. PLoSONE,2012 a,7:e34817.
    Pan HP, Li XC, Ge DQ, et al. Factors affecting population dynamics of maternally transmitted endosymbionts in Bemisia tabaci. PLoS ONE,2012 b,7:e30760.
    Pare PW, TumLinson JH. Plant volatiles as a defense against insect herbivores. Plant Physiol.,1999, 121(2):325-331.
    Pasquer F, Isidore E, Zarn J, et al. Specific patterns of changes in wheat gene expression after treatment with three antifungal compounds. Plant Mol. Biol.,2005,57:693-707.
    Peng JY, Deng XJ, Huang JH, et al. Role of salicylic acid in tomato defense against cotton bollworm, Helicoverpa armigera Hubner. Z. Naturforsch C.,2004,59:856-862.
    Perring TM. The Bemisia tabaci species complex. Crop Prot.,2001,20:725-737.
    Pichersky E, Gershenzon J. The formation and function of plant volatiles:perfumes for pollinator attraction and defense. Curr. Opin. Plant Biol.,2002,5(3):237-243.
    Polston JE, Al Musa A, Perring TM, et al. Association of the nucleic acid of squash leaf curl geminivirus with the whitefly Bemisia tabaci. Phytopathology,1990,80:850-856.
    Power AG Insect transmission of plant viruses:a constraint on virus variability. Curr. Opin. Plant Biol., 2000,3(4):336-340.
    Qiu BL, Coats SA, Ren SX, et al. Phylogenetic relationships of native and introduced Bemisia tabaci (Homoptera:Aleyrodidae) from China and India based on mtCO1 sequencing and host plant comparisons. Prog. Nat. Sci.,2007,17:645-654.
    Ramagopal S. Salinity stress induced tissue specific proteins in barley seedlings. Plant Physiol.,1987, 84:324-331
    Rasmussen JB, Hammerschmidt R, Zook MN. Sytemic induction of salicylic acid accumulation in cucumber after inoculation with Pseudomonas syringae pv. syringae. Plant Physiol.,1991,97: 1342-1347.
    Ren Q, Cao LZ, Su JW, et al. Volatile emissions from the invasive weed eupatorium adenophorum induced by Aphis gossypii feeding and methyl jasmonate treatment. Weed Sci.,2010,58:252-257.
    Robert-Seilaniantz A, Grant AM, Jones JDG. Hormone crosstalk in plant disease and defense:more than just jasmonate-salicylic antagonism. Annu. Rev. Phytopathol.,2011,49:317-343.
    Rodriguez-Saona CR, Musser RO,Vogel H, et al. Molecular, biochemical, and organism alanalyses of tomato plants simultaneously attacked by herbivores from two feeding guilds. J. Chem. Ecol.,2010, 36:1043-1057.
    Rouze-Jouan J, Terradot L, Pasquer F, et al. The passage of potato leaf roll virus through Myzus persicae gut membrane regulates transmission efficiency. J. Gen. Virol.,2001,82:17-23.
    Rubinstein CV, Gerrienne P, de la Puente GS, et al. Early middle ordovician evidence for land plants in Argentina (eastern Gondwana). New Phytol.,2010,188:365-369.
    Rubinstein G, Czosnek H. Long-term association of tomato yellow leaf curl virus with its whitefly vector Bemisia tabaci:effect on the insect transmission capacity, longevity and fecundity. J. Gen. Virol.,1997,78 (10):2683-2689.
    Ryals JA, Neuenschwander UH, Willits MG, et al. Systemic acquired resistance. Plant Cell,1996,8: 1809-1819.
    Ryan CA, Pearce G Systemin:a polypeptide signal for plant defensive genes. Annu. Rev. Cell Dev. Biol., 1998,14:1-17.
    Ryan CA. Proteinase inhibitors in plants:genes for improving defenses against insects and pathogens. Annu. Rev. Phytopath.,1990,28:425-449.
    Ryan CA. The systemin signaling pathway:differential activation of plant defensive genes. Biochim. Biophys. Acta.,2000,1477:112-121.
