盐生植物(补血草与盐地碱蓬)耐盐基因的发掘及应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
土壤盐渍化是影响农林业生产,导致农林业生物量减少的主要非生物胁迫因子之一。盐分胁迫主要包括渗透胁迫、离子胁迫及其造成的一系列次级胁迫如氧化胁迫等,严重干扰植物体内业已存在的细胞及整株水平上的水分及离子稳态,造成植物细胞分子损伤,生长延滞甚至死亡。植物耐盐基因工程被认为是培育耐盐植物、开发利用盐碱荒地最有效、最经济的手段,但有效目的基因的缺乏,特别是来自盐生植物的耐盐基因,是限制植物耐盐基因工程发展的一大障碍。本论文的主要目的是利用真盐生植物补血草建立EST 数据库,结合盐生植物盐地碱蓬的EST 数据库,发掘来自盐生植物的耐盐基因,并且在林木模式植物杨树遗传转化方面做一些有益的尝试。
    1. 补血草(Limonium sinense)EST数据库的构建
    构建了一个补血草叶片的cDNA 文库,并从中随机挑选克隆单向测序,获得了1162 个EST序列,其中405 个EST序列与以前鉴定的基因序列具有很高的同源性。通过序列分析,鉴定了739 个独立的EST 序列,其中194 个序列与以前鉴定的基因具有同源性。所有的EST数据都将公布在GeneBank 的dbEST中。耐胁迫调控基因的EST划分为7 个主要的类别,占EST总数的3.4 %。
    2. 盐地碱蓬(Suaeda salsa)液泡膜焦磷酸酶基因的克隆与鉴定
    从400mmol/L NaCl处理的盐地碱蓬地上部分构建的λZap-cDNA文库中克隆了编码液泡膜H~+-PPase 的部分cDNA(SsVP),据已知序列设计引物利用PCR方法获得编码盐地碱蓬液泡膜H~+-PPase 的全长cDNA。对该基因的序列特征、基因组结构和在盐胁迫下的表达特性做了详细的分析。结果表明:SsVP 与已报道的红叶藜(Chenopodium rubrum)的液泡膜H~+-PPase 基因(CVP)同源性最高,Clustalx 软件对不同物种中液泡膜H~+-PPase 基因所作的系统进化分析表明SsVP与CVP 聚为一簇,均属于类型Ⅰ类液泡膜H~+-PPase;Southern杂交表明该基因在盐地碱蓬基因组中可能是多拷贝的;Northern杂交结果表明在盐胁迫和干旱胁迫下SsVP 的转录都是上行调节的,400mmol NaCl处理和干旱处理下,盐地碱蓬地上部分中SsVP 的mRNA增加。
    将SsVP 的全长cDNA克隆入植物表达载体pCAMBIA1300 中,导入根瘤农杆菌GV3101后,由花浸泡法进行拟南芥遗传转化,转化SsVP 的拟南芥在含潮
Soil salinity is one of the major stress factors limiting the growth and productivity of crop and forest plants in agricultural and forestry fields. Salt stress consisting of osmotic and ionic stress,and then the secondary stress such as oxidative stress arising by them, can disrupt homeostasis in water potential and ion distribution. This disorder of homeostasis occurs at both the cellular and the whole plant levels. Drastic changes in ion and water homeostasis lead to molecular damage, growth inhibition and even death. Plant salt-tolerant genetic engineering was considered as the most effective and economical means to bring up salt-tolerant plants and to exploit salt wasteland. The lack of efficient genes, salt-tolerant genes specially coming from halophytes has been the obstacle to limit its development. The main objectives of the dissertation were to set up a cDNA library of halophyte Limonium sinense and to exploit new efficient genes, combining the cDNA library of Suaeda salsa, for some benefit attempts in forest model plant poplar salt-tolerant genetic engineering.
    1. Construction of EST Database from Limonium sinense
    We constructed a cDNA library of Limonium sinense leaves and sequenced randomly selected clones. 1162 ESTs were generated. Among them, 405 ESTs had significantly homology to previously identified genes. By sequence analysis, 739 unique clones were identified and 194 of them showed homology to previous identified genes. All our EST Data will be submitted to dbEST in GenBank and will be available on the internet. At least 7 classes of genes were related to the stress tolerance, which accounted for about 3.4 % of total sequenced ESTs.
    2. Molecular Cloning and Function Characterization of SsVP gene in Suaeda salsa
    We isolated one cDNA that may encode a vacuolar H~+-PPase (SsVP) from a λZap-cDNA library constructed from a 400 mmol/L NaCl-treated Suaeda salsa aerial tissue. We analyzed its sequence characterization, genomic structure and transcription level under salinity stress. The results indicated that SsVP showed the highest homology to the vacuolar H+-PPase (CVP) gene from Chenopodium rubrum and
    phylogenetic analysis indicated that SsVP and CVP share a cluster, which showed that they might be more similar in evolution. Southern blot analysis showed that there was more than one copy of SsVP in the Suaeda salsa genome. Northern blot analysis indicated that the transcription levels of SsVP in S. salsa aerial tissue were significantly increased after salt and drought stress. The expression levels of SsVP in S. salsa aerial tissue were significantly increased after 48h being treated with 400mmol/L NaCl and after 9 days being treated with drought. Then the SsVP ORF was integrated into the plant expression vector pCAMBIA1300. The integrated vector was introduced into Arabidopsis thaliana by in planta transformation method mediated by Agrobacterium tumefaciens GV3101. SsVP transformations were continuously screened on media with hygromycin (25mg/L). We obtained 14 homozygous T3 transgenic SsVP gene transformants. We selected two homozygous transgenic SsVP gene lines, named SsVP-1 and SsVP-2, which were used for molecular and physiological analysis. The activities of both the V-ATPase and the V-PPase in the SsVP transgenic line, SsVP-2, increased significantly compared with those in wild-type plant under NaCl and drought treatments. The results showed the increase of the H+ electrochemical gradient across the vacuolar membrane, which permit the secondary active transport of Na+ and other solute molecules, by up-regulation of the V-ATPase and the V-PPase activities. The net increase in the concentration of solutes in the cell must lead to an increase in the uptake of water and the retention of water under water deprivation condition, which make transgenic plants maintain turgor. The Arabidopsis plants overexpressing SsVP showed a tendency to accumulate more Na+ under saline condition than wild type plants. The increased accumulation of sodium is likely to be a consequence of the activity of the vacuolar secondary transports. The relative water content was higher in the transgenic plants in comparison with that of controls. The transgenic plants increase salt tolerance and drought tolerance. 3. Studies on transforming poplar by SsNHX1 gene SsNHX1 was heterogenously expressed in poplar and the transformants in different concentrations of salt was testified by molecular approaches. The results of the RT-PCR and the Northern blotting analysis showed the extraneous gene had been integrated into poplar genome. No visible differences were observed in growth and development between the poplar transformants and the wild-type plants in the absence of NaCl stress conditions, which indicated that the insertion and overexpression of
    SsNHX1 had no effect on the normal growth of Populus plants. However, transgenic poplar plants exhibited improved salt adaptability in comparison with their non-transformed counterparts in the presence of salt stress. The overexpression of extraneous gene SsNHX1 can increase relative water content, accumulate less Na+ and more K+, maintain a high cytosolic K+/Na+ ratio and photosynthetic rate (Pn), increase the content of proline and then reduce the osmotic potential and MDA in the transgenic poplar compared with wild-type poplar under different concentrations of NaCl treatment. These results indicated that transgenic Populus plants overexpressing SsNHX1 had higher salt tolerance than wild type plants, which further indicated the importance of Na+ compartmentation in plant salt tolerance. This lay a fundation for breeding new varieties in salt tolerance of forest plants by plant genetic engineering. The innovations of this thesis can be summarized as follows: 1. We constructed a cDNA library of the halophyte Limonium sinense and analysed different expression of genes. It plays a key role in exploiting salt-tolerant genes of the halophytes. 2. It was the first time to clone and characterize the full cDNA coding vacuolar membrane H+-pyrophosphatase from the cDNA library of Suaeda salsa. We have constructed a plant expression vector with SsVP gene and integrated it into Arabidopsis by Agrobacterium tumefaciens. We also studied particularly the expression of Suaeda salsa SsVP under salt and drought stresses. 3. For the first time, the Suaeda salsa vacuolar Na+/H+ antiporter gene-SsNHX1 was heterogenously expressed in poplar, and the salt tolerance of the transgenic poplars was analyzed,which lay a fundation for breeding new varieties in salt tolerance of forest plants.