    Sabelis MW, Janssen A, Kant MR. Enhanced:the enemy of my enemy is my ally. Science,2001, 291(5511):2104-2105.
    Sanchez-Hernandez C, Lopez MG, Delano-Frier JP. Reduced levels of volatile emissions in jasmonate-deficient spr2 tomato mutants favour oviposition by insect herbivores. Plant Cell Environ.,2006,29(4):546-557.
    Sarmento RA, Lemos F, Bleeker PM, et al. A herbivore that manipulates plant defence. Ecol. Lett., 2011 b,14:229-236.
    Sarmento RA, Lemos F, Dias CR, et al. Aherbivorous mite down-regulates plant defence and produces web to exclude competitors. PLoS ONE,2011 a,6:e23757.
    Schaller A, Oecking C. Modulation of plasma membrane H+- ATPase activity differentially activates wound and pathogen defense responses in tomato plants. Plant Cell,1999,11:263-272.
    Schaller A Oligopeptide signaling and the action of systemin. Plant Mol. Biol.,1999,40:763-769.
    Scheer JM, Ryan CA. A 160-kd systemin receptor on the surface of Lycopersicon peruvianum suspension-cultured cells. Plant Cell,1999,11:1525-1535.
    Schulze B, Lauchli R, Sonwa MM, et al. Profiling of structurally labile oxylipins in plants by in situ derivatization with pentafluorobenzyl hydroxyl-amine. Anal. Biochem.,2006,348:269-283.
    Senthil-Nathan S, Kalaivani K, Choi MY, et al. Effects of jasmonic acid-induced resistance in rice on the plant brownhopper, Nilaparvata lugens Stal (Homoptera:Delphacidae). Pestic. Biochem. Phys., 2009,95 (2):77-84.
    Shah J, Klessig DF. Salicylic acid:signal perception and transduction. In:Hooykaas PPJ, Hall MA, Libbenga KR, eds. Biochemistry and Molecular Biology of Plant Hormones. Elsevier, Amsterdam, Netherlands,1999,513-541.
    Shraiy AME, Hegazi AM. Effect of acetylsalicylic acid, indole-3-bytric acid and gibberellic acid on plant growth and yield of pea (Pisum Sativum L.). Aust. J. Bas. Appl. Sci.,2009,3:3514-3523.
    Shulaev V, Sllverman P, Raskin L. Airborne signaling by methyl salicylate in plant pathogen resistance. Nature,1997,385(20):718-721.
    Simmons AM, Ling KS, Harrison HF, et al. Sweet potato leaf curl virus:efficiency of acquisition, retention and transmission by Bemisia tabaci (Hemiptera:Aleyrodidae). Crop Prot.,2009,28: 1007-1011.
    Singh DP, Moore CA, Gilliland A, et al. Activation of multiple antiviral defense mechanisms by salicylic acid. Mol. Plant Pathol.,2004,5:57-63.
    Smith JA, Hammerschmidt R, Fulbright DW. Rapid induction of systemic resistance in cucumber by Pseudomonas syringae pv. syringae. Physiol. Mol. Plant Pathol.,1991,38:223-235.
    Spoel SH, Koornneef A Claessens SM, et al. NPR1 modulates cross-talk between salicylate-and jasmonate-dependent defense pathways through a novel function in the cytosol. Plant Cell,2003, 15:760-770.
    Staswick PE,Yuen GY, Lehman CC. Jasmonate signaling mutants of Arabidopsis are susceptible to the soil fungus Pythium irregulare. Plant J.,1998,15:747-754.
    Stavolone L, Villani ME, Leclerc D, et al. A coiled-coil interaction mediates cauliflower mosaic virus cell-to-cell movement. P. Natl. Acad. Sci. U.S.A.,2005,102 (17):6219-6224.
    Stewart LR, Medina V, Tian T, et al. A mutation in the lettuce infectious yellows virus minor coat protein disrupts whitefly transmission but not in planta systemic movement. J. Virol.,2010,84: 12165-12173.