引文
[1] Boyer, JS. Plant Productivity And Environment. Science,1982,218, 443-448.
    [2] Tester M and Davenport R. Na+ tolerance and Na+ transport in higher plants. Ann Bot, 2003, 91(5): 503-507
    [3] 王遵亲.中国盐碱土. 北京:科学出版社,1993.
    [4] 赵可夫,李法曾主编,中国盐生物植物,北京:科学出版社,1999.
    [5] Blumwald E,Grover A and Allen G. Good. Breeding for abiotic stress resistance: challenges and opportunities. Proceedings of the 4th international crop science congress, 26 sep-1 oct 2004, Brisbane, Australia.
    [6] Shono M, Wada M, Hara Y, et al. Molecular cloning of Na+-ATPase cDNA from a marine alga, Heterosigma akashiwo. Biochim Biophys Acta, 2001, 1511: 193-199.
    [7] Niu X, Bressan RA, Hasegawa PM, Pardo JM. Ion homeostasis in NaCl stress environment. Plant Physiol, 1995, 109: 735-742.
    [8] Xiong L, Zhu JK, (2002). Molecular and genetic aspects of plant responses to osmotic stress. Plant. Cell Environ, 2002, 25: 131-139.
    [9] Hasegawa PM, Bressan RA, Zhu JK, Bohnert HJ. Plant cellular and molecular responses to high salinity. Annu Rev Plant Physiol Plant Mol Biol, 2001, 51: 463-499.
    [10] Hasegawa PM, Bressan RA, Zhu JK, Bohnert HJ. Plant cellular and molecular responses to high salinity. Annu Rev Plant Physiol Plant Mol Biol, 2001, 51: 463-499.
    [11] Yeo AR. Molecular biology of salt tolerance in the context of whole-plant physiology. J Exp Bot, 1998, 49: 915-929.
    [12] Bohnert HJ., Shen Bo. Transformation and compatible solutes. Scientia Hortic, 1999, 78: 237-260.
    [13] McCue KF., Hanson AD. Drought and salt tolerance: towards understanding and application. Biotechnology, 1990, 8: 358-362.
    [14] Nuccio ML, Rhodes D, McNeil SD, Hanson AD. Metabolic engineering of plants for osmotic stress resistance. Curr Opin Plant Biol, 1999, 2: 128-134.
    [15] Epstein E, Norlyn JD, Rush DW, Kingsbury R, Kelley DB, Wrana AF. Saline culture of crops: a genetic approach. Science, 1980, 210, 399–404.
    [16] Sharma K.K., Development and deployment of transgenic plants: Biosafety considerations. In Vitro Cell. Dev. Biol. -Plant., 2002, 86: 1~11.
    [17] Lyon C. Responses of two species of tomatoes and the F1 generation to sodium sulphate in the nutrient medium. Bot. Gazette, 1941, 103, 107–122.
    [18] Tal M, Shannon MC. Salt tolerance in two wild relatives of the cultivated tomato: Responses of Lycopersican esculentum, L. cheesmani, L. peruvianum, Solanum pennelli, and F1 hybrids of high salinity. Aust. J. Plant Physiol, 1983, 10, 109–117.
    [19] Saranga Y, Zamir D, Marani A, Rudich J. Breeding tomatoes for salt tolerance—field-evaluation of Lycopersicon germplasm for yield and dry-matter production. J.Amer. Soc. Hort. Sci, 1991, 116, 1067–1071.
    [20] Akbar M, Yabuno T. Breeding saline-resistant varieties of rice. IV. Inheritance of delayed type panicle sterility induced by salinity. Jap. J. Breeding, 1977, 27, 237–240.
    [21] Akbar M, Yabuno T, Nakao S. Breeding for saline-resistant varieties of rice. I. Variability for salt tolerance among some rice varieties. Jap. J. Breeding, 1972, 22, 277–284.
    [22] Moeljopawiro S, Ikehashi H. Inheritance of salt resistance in rice. Euphytica, 1981, 30, 291–300.
    [23] Akbar M, Khush GS, Hille R, Lambers D. Genetics of salt tolerance in rice. In: Proceedings of the international rice genetics symposium, IRRI, 1986, 399–409.
    [24] Subbarao GV, Johansen C, Kumar Rao JVDK, Jana MK. Salinity tolerance in F1 hybrids of pigeonpea and a tolerant wild relative. Crop Sci, 1990, 30, 785–788.
    [25] Azhar FM, McNeilly T. The genetic basis for salt tolerance in Sorghum bicolor (L) Moench seedlings. Plant Breeding, 1988, 101, 114–121.
    [26] 黎裕,贾继增,王天宇.生物技术通报,1999,4,P19-22.
    [27] Hittalmani S, Shahidhar HE, Bagali PG, Huang N, Sidhu JS, Singh VP, Khush GS. Molecular mapping of quantitative trait loci for plant growth, yield and yield related traits across diverse locations in a doubled haploid rice population. Euphytica, 2002, 125, 207-214.
    [28] Dudley JW. Molecular markers in plant improvement: manipulation of genes affecting quantitative traits. Crop Sci, 1993, 33, 660-668.
    [29] Breto MP, Asins MJ, Carbonell EA. Salt tolerance in Lycopersicon species. 3. Detection of quantitative trait loci by means of molecular markers. Theor. Appl. Genet. 1994, 88, 395–401.
    [30] Monforte AJ, Asins MJ, Carbonell EA. Salt tolerance in Lycopersicon species. V. Does genetic variability at quantitative trait loci affect their analysis? Theo. Appl. Genet. 1997a, 95, 284–293.
    [31] Monforte AJ, Asins MJ, Carbonell EA. Salt tolerance in Lycopersicon species. VI. Genotype-bysalinity interaction in quantitative trait loci detection: constitutive and response QTLs. Theor. Appl. Genet. 1997b, 95, 706–713.
    [32] Foolad MR, Lin GY, Chen FQ. Comparison of QTLs for seed germination under non-stress, cold stress and salt stress in tomato. Plant Breeding, 1999,118, 167–173.
    [33] Tozlu I, Guy CL, Moore GA. QTL analysis of morphological traits in an intergeneric BC1 progeny of Citrus and Poncirus under saline and non-saline environments. Genome, 1999a, 42, 1020–1029.
    [34] Gong JM, He P, Qian QA, Shen LS, Zhu LH, Chen SY. Identification of salt-tolerance QTL in rice (Oryza sativa L.). Chinese Sci. Bull. 1999, 44, 68–71.
    [35] Gong JM, Zheng XW, Du BX, Quian Q, Chen SY, Zhu LH, He P. Comparative study of QTLs foragronomic traits of rice (Oryza sativa L.) between salt stress and non-stress environment. Science in China (Series C), 2001,44, 73–82.
    [36] Quesada V, Garcia-Martinez S, Piqueras P, Ponce MR, Micol JL. Genetic architecture of NaCl tolerance in Arabidopsis. Plant Physiol. 2002, 130, 951–963.
    [37] Mano Y, Takeda K. Mapping quantitative trait loci for salt tolerance at germination and the seedling stage in barley (Hordeum vulgare L.). Euphytica, 1997, 94, 263–272.
    [38] Tozlu I, Guy CL, Moore GA. QTL analysis of Na and Cl accumulation related traits in an intergeneric BC1 progeny of Citrus and Poncirus under saline and non saline environments. Genome, 1999b, 42, 692–705.
    [39] Koyama ML, Levesley A, Koebner RMD, Flowers TJ, Yeo AR. Quantitative trait loci for component physiological traits determining salt tolerance in rice. Plant Physiol. 2001, 125, 406–422.
    [40] Cattivell L, Baldi P, Crosatti C, et al. Chromosome regions and stress-related sequences involved in resistance to abiotic stress in Triticeae. Plant Mol Biol. 2002, 48(5-6):649-65.
    [41] Foolad MR, Zhang LP, Lin GY. Identification and validation of QTLs for salt tolerance during vegetative growth in tomato by selective genotyping. Genome. 2001, 44(3):444-54.
    [42] Tarczynski MC, Jensen RG and Bohnert HJ. Stress protection in transgenic tobacco producing a putative osmoprptectant mannitol. Science.1993, 259:508-510.
    [43] 刘岩. 玉米耐盐基因工程. 中国农业大学博士学位论文,1997.
    [44] Pilon-Simits EAH, Terry N, Sears T, et al. Trehalose-producing transgenic tobacco plants show improved growth performance under drought stress. J. Plant Physiol. 1998, 152:525-532.
    [45] Kaui kishor P. B., Hang Z., Miao G-H, Hu C-AA, Verma D. P. S., Overexpression of ?’-pyrroline-5-carboxylate synthetase increases proline production and confers osmotolerance in transgenic plants. Plant Physiol. 1995, 108: 1387-94.
    [46] Hayashi H., Alia Mustardy L., Deshnium P., Ide M., Murata N., Transformation of Arabidopsis thaliana with the code gene for chloine oxidase; accumulation of glycinebetaine and enhanced tolerance to salt and cold stress. Plant J. 1997, 12: 133-42.
    [47] Apse M. P., Aharon G. S., Snedden W. A., Blumwald E., Salt tolerance conferred by overexpression of a vacuolar Na+/H+ antiport in Arabidopsis. Science 1999, 285: 1256-58.
    [48] Zhang, H.X. And Blumwald, E. Transgenic salt-tolerant tomato plants accumulate salt in foliage but not in fruit. Nature Biotechnol. 2001, 19, 765-768.
    [49] Zhang HX, Hodson JN, Williams JP, Blumwald E. Engineering salt-tolerant Brassica plants: Characterization of yield and seed oil quality in transgenic plants with increased vacuolar sodium accumulation. Proc. Natl Acad. Sci.USA, 2001, 98, 6896-6901.
    [50] Fire, A., Xu, S.-Q., Montgomery, M.K., Kostas, S.A., Driver, S.E. and Mello, C.C. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature, 1998, 391:806–811.
    [51] Fagard, M., Boutet, S., Morel, J.-B., Bellini, C. and Vaucheret, H. AGO1, QDE-2, and RDE-1 are related proteins required for post-transcriptional gene silencing in plants, quelling in fungi, and RNA interference in animals. Proc Natl Acad Sci USA, 2000, 97:11650–11654.
    [52] Ming-Bo Wang and Peter M Waterhouse. Application of gene silence in plants Current opinion in Plant Biology, 2001, 5:146-150.
    [53] Meins F Jr: RNA degradation and models for post-transcriptional gene silencing. Plant Mol Biol, 2000, 43:261-273.
    [54] Waterhouse PM, Smith NA, Wang MB: Virus resistance and gene silencing: killing the messenger. Trends Plant Sci, 1999, 4:452-457.
    [55] Cogoni, C. and Macino, G. Gene silencing in Neurospora crassa requires a protein homologous to RNA-dependent RNA polymerase. Nature, 1999, 399:166–169.
    [56] Catalanotto, C., Azzalin, G., Macino, G. and Cogoni, C. Gene silencing in worms and fungi. Nature, 2000, 404:245.
    [57] Dalmay, T., Hamilton, A., Rudd, S., Angell, S. and Baulcombe, D.C. An RNA-dependent RNA polymerase gene in Arabidopsis is required for posttranscriptional gene silencing mediated by a transgene but not by a virus. Cell, 2000, 101:543–553.
    [58] Dalmay, T., Horsefield, R., Braunstein, T.H. and Baulcombe, D.C. SDE3 encodes an RNA helicase required for posttranscriptional gene silencing in Arabidopsis. EMBO J, 2001, 20:2069–2078.
    [59] Hammond, S.M., Bernstein, E., Beach, D. and Hannon, G.J. An RNA-directed nuclease mediates post-transcriptional gene silencing in Drosophila cells. Nature, 2000, 404:293–296.
    [60] Smardon, A., Spoerke, J.M., Stacey, S.C., Klein, M.E., Mackin, N. and Maine, E.M. EGO-1 is related to RNA-directed RNA polymerase and functions in germ-line development and RNA interference in C. elegans. Curr Biol, 2000, 10:169–178.
    [61] Bernstein, E., Caudy, A.A., Hammond, S.M. and Hannon, G.J. Role for a bidentate ribonuclease in the initiation step of RNA interference. Nature, 2001, 409:363–366.
    [62] Knight, S.W. and Bass, B.L. A role for the RNase III enzyme DCR-1 in RNA interference and germ line development in Caenorhabditis elegans. Science, 2001, 293:2269–2271.
    [63] Martinez, J., Patkaniowska, A., Urlaub, H., Lührmann, R. and Tuschl, T. Single-stranded antisense siRNAs guide target RNA cleavage in RNAi. Cell, 2002, 110:563–574.
    [64] Hutvágner, G. and Zamore, P.D. RNAi: nature abhors a double-strand. Curr Opin Genet Dev, 2002, 12:225–232.
    [65] Hamilton, A.J. and Baulcombe, D.C. A species of small antisense RNA in posttranscriptional gene silencing in plants. Science, 1999, 286:950–952.
    [66] Matzke, M., Matzke, A.J.M. and Kooter, J.M. RNA: guiding gene silencing. Science, 2001, 293:1080–1083.
    [67] Hannon, G.J. RNA interference. Nature, 2002, 418:244–251.
    [68] Mourrain, P., Béclin, C., Elmayan, T., Feuerbach, F., Godon, C., Morel, J.-B., Jouette, D., Lacombe, A.-M., Nikic, S., Picault, N., Rémoué, K., Sanial, M., Vo, T.-A. and Vaucheret, H. Arabidopsis SGS2 and SGS3 genes are required for posttranscriptional gene silencing and natural virus resistance. Cell ,2000, 101:533–542.
    [69] Waterhouse, P.M., Wang, M.-B. and Lough, T. Gene silencing as an adaptive defence against viruses. Nature, 2001b, 411:834–842.
    [70] Baulcombe, D. RNA silencing. Curr Biol, 2002, 12:R82–R84.
    [71] McConnell, J.R., Emery, J., Eshed, Y., Bao, N., Bowman, J. and Barton, M.K. Role of PHABULOSA and PHAVOLUTA in determining radial patterning in shoots. Nature, 2001, 411:709–713.
    [72] Park, W., Li, J., Song, R., Messing, J. and Chen, X. CARPEL FACTORY, a Dicer homolog, and HEN1, a novel protein, act in microRNA metabolism in Arabidopsis thaliana. Curr Biol, 2002, 12:1484–1495.
    [73] Schauer, S.E., Jacobsen, S.E., Meinke, D.W. and Ray, A. DICER-LIKE1: blind men and elephants in Arabidopsis development. Trends Plant Sci. 2002, 7(11):487-491.
    [74] Finnegan, E.J., Margis, R. and Waterhouse, P.M. Posttranscriptional gene silencing is not compromised in the Arabidopsis CARPEL FACTORY (DICER-LIKE1) mutant, a homolog of Dicer-1 from Drosophila. Curr Biol, 2003, 13:236–240.
    [75] Palatnik, J.F., Allen, E., Wu, X., Schommer, C., Schwab, R., Carrington, J.C. and Weigel, D. Control of leaf morphogenesis by microRNAs. Nature, 2003, 425:257–263.
    [76] Tang, G., Reinhart, B.J., Bartel, D.P. and Zamore, P.D. A biochemical framework for RNA silencing in plants. Gene Dev, 2003, 17:49–63.
    [77] Waterhouse, P.M. and Helliwell, C.A. Exploring plant genomes by RNA-induced gene silencing. Nat Rev Genet, 2003, 4:29–38.
    [78] Munns, R. and Termaat, A. Whole plant responses to salinity. Australian Journal of Plant Physiology, 1986, 13, 143-160.
    [79] Munns, R., Fisher, D.B. and Tonnet, M.L. Na+ and Cl-transport in the phloem from leaves of NaCl-treated barley. Australian Journal of Plant Physiology, 1986, 13, 757-766.
    [80] Munns, R. Comparative physiology of salt and water stress. Plant, Cell and Environment, 2002, 25, 239-250.
    [81] Munns R, Gardner A, Tonnet ML and Rawson HM. Growth and development in NaCl-treated. Ⅱ. Do Na+ or Cl-concentrations individing or expanding tissues determine growth in barley? Aust J Plant Physiol.1988,15:529~540.
    [82] Hasegawa PM, Bressan RA, Handa AK. Growth characteristics of NaCl-selected and nonselected cells of Nicotian tabacum L. Plant cell Physiol. 1980, 21:1347~1355.
    [83] Bernstein N, Silk WK, Lauchli A. Growth and development of sorghum leaves under conditions of NaCl stress. Planta,1993,191:433~439.
    [84] Grieve CM, Lesch SM, Maas EV, Francois LE. Leaf and spikelet primordial intiaion in salt-stressed wheat. Crop Sci.1993,33:1286~1292.
    [85] Maas EV, Grieve CM. Spike and leaf development in salt-stressed wheat. Crop Sci.1990,30:1309~1313.
    [86] Grieve CM, Francois LE, Maas EV. Salinity affects the timing of phasic development in spring wheat. Crop Sci.1994,34:1544~1549.
    [87] Muller M, Santarius KA. Changes in chloroplast membrane lipids during adaptation of barley to extreme salinity. Plant Physiol. 1978, 62:326~333.
    [88] Strognov BP. Structure and function of plant cell in saline habitats. Halsted press. New York, 1973.
    [89] Maslenkorra LT. Adaptation to salinity asmonitored by PSⅡoxygen evolving reactions in barley thylakoids. J Plant Physiol. 1993, 142:629~634.
    [90] Rao GG, Rao GR. Pigment composition and chlorophyyase activity in pigment pea and Gingelley under NaCl salinity. Indian J Exp Biol. 1986, 19:768~770.
    [91] 朱新广,张其德. NaCl对光合作用影响的研究进展. 植物学通报. 1999,16(4):332~338.
    [92] Flowers TJ, Yeo AR. Solute Transportin Plants[M]. Glasgow, Scotland: Blackie, 1992,176.
    [93] Palmgren M. G., Harper J. F. Pumping with plant P-type ATPase. J. Exp. Bot. 1999, 50: 883-93.
    [94] Luttge U., Ratajczak R. The physiology, biochemistry, and molecular biology, biochemistry, and molecular biology of the plant vacuolar ATPase. Adv. Bot.Res.1997, 25: 253-96.
    [95] Morsomme P, et al. Mutagenic study of the structure, function and biogenesis of the yeast plasma membrane H~+-ATPase. Biochim Biophys Acta, 2000, 1469: 133.
    [96] Arango M, Gevaudant F, Oufattole M, Boutry M. The plasma membrane proton pump ATPase: the significance of gene subfamilies. Planta. 2003, 216(3): 355-365.
    [97] Vitart V, et al. Evidence for a role in growth and salt resistance of a plasma membrane H~+-ATPase in the root endodermis. Plant J, 2001, 27: 191.
    [98] Dietz K J, Tavakoli N, Kluge C, et al. Significance of the V-ATPase for the adaptation to stressful growth conditions and its regulation on the molecular and biochemical level. J Experimental Botany, 2001, 52: 1969-1980
    [99] Fischer-Schliebs E, Ball E, Berndt E,et al. Differential immunological cross-reactions with antisera against the V-ATPase of Kalanchoe daigremontiana reveal structural differences of V-ATPase subunits of different plant species. Biol Chem, 1997, 378(10):1131-9.
    [100] Roberto A. Gaxiola, Gerald R. Fink, and Kendal D. Hirschi. Genetic Manipulation of Vacuolar Proton Pumps and Transporters. Plant Physiol, 2002, 129:967-973.
    [101] Wang BS, Ulrich lutgge and Rafael Ratajczak. Effects of salt treatment and osmotic stress on V-ATPase and V-PPase in leaves of the halophyte Suaeda salda. J. Exp. Bot. 2000,
    52(365):2355-2365
    [102] Niu X, Damsz B, Kononowicz AK, et al. NaCl-Induced Alterations in Both Cell Structure and Tissue-Specific Plasma Membrane H+ -ATPase Gene Expression. Plant Physiol. 1996, 111(3):679-686.
    [103] Barkla BJ, Zingarelli L, Blumwald E, Smith J. Tonoplast Na+/H+ Antiport Activity and Its Energization by the Vacuolar H+-ATPase in the Halophytic Plant Mesembryanthemum crystallinum L. Plant Physiol. 1995, 109(2):549-556.
    [104] Tetsuro Mimura, Mariko Kura-Hotta. et al. Rapid increase of vacuolar volume in response to salt stress. Planta ,2003, 216: 397–402.
    [105] Rea PA, Poole RJ. Chromatographic resolution of H+ -translocating pyrophosphatase from .H~+ -translocating ATPases of higher plant tonoplast .Plant Physiology,1986,81:126-129
    [106] Nelson N, Taiz L. The evolution of H+-ATPases. Trends in Biochemical Sciences, 1989, 14: 113-116.
    [107] Kluge C, Lahr J, Hanitzsch M, Bolte S, Golldack D, Dietz KJ. New insight into the structure and regulation of the plant vacuolar H+-ATPase. Journal of Bioenergetics and Biomembranes, 2003, 35: 377-388.
    [108] Huss M, Ingenhorst G, Konig S, et al. Concanamycin A, the specific inhibitor of V-ATPases, binds to the V(o) subunit c. J Biol Chem. 2002, 25;277(43):40544-8.
    [109] Bowman EJ, O'Neill FJ, Bowman BJ. Mutations of pma-1, the gene encoding the plasma membrane H+-ATPase of Neurospora crassa, suppress inhibition of growth by concanamycin A, a specific inhibitor of vacuolar ATPases. J Biol Chem. 1997, 6;272(23):14776-86.
    [110] Zhen RG, Kim EJ, Rea PA The molecular and biochemical basis of pyrophosphate-energized proton translocation at the vacuolar membrane. Adv Bot Res, 1997, 25:297–337
    [111] Maeshima M. Vacuolar H+-pyrophosphatase. Biochim Biophys Acta, 2000, 1465: 37-51
    [112] Davies JM, Poole RJ, Rea PA, Sanders D. Potassium transport into vacuoles energized directly by a proton-pumping inorganic pytophosphatase. PNAS USA, 1992, 89: 11701-11705
    [113] Vasekina AV, Yershov PV, Reshetova OS, et al. Vacuolar Na+/H+ antiporter from barley: identification and response to salt stress. Biochemistry (Mosc). 2005, 70(1):100-7.
    [114] Carystinos GD, MacDonald HR, Monroy AF, Dhindsa RS, Poole RJ. Vacuolar H~+-translocating pyrophosphatase is induced by anoxia or chilling in seedlings of rice. Plant Physiol. 1995, 108(2):641-9.
    [115] Fraichard A, Trossat C, Perotti E, Pugin A. Allosteric regulation by Mg2+ of the vacuolar H~+-PPase from Acer pseudoplatanus cells. Ca2+/Mg2+ interactions. Biochimie. 1996:78(4):259-66.
    [116] Carystinos GD, Macdonald HR, Monroy AF, et al. Vacuoles H+-translocating pyrophosphatases is induced by anoxia or chilling in seedlings of rice. Plant Physiol, 1995, 108: 641-649.
    [117] Colombo R, Cerana R. Enhanced activity of tonoplast pyrophosphatase in NaCl-grown cells of Daucus carota. Journal of Plant Physiology, 1993, 142: 226-229.
    [118] Blumwald E, Aharon G S, Apse M P. Sodium transport in plant cells. Biochim Biophys Acia, 2000, 1465: 140-151.
    [119] Rea PA, Poole RJ. Vacuolar H+-translocating pyrophosphatase. Annual Review of Plant Physiology and Plant Molecular Biology, 1993, 44: 157-180.
    [120] Fischer-Schliebs E, Ratajczak R, Weber P et al. Concurrent time-dependent pattern of activities and enzyme protein amounts of V-PPase and V-ATPase in induced (flowering and CAM of tumor) and non-induced plant tissues. Botanica Acta, 111,130-136.
    [121] Gao XH., Ren ZH. , Zhao YX., and Zhang H. Overexpression of SOD2. Increases Salt Tolerance of Arabidopsis. Plant Physiol, 2003, 133:1-9.
    [122] Zhu, J.-K., Liu, J. and Xiong, L.. Genetic analysis of salt tolerance in Arabidopsis: evidence for a critical role of potassium nutrition. Plant Cell, 1998, 10, 1181-1191.
    [123] Blumwald E. Sodium transport and salt tolerance in plants. Curr Opin Cell Biol, 2000, 12: 431-434.
    [124] Amtmann A, Sanders D. Mechanisms of Na+ uptake by plant cells. Adv Bot Res, 1998, 29: 76-112.
    [125] Schachtman, D. P. and Schroeder, J. I.. Structure and transport mechanism of a high-affinity potassium uptake transporter from higher plants. Nature, 1994, 370, 655-658.
    [126] Amtmann, A. and Sanders, D.. Mechanisms of Na+ uptake by plant cells. Advances in Botanical Research, 1999, 29, 75-112.
    [127] Gassmann, W. and Schroeder, J.I.. Inward-rectifying K+ channels in root hairs of wheat. A mechanism for aluminium-sensitive low-affinity K+ uptake and membrane potential control. Plant Physiology, 1994, 105, 1399-1408.
    [128] Davenport, R.J. and Tester, M.. A weakly voltage-dependent, non-selective cation channel mediates toxic sodium influx in wheat. Plant Physiology, 2000, 122, 823-834.
    [129] Tyerman, S.D. and Skerrett, I.M.. Root ion channels and salinity. Science Horticulture, 1999, 78, 175-235.
    [130] Hasegawa, P.M., Bressan, R.A., and Pardo, J.M.. The dawn of plant salt tolerance genetics. Trends in Plant Science, 2000, 5, 317-319.
    [131] Maathuis, F.J.M and Sanders, D.. Sodium uptake in Arabidopsis roots is regulated by cyclic nucleotides. Plant Physiology, 2001, 127, 1617-1625.
    [132] Demidchik, V. and Tester, M.. Sodium fluxes through non-selective cation channels in the plasma membrane of protoplasts from Arabidopsis thaliana roots. Plant Physiology, 2002, 128, 379-387.
    [133] Demidchik, V., Davenport, R.J. and Tester, M.. Nonselective cation channels in plants. Annual Review of Plant Biology, 2002, 53, 67-107.
    [134] Roberts, D.M. and Tyerman, S.D.. Voltage-dependent cation channels Permeable to NH4+, K~+, and Ca~(2+) in the symbiosome membrane of the model legumeLotus japonicus. Plant Physiology, 2002, 128, 370-378.
    [135] White P J. The molecular mechanism of sodium influx to root cells. Trend Plant Sci, 1999, 4: 245-246.
    [136] Yeo, A.R., Yeo, M.E. and Flowers, T.J. The contribution of an apoplastic pathway to sodium uptake by rice roots in saline conditions. Journal of Experimental Botany, 1987, 38, 1141-1153.
    [137] Peterson, C.A.. Exodermal Casparian bands: their significance for ion uptake by roots. Physiologia Plantarum, 1988, 72, 204-208.
    [138] Quintero FJ, Blatt MR, Parda JM. Functional conservation between yeast and plant endosomal Na~+/H~+ antiporters. FEBS Lett, 2000, 471: 224-228.
    [139] Shi H, Ishitani M, Kim C, Zhu JK. The Arabidopsis thaliana salt tolerance gene SOS1 encodes a putative Na~+/H~+ antiporter. PNAS, 2000, 97: 6896-6901.
    [140] Shi H., Quintero F.J., Pardo J.M. and Zhu J. K. The putative plasma membrane Na~+/H~+ antiporter SOS1 controls long distance Na+ transport in plants. Plant Cell, 2002, 14: 465-477.
    [141] Qiu QS, Guo Y, Dietrich MA et al. Regulation of SOS1, a plasma membrane Na~+/H~+ exchanger in Arabidopsis thaliana, by SOS2 and SOS3. Proc Natl Acad SCi USA, 2002, 99:8436~8441.
    [142] Gorham, J., Wyn Jones, R.G. and McDonnel, E.. Some mechanisms of salt tolerance in crop plants. Plant Soil, 1985, 89, 15-40.
    [143] Xiong, L. and Zhu, J.-K. (2002). Salt Tolerance. In: The Arabidopsis Book (Somerville, C.R. and Meyerowitz, E.M., eds.). The American Society of Plant Biologists, Rockville, MD, doi/10.1199/tab.0048. http://www.aspb.org/publications/arabidopsis.
    [144] Gaxiola, R., Li, J., Undurraga, S., Dang, L.M., Allen, G.J., Alper, S.L. and Fink, G.R.. Drought-and salt-tolerant plants result from overexpression of the AVP1 H+ pump. Proc Natl Acad Sci USA, 2001, 98, 11444-11449.
    [145] Nass R, Cunningham KW, Rao R. Intracellular sequestration of sodium by a novel Na+/H+ exchanger in yeast is enhanced by mutations in the plasma membrane H+-ATPase: insights into mechanisms of sodium tolerance. J Biol Chem, 1997, 272: 26145-26152.
    [146] Romola Davenport, Richard A. James, Anna Zakrisson-Plogander, Mark Tester, and Rana Munns. Control of Sodium Transport in Durum Wheat. Plant Physiol, 2005, Vol. 137, 807–818.
    [147] Zhu JK, Liu J, Xiong L. Genetic analysis of salt tolerance in Arabidopsis: evidence for a critical role of potassium nutrition. Plant Cell, 1998, 10: 1181-1191.
    [148] Ko. CH, Gaber RF. TRK1 and TRK2 encodes structurally related potassium ion transporters in Saccharomyces cerevisiae. Mol. Cell. Biol, 1991, 11: 4266-4273
    [149] Geelen D, Lurin C, Bouchez D, Frachisse JM, Lelievre F, Courtial B, Barbier-Brygoo H, Maurel C. Disruption of putative anion channel gene AtCLC-a in Arabidopsis suggests a role in the regulation of nitrate content. Plant J, 2000, 21(3):259-67.
    [150] Czempinski K, Gaedeke N, Zimmermann S, M    [151] Barkla B J and Pantoja O. Physiology of ion transport across the tonoplast of higher plant. Annu Rev Plant Physiol Plant Mol Biol, 1996, 47: 127-157.
    [152] Demarty, M., Morvan, C. and Thellier, M.. Calcium and the cell wall. Plant, Cell and Environment, 1984, 7, 441-448.
    [153] Bush D R, Calcium regulation in plant cell and its role in signaling. Annu. Rev Plant Physiol Plant Mol Biol, 1995, 46: 95-122.
    [154] Epstein, E.. How calcium enhances plant salt tolerance. Science, 1998,208, 1906-1907
    [155] Cramer, G.R.. Sodium-calcium interactions under salinity stress. In: Salinity: Environment -Plants -Molecules, (Lauchli, A. and Lüttge, U., eds.). Kluwer Academic Publishers, The Netherlands, 2002, pp 205-227.
    [156] Sze H, Liang F, Hwang I, et al. Diversity and regulation of plant Ca~(2+) pump: Insights from expression in Yeast. Annu Rev Plant Physiol Plant Mol Biol, 2000, 51: 433-462.
    [157] Bressan, R. A., Hasegawa, P. M. and Pardo, J. M.. Plants use calcium to resolve salt stress. Trends in Plant Science, 1998, 3, 411-412.
    [158] Liu J and Zhu J K. A calcium sensor homolog required for plant salt tolerance. Science, 1998, 280:1943-1945.
    [159] Zhu JK. Genetic analysis of plant salt tolerance using Arabidopsis. Plant physiol, 2000, 124:941~948.
    [160] Shi H, Xiong L, Stevenson B et al. The Arabidopsis salt overly sensitive 4 mutants uncover a critical role for Vitamin B6 in plant salt tolerance. Plant cell, 2002, 14:575~588.
    [161] Shi H, Zhu JK. SOS4, a pyridoxal kinase gene, is required for root hair development in Arabidopsis. Plant Physiol, 2002, 129:585~593.
    [162] Shi H, Kin YS, Guo Y et al. The Arabidopsis SOS5 locus encodes a putative cell surface adhesion protein and is required for normal cell expansion. Plant cell, 2003, 15:19~32.
    [163] Zhu JK. Salt and drought stress signal transduction in plants. Annu Rev Plant Biol, 2002, 53:247~273.
    [164] Liu J, Ishitani M, Halfter U et al. The Arabidopsis thaliana SOS2 gene encodes a protein kinase that is required for salt tolerance. Proc Natl Acad Sci USA, 2000, 97(7):3730~3734.
    [165] Guo Y, Halfter U, Ishitani M et al. Molecular characterization of functional domains in the protein kinase SOS2 that is required for plant salt tolerance. Plant cell, 2001, 13:256~264.
    [166] Ishitani M, Liu J P, Halfter U et al. SOS3 function in plant salt tolerance requires N-myristoylation and calcium binding. Plant cell, 2000, 12:1667~1677.
    [167] Xiong L, Schumaker KS, Zhu JK. Cell signaling during cold, drought, and salt stress. Plant cell, 2002, (supp):S165~S183.
    [168] Gong Z, Koiwa H, Cushman MA et al. Genes that are uniquely stress regulated in salt overly sensitive(sos) mutants. Plant physiol. 2001, 126:363~375.
    [169] Yancey PH, Clark ME, Hand SC et al. Living with water-stress: Evolution of osmolyte system. Science, 1982, 217: 1214-1222.
    [170] Solomon A, Beer S, Waisel Y. Effects of NaCl on the carboxylating activity of Rubisco from Tamarix jordanis in the presence and absence of proline-related compatible solutes. Plant Physiol, 1994, 90: 198-204.
    [171] Smirnoff N. Plant resistance to environmental stress. Curr Opin Biotechnol, 1998, 9: 214-219.
    [172] Galinski E A. Compatible solutes of halophytic eubacterial: molecular principles, water solutes interaction, stress protection. Experientia, 1993, 49: 487-496.
    [173] Marin E, Nussaume L, Quesada A, Gonneau M, Sotta B, et al. Molecular identification of zeaxanthin epoxidase of Nicotiana plumbaginifolia, a gene involved in abscisic acid biosynthesis and corresponding to the ABA locus of Arabidopsis thaliana. EMBO J, 1996, 15: 2331–42.
    [174] Jacob T, Ritchie S, Assmann S M, Gilroy Koornneef M, L′eon-Kloosterziel K M, Schwartz S H, Zeevaart J A D. The genetic and molecular dissection of abscisic acid biosynthesis and signal transduction in Arabidopsis. Plant Physiol. Biochem, 1998, 36: 83–89.
    [175] Llorente F, Oliveros J C, Martinez-Zapater J M, Salinas J. A freezing-sensitive mutant of Arabidopsis, frs1, is a newaba3 allele. Planta, 2000, 211: 648–55.
    [176] Shinozaki K, Yamaguchi-Shinozaki K. Gene expression and signal transduction in water-stress response. Plant Physiol, 1997, 115: 327–34.
    [177] Yamaguchi-Shinozaki K, Shinozaki K. A novel cis-acting element in an Arabidopsis gene is involved in responsiveness to drought, low-temperature, or high-salt stress. Plant Cell, 1994, 6:251–64.
    [178] Xiong L, Ishitani M, Lee H, Zhu J K. The Arabidopsis LOS5/ABA3 locus en-codes a molybdenum cofactor sulfurase and modulates cold and osmotic stress responsive gene expression. Plant Cell, 2001, 13:2063–83.
    [179]Hamal,A., Jouannic,A.S., Leprince,M., Kreis,M., Henry,Y. Molecular characterization and expression of an Arabidopsis thaliana L.MAP kinase kinase cDNA, AtMAP2Ka. Plant Sci.1999, 140: 49-64.
    [180] Liu Y, Zhang S, Klessig DF. Molecular cloning and characterization of a tobacco MAP kinase kinase that interacts with SIPK. Mol Plant Microbe Interact. 2000, 13(1): 118-24.
    [181] Jouannic S, Hamal A, Leprince AS, Tregear JW, Kreis M, Henry Y. Characterisation of novel plant genes encoding MEKK/STE11 and RAF-related protein kinases. Gene. 1999, 229(1-2): 171-81.
    [182] Leprince A, Jouannic S, Hamal A, Kreis M, Henry Y. Molecular characterization of plant cDNAs BnMAP4Kalpha1 and BnMAP4Kalpha2 belonging to the GCK/SPS1 subfamily of MAP kinase kinase kinase kinase. Biochim Biophys Acta. 1999 ,1444(1): 1-13.
    [183] Kultz D. Phylogenetic and functional classification of mitogen-and stress-activated protein kinases. J Mol Evol .1998, 46(5): 571-588.
    [184] Widmann C, Gibson S, Jarpe MB, Johnson GL. Mitogen-activated protein kinase: conservation of a three-kinase module from yeast to human. Physiol Rev, 1999, 79(1): 143-180.
    [185] Munnik T, Ligterink W, Meskiene I,et al. Distinct osmo-sensing protein kinase pathways are involved in signalling moderate and severe hyper-osmotic stress. Plant J. 1999, 20(4): 381-388.
    [186] Kovtun Y, Chiu WL, Tena G, Sheen J. Function analysis of oxidative stress-activated mitogen-activated protein kinase cascade in plants. PNAS, 2000, 97(6): 2940-2945.
    [187] Sheen J. Ca2+ dependent protein kinases and stress signal transduction in plants. Science, 1996, 274: 1900–1902.
    [188] Lee JH, Van Montagu M, Verbruggen N. A highly conserved kinase is an essential component for stress tolerance in yeast and plant cells. PNAS, 1999, 96: 5873-5877.
    [189] Takahashi S, Katagiri T, Hirayama T, et al. Hyperosmotic stress induced a rapid and transient increase in inositol 1,4,5-trisphosphate independent of ab-scisic acid in Arabidopsis cell culture. Plant Cell Physiol, 2001, 42: 214–222.
    [190] DeWald DB, Torabinejad J, Jones CA, et al. Rapid accumulation of phosphatidylinositol 4,5-bisphosphate and inositol 1,4, 5-trisphosphate correlates with calcium mobilization in salt-stressed Arabidopsis. Plant Physiol, 2001, 126:759–769.
    [191] Sanchez J P, Chua N H. Arabidopsis PLC1 is required for secondary responses to abscisic acid signals. Plant Cell, 2001, 13:1143–54.
    [192] Munnik T, Meijer HJG, ter Riet B, Frank W, Bartels D, Musgrave A. Hyper-osmotic stress stimulates phospholipase D activity and elevates the levels of phosphatidic acid and diacylglycerol pyrophosphate. Plant J, 2000, 22:147–54.
    [193] Katagiri T, Takahashi S, Shinozaki K. Involvement of a novel Arabidopsis phospholipase D, AtPLD delta, in dehydration-inducible accumulation of phosphatidic acid in stress signaling. Plant J, 2001, 26:595–605.
    [194] Frank W, Munnik T, Kerkmann K, Salamini F, Bartels D. Water deficit triggers phospholipase D activity in the resurrection plant Craterostigma plantagineum. Plant Cell,
    2000, 12:111–23.
    [195] El Maarouf H, Zuily-Fodil Y, Gareil M, d’Arcy-Lameta A, Pham-Thi AT. Enzymatic activity and gene expression under water stress of phospholipase D in two culitivars of Vigna unguiculata L. Walp. differing in drought tolerance. Plant Mol Biol, 1999, 39:1257–65.
    [196] Munnik T, Meijer H J G. Osmotic stress activates distinct lipid and MAPK signaling pathways in plants. FEBS Lett, 2001, 498:172–78.
    [197] 王关林,方宏筠主编.植物基因工程(第二版).北京:科学出版社,2002,144~149.
    [198] Adams M D, Kelly J M, Gocaync J D, et al. Complementary DNA sequencing:expressed tags and human genome project. Science, 1991,252:1651~56.
    [199] Boguski M S, Lowe M J, Tolstoshev C M. Nature Genet, 1993, 4(4):332~333.
    [200] Kurata N, Nagamura Y, Yamamoto K, et al. A 300 kilobase interval genetic map of rice including 883 expressed sequence. Nat. Genet. 1994, 8(4):365~372.
    [201] Van de Loo Fj, Broum P, Turner S, et al. An oleate 12-hydroxylase from Ricinus communis L. is a fatty acyl desaturase homolog. Proc Natl Acad Sci USA, 1995, 92:6743~6747.
    [202] Crock J, Wildung M, Croteau R. Isolation and bacterial expression of a sesqiuterpene synthase cDNA clone from peppermint(Menththa×Piperita L.) that produces the aphid alarm pheromone(E)-betaq-farnesene. Proc Natl Acad Sci USA, 1997, 94:12833~12838.
    [203] Cato S A, Garder R C, Kent J, et al. A rapid PCR-based method for genetically mapping ESTs. Theor Appl Genet, 2001, 102:296~306.
    [204]Fredrik Sterky, Sharon Regan, Jan Karlsson, et al. Gene discovery in the wood-formation tissues of poplar: Analysis of 5692 expressed sequence tags. Proc Natl Acad Sci USA, 1998, 95:13330~13335.
    [205] Isabel Allona, Michelle Quinn, Elizabeth Shoop, et al. Analysis of xylem formation in pine by cDNA sequencing. Proc Natl Acad Sci USA, 1998, 95:9693~9698.
    [206] Ewing R M, Ben Kahla A, Piorot O, et al. Large-scale statistical analyses of rice ESTs reveal correlated patterns of gene expression. Genome Res, 1999, 9:950~959.
    [207] Scott K D, Eggler P, Seaton G, et al. Analysis of SSRs derived from grape ESTs. Theor Appl Genet, 2001, 100:723~726.
    [208] Allona I, Quinn M, Shoop E, et al. Analysis of xylem formation in pine by cDNA sequencing . Proc Natl Acad Sci USA ,1998 , 95 :9693~9698.
    [209] Johnson A ,Kinlaw C ,Loopstra C ,et al . A genomic approach to wood formation in loblolly pine[R]. Plant, Animal &Microbe Genomes X Conference, San Diego, 2002.
    [210] Sterky F, Regan S ,Karlsson J, et al . Gene discovery in the wood forming tissues of poplar:Analysis of 5692 expressed sequence tags. Proc Natl Acad Sci USA ,1998 ,95 :13330~13335.
    [211] Wullschleger S, Jansson S, Taylor G. Genomics and Forest Biology:Populus emerges as the perennial favorite. Plant Cell ,2002 ,14 :2651~2655.
    [212] Hisada S, Akihama T, Endo T, et al . Expressed sequence tags of citrus fruit during rapid cell development phase. J Amer Soc Hort Sci, 1997, 122 (6) :808~812.
    [213] Hisada S, Moriguchi T, Hidaka T, et al . Random sequencing of Sweet Orange (Citrus sinensis Osheck) cDNA library derived from young seeds. J Japan Hort Sci, 1996 ,65(3) :487~495.
    [214] Gail Taylor. Populus: Arabidopsis for Forestry. Do We Need a Model Tree? Annals of Botany,2002,90:681~689.
    [215] Brunner AM, Busov VB, Strauss SH. Poplar genome sequence: functional genomics in an ecologically dominant plant species. Trends Plant Sci. 2004 9(1):49-56.
    [216] 田颖川,李太元,莽克强. 抗虫转基因欧洲黑杨的培育.生物工程学报,1993,9,291~297.
    [217] 伍宁丰,孙芹,姚斌,等. 抗虫转AaⅠT 基因杨树的获得. 生物工程学报,2000,16(2):129~133.
    [218] 李明亮,张辉,胡建军,等. 转Bt 基因和蛋白酶抑制剂基因杨树抗虫性的研究.林业科学,2000,36(2),93~97.
    [219]. 郝贵霞,朱祯,朱之悌. 豇豆蛋白酶抑制剂基因转化毛白杨的研究. 植物学报,1999,41(12):1276~1282.
    [220] Zhang Qian, Lin Shanzhi, Zhang Zhiyi, Lin Yuanzhen. Test of Insect-resistance of Transgenic Poplar with CpTⅠGene, Forestry Studies in China, 2002, 4(2):27~32.
    [221] Rolando C, Daubresse N, Pollet B, et al. Lignification in poplar plantlets fed with deuterium-labelled lignin precursors. C R Biol. 2004,327(9-10):799~807.
    [222] Brasileiro A. C. M., Tourneur C. and Leple J. C., et al. Expression of the mutant Arabidopsis thaliana acetolactate synthase gene confers chlosulfuron resistance to transgenic poplar plants. Transgenic Res., 1992, 1:133~141.
    [223] De Block M. Factors influencing the tissue culture and the Agrobacterium tumefaciens-mediated transformation of hybrid aspen and poplar clones. Plant Physiol, 1990, 93: 1110~1116.
    [224] Devillard C. Transformation in vitro du tremble (populus tremula×populus alba) par Agrobacterium rhizogenes et regeneration de plantlet tolerates au Basta. C. R. Acad. Sci. Paris ser, 1994, 314:291~298.
    [225] Donahue R. A., Davis T. D. and Michler C. H., et al. Growth, photosynthesis and herbicide tolerance of genetically modified hybrid poplar. Can. J. For. Res, 1994, 24: 2377~2383.
    [226] 杨传平,刘桂丰,梁宏伟,张慧,耐盐基因Bet-A 转化小黑杨的研究. 林业科学,2001, 37(6): 34~37.
    [227] 孙忠序,杨红花,崔得才,赵春芝,赵淑萍. 转抗盐基因八里庄杨组培快繁研究. 生物技术通讯,2002,4: 43~46.
    [228] Parson T J, et al. Transformation of poplar by Agrobacterium tumefaciens. Bio/technology, 1986, 4(6):533~536.
    [229] McCown B. H., McCabe D. E. and Russell D. R., et al. Stable transformation of Populus and incorporation of pest resistance by electric discharge particle acceleration. Plant Cell Reports, 1991, 9:590~594.
    [230] 郑均宝,张玉满,杨文芝等. 741 杨离体叶片再生及抗虫基因转化. 河北农业大学学报,1995,118(3):20~25.
    [231] 郑均宝,梁海永,高宝嘉,等. 转双抗虫基因741 毛白杨的选择及抗虫性. 林业科学,2000,36(2):13~19.
    [232] Massimo Delledonne, Gianni Allegro, Beatrice Belenghi, et al. Transformation of white poplar(populus alba L.) with a novel Arabidopsis thaliana cysteine protinase inhibitor and analysis of insect pest resistance. Molecular Breeding, 2001, 7:35~42.
    [233] 常玉广,刘桂丰,姜静,等.小黑杨抗虫基因的遗传转化[J].东北林业大学,2004,32 (6).
    [234] 杨敏生,高宝嘉,王进茂,等. 转双抗虫基因741 杨基本特性分析. 林业科学,2005,41(1):91~97.
    [235] Gill RI, Ellis BE, Isman MB. Tryptamine-induced resistance in tryptophan decarboxylase transgenic poplar and tobacco plants against their specific herbivores. J Chem Ecol 2003 ,29(4):779~93.
    [236] Wang J, Constabel CP. Polyphenol oxidase overexpression in transgenic Populus enhances resistance to herbivory by forest tent caterpillar (Malacosoma disstria). Planta. 2004 Aug 7.
    [237] Augustin S, Courtin C, Rejasse A, et al. Genetics of resistance to transgenic Bacillus thuringiensis poplars in Chrysomela tremulae (Coleoptera: Chrysomelidae). J Econ Entomol. 2004, 97(3):1058-64.
    [238] 张真,王国辉,张建国等. Bt 转基因杨树对杨树昆虫群落结构的影响. 林业科学,2004,40(2):84~89.
    [239] Nicolescu C, Sandre C, and Jouanin L, et al. Genetic engineering of phenolic metabolism in poplar in relation with resistance against pathogens. Acta. Bot. Gallica, 1996, 143:539~546.
    [240] Zhao SM, Zu GC, Liu GQ, et al. Introduction of rabbit defensin NP-1 gene into poplar (P. tomentosa) by Agrobacterium-mediated transformation. Yi Chuan Xue Bao 1999: 26(6):711~4.
    [241] Liang H, Maynard CA, Allen RD, Powell WA. Increased Septoria musiva resistance in transgenic hybrid poplar leaves expressing a wheat oxalate oxidase gene. Plant Mol Biol, 2001 45(6):619~29.
    [242] Mentag R, Luckevich M, Morency MJ, Seguin A. Bacterial disease resistance of transgenic hybrid poplar expressing the synthetic antimicrobial peptide D4E1. Tree Physiol 2003, 23(6):405~11.
    [243] Moffat A. Moving forest trees into the modern genetics era. Science, 1996, 271:760~761.
    [244] 闫新甫主编,转基因植物,北京:科学出版社,2003,P428.
    [245] Fillatti J. J, Selmer J. and McCown B., et al. Agrobacterium-mediated transformation and regeneration of Populus. Mol. Gen. Genet., 1987, 206:192~199.
    [246] Chupeau M.C., Pautot V. and Chupeau Y. Recovery of transgenic trees after electroporation of poplar protoplasts. Transgenic Res., 1994, 3:13~19.
    [247] Gullner G, Komives T, and Rennenberg H. Enhanced tolerance of transgenic poplar overexpressing gamma-glutamyl-cystenine synthetase towards choroacetanilide herbicide. J. Exp.Bot., 2001, 52:971~979.
    [248] Confalonieri M, Belenghi B, and Balestrazzi A,. et al. Transformation of elite white poplar(Populus alba L.) cv.”Villafranca”and evaluation of herbicide resistance. Plant Cell Rep., 2000, 19:978~982.
    [249] 樊军锋,韩一凡,李铃,等. 84K 杨树耐盐基因转化研究. 西北林学院学报,2002,17(4):33~35.
    [250] 孙仲序,杨红花,崔得才等. 转基因杨树的抗盐性分析,生物工程学报,2002,18(4):481~485.
    [251] Lei HU, Hai LU, Qunlu LIU, et al. Overexpression of mtlD gene in transgenic Populus tomentosa improves salt tolerance through accumulation of mannitol. Tree Physiology, 2005, 25, 1273~1281.
    [252] 刘斌, 李红双, 王其会, 等. 反义磷脂酶Dr 基因转化毛白杨的研究. 遗传, 2002, 24 (1): 40~44.
    [253] El-Khatib RT, Hamerlynck EP, Gallardo F, Kirby EG. Transgenic poplar characterized by ectopic expression of a pine cytosolic glutamine synthetase gene exhibits enhanced tolerance to water stress. Tree Physiol. 2004,24(7):729~36.
    [254] 张冰玉,苏晓华,黄秦军等,转果聚糖蔗糖转移酶基因银腺杨的获得,林业科学,2005,42(3):48~53.
    [255] 耿飒,徐存拴,李玉昌. 木质素的生物合成及其调控研究发展. 西北植物学报,2003,23(1):171~181.
    [256] Hu W J, A Kiyoshik, Tsaich J, et al. Compartmentalized expression of two structurally and functionally distinct 42coumarate: CoA ligase gene in aspen (Populus tremuloides). Proc Nat Acad Sci USA, 1998, 95: 5407~5412.
    [257] Hu W J, Harding S A, and Lung J. et al. Repression of lignin biosynthesis promotes cellulose accumulation and growth in transgenic trees. Nature Biotech, 1999, 17:808~812.
    [258] Zeliha I, Tijen O, Ahu A, et al. Reduced leaf peroxidase activity is associated with reduced lignin content in transgenic poplar. Plant Biotechnology, 1999, 16 (5) : 381~387.
    [259] Baucher M, Chabbert B, Pilate G, et al. Red xylem and higher lignin extractability by down -regulating a cinnamyl alcohol dehydrogenase in poplar (Populus tremula and Populus alba). Plant Physiology, 1996, 112: 1479~1490.
    [260] Zhong R, Herbert W, Negrel J, et al. Dual methylation pathway in lignin biosynthesis. The Plant Cell, 1998, 10: 2033~2045.
    [261] Meyermans H, Morreel K, Lapierre C, et al. Modifications in lignin and accumulation of phenolic glucosides in poplar xylem upon down-regulation of caffeoyl-coenzyme A O-methyltransferase, an enzyme involved in lignin biosynthesis. The Journal of Biological Chemistry, 2000, 275 (47): 36899~36909.
    [262] Doorsselaere J V, et al. A novel lignin in poplar trees with a reduced caffeic acid/ 5-hydroxyferulic acid O-methyltransferase activity. The Plant Journal, 1995, 8(6):855~864.
    [263] Rolando C, Daubresse N, Pollet B, et al. Lignification in poplar plantlets fed with deuterium-labelled lignin precursors. C R Biol. 2004, 327(9-10):799~807.
    [264] Huntley SK, Ellis D, Gilbert M, et al. Significant increases in pulping efficiency in C4H-F5H-transformed poplars: improved chemical savings and reduced environmental toxins. J Agric Food Chem. 2003, 8:51(21):6178~83.
    [265] Israelsson M, Eriksson ME, Hertzberg M, et al. Changes in gene expression in the wood-forming tissue of transgenic hybrid aspen with increased secondary growth. Plant Mol Biol. 2003, 52(4):893~903.
    [266] H.J. Bohnert, D.E. Nelson, R.G. Jensen, Adaptations to environmental stress, Plant Cell, 1995, 7: 1099-1111.
    [267] P.M. Hasegawa, R.A. Bressan, J.K. Zhu, H.J. Bohnert, Plant cellular and molecular responses to high salinity, Annu. Rev. Plant Physiol. Plant Mol. Biol. 2000, 51: 463-499.
    [268] Y. Igarashi, Y. Yoshiba, Y. Sanada, K. Yamaguchi-Shinozaki, K. Wada, K. Shinozaki, Characterization of the gene for delta1-pyrroline-5-carboxylate synthetase and correlation between the expression of the gene and salt tolerance in Oryza sativa L., Plant Mol. Biol. 1997, 33 : 857-865.
    [269] J.C. Cushman, H.J. Bohnert, Genomic approaches to plant stress tolerance, Curr. Opin. Plant Biol. 2000, 3: 117-124.
    [270] N. Smirnoff, Plant resistance to environmental stress, Curr. Opin. Biotechnol. 1998, 9: 214-19.
    [271] G. Noctor, C.H. Foyer, Ascorbate and glutathione: keeping active oxygen under control, Annu. Rev. plant physiol. Plant Mol. Biol. 1998, 49: 249-79.
    [272] K.J. Dietz, N. Tavakoli, C. Kluge, T. Mimura, S.S. Sharma, G.C. Harris et al., Significance of the V-type ATPase for the adaptation to stressful growth conditions and its regulation on the molecular and biochemical level, Experi. Bot. J. 2001, 52 : 1969-1980
    [273] R. Loew, B. Rockel, M. Kirsch, R. Ratajczak, S. Hortensteiner, et al., Early salt stress effects on the differential expression of vacuolar H+-ATPase genes in roots and leaves of Mesembryanthemum crystallinum, Plant Physiol. 1996, 110 : 259-65.
    [274] F.L.Theodoulou, Plant ABC transporters, Biochimica et Biophysica Acta 1999, 1465: 79-102.
    [275] R.D. Vierstra, J. Callis, Polypeptide tags, ubiquitous modifiers for plant protein regulation, Plant Mol. Biol. 41(1999) 435–442.
    [276] L.M. Xiong, J.K. Zhu, Abiotic stress signal transduction in plants: Molecular and genetic per-spectives, Physiol. Plant. 2001, 112: 152–166.
    [277] Meyer, M.P. Leube, E. Grill, A protein phosphatase 2C involved in ABA signal transduction in Arabidopsis thaliana, Science, 1994, 264: 1452–1455.
    [278] Hao YJ, Zhang Z, Kitashiba H, Honda C, Ubi