    Stout MJ, Thaler JS, Thomma BP. Plant-mediated interactions between pathogenic microorganisms and herbivorous arthropods. Annu. Rev. Entomol.,2006,51:663-689.
    Stratmann JW, Ryan CA. Myelin basic protein kinase activity in tomato leaves is induced systemically by wounding and increases in response to systemin and oligosaccharide elicitors. P. Natl. Acad Sci. U.S.A.,1997,94:11085-11089.
    Takahashi H, Kanayama Y, Zheng MS, et al. Antagonistic interactions between the SAand JA signaling pathways in Arabidopsis modulate expression of defense genes and gene-for-gene resistance to cucumber mosaic virus. Plant Cell Physiol.,2004,45 (6):803-809.
    Takahashi M, Goto C, Ishikawa K, et al. Rice stripe virus 23.9 k protein aggregates and forms inclusion bodies in cultured insect cells and virus-infected plant cells. Arch. Virol.,2003,148:2167-2179.
    Tebayashi S, Horibata Y, Mikagi E, et al. Induction of resistance against the leafminer, Liriomyza trifolii, by jasmonic acid in sweet pepper. Biosci. Biotechnol. Biochem.,2007,71:1521-1526.
    Teixeira L, Ferreira A, Ashburner M. The bacterial symbiont Wolbachia induces resistance to RNA viral infections in Drosophila melanogaster. Plos Biol.,2008,16:e1000002.
    Teng X, Wan FH, Chu D. Bemisia tabaci biotype Q dominates other biotypes across China. Fla Entomol.,2010,93:363-368.
    Thaler JS, Humphrey PT, Whiteman NK. Evolution of jasmonate and salicylate signal crosstalk. Trends Plant Sci.,2012,17:260-270.
    Thaler JS, Stout MJ, Karban R, et al. Jasmonate-mediated induced plant resistance affects a community of herbivores. Ecol. Entomol.,2001,26:312-324.
    Thaler JS. Jasmonate-inducible plant defences cause increased parasitism of herbivores. Nature,1999, 399:686-688.
    Thatcher LF, Manners JM, Kazan K. Fusarium oxysporum hijacks COI1-mediated jasmonate signaling to promote disease development in Arabidopsis. Plant J.,2009,58:927-939.
    Tian T, Rubio L, Yeh HH, et al. Lettuce infectious yellows virus:in vitro acquisition analysis using partially purified virions and the whitefly Bemisia tabaci. J. Gen. Virol.,1999,80:1111-1117.
    Toriyama S, Takahashi M, Sano Y, et al. Nucleotide sequence of RNA1, the largest genomic segment of rice stripe virus, the prototype of the tenuiviruses. J. Gen. Virol.,1994,75:3569-3679.
    Turner JG,Ellis C, Devoto A.The jasmonate signal pathway. Plant Cell,2002,14:S153-S164.
    Uzest M, Gargani D, Dombrovsky A, et al. The "acrostyle":a newly described anatomical structure in aphid stylets. Arthropod Struc. Dev.,2010,39:221-229.
    Uzest M, Gargani D, Drucker M, et al. A protein key to plant virus transmission at the tip of the insect vector stylet. P. Natl. Acad. Sci. U.S.A.,2007,104 (46):17959-17964.
    Van den Heuvel JFJM,Verbeek M, van der Wilk F. Endosymbiotic bacteria associated with circulative transmission of potato leafroll virus by Myzus persicae. J. Gen. Virol.,1994,75:2559-2565.
    Van Zandt PA, Agrawal AA Specificity of induced plant responses to specialist herbivores of the common milkweed Asclepias syriaca. Oikos,2004,104:401-409.
    Wan FH, Zhang GF, Liu SS, et al. Invasive mechanism and management strategy of Bemisia tabaci (Gennadius) biotype B:progress report of 973 Program on invasive alien species in China. Sci. China Ser. C.,2009,52:88-95.
    Wang J, Zhao H, Liu J, et al. Low frequency of horizontal and vertical transmission of two begomoviruses through whiteflies exhibits little relevance to the vector infectivity. Ann. Appl. Biol., 2010,157:125-133.
    Wang MB, Abbott DC, Waterhouse PM. A single copy of a virus-derived transgene encoding hairpin RNA gives immunity to barely yellow dwarf virus. Mol. Plant Pathol.,2000, (1):347-356.
    Wu JB, Dai FM, Zhou XP. First report of tomato yellow leaf curl virus in China. Ann. Appl. Biol.,2006, 155:439-448.
    Wu XX, Li ZX, Hu DX, et al. Identification of Chinese populations of Bemisia tabaci (Gennadius) by analysing ribosomal ITS1 sequence. Prog. Nat. Sci.,2003,13:276-281.
    Xiong RY, Wu JX, Zhou YJ, et al. Characterization and subcellular localization of an RNA silencing suppressor encoded by rice stripe tenuivirus. Virology,2009,387:29-40.
    Xu J, De Barro PJ, Liu SS. Reproductive incompatibility among genetic groups of Bemisia tabaci supports the proposition that the whitefly is a cryptic species complex. B. Entomol. Res.,2010,100: 359-366.
    Yan LH, Zhai QZ, Wei JN, et al. Role of tomato lipoxygenase D in wound-induced jasmonate biosynthesis and plant immunity to insect herbivores. PLoS Genet.,2013,9:e1003964.
    Zarate SI, Kempema LA, Walling LL. Silverleaf whitefly induces salicylic acid defenses and suppresses effectual jasmonic acid defenses. Plant Physiol.,2007,143:866-875.
    Zhang LP, Zhang YJ, Zhang WJ, et al. Analysis of genetic diversity among different geographical populations and determination of biotypes of Bemisia tabaci in China. J. Appl. Entomol.,2005,129: 121-128.
    Zhang PJ, Li WD, Huang F, et al. Feeding by whiteflies suppresses downstream jasmonic acid signaling by eliciting salicylic acid signaling. J. Chem. Ecol.,2013,39:612-619.
    Zhang T, Luan JB, Qi JF, et al. Begomovirus-whitefly mutualism is achieved through repression of plant defences by a virus pathogenicity factor. Mol. Ecol.,2012,21:1294-1304.
    Zhao Y, Thilmony R, Bender CL, et al. Virulence systems of Pseudomonas syringae pv. tomato promote bacterial speck disease in tomato by targeting the jasmonate signaling pathway. Plant J.,2003,36: 485-949.
    Zhu Y, Hayakawa T, Toriyama S, et al. Complete nucleotide sequence of RNA3 of rice stripe virus:an ambisense coding strategy. J. Gen. Virol.,1991,72 (4):763-767.
    Zhu Y, Hayakawa T, Toriyama S. Complete nucleotide sequence of RNA4 of rice stripe virus isolate T, and comparison with another isolate and with maize stripe virus. J. Gen. Virol.,1992,73 (5): 1309-1312.
    陈连根.烟粉虱在园林植物上为害及其形态变异.上海农学院学报,1997,15:186-189.
    季英华,熊如意,程兆榜,等.江苏省番茄黄化曲叶病的病原分子诊断.园艺学报,2008,35: 1815-1818.
    罗晨,姚远,王戎疆,等.利用mtDNACO1基因序列鉴定我国烟粉虱的生物型.昆虫学报,2002,45:759-763.
    孙作文,进绪,张美珍,等.山东省番茄黄化曲叶病毒病的发生及其防治.中国蔬菜,2009 21:5-6.
    徐婧.浙江省外来烟粉虱入侵过程及不同生物型烟粉虱生物学特性的比较研究.[浙江大学博士论文].浙江杭州:浙江大学,2009.
    张爱红,张书敏,刘帅,等.2009年河北省番茄黄化曲叶病毒病发生危害和分布.植物保护,2010,36:127-129.
    周涛,师迎春,陈笑瑜,等.北京地区番茄黄化曲叶病毒的鉴定及防治对策.植物保护,2010,36:116-118.
    周尧.中国粉虱名录.中国昆虫学,1949,3:1-18.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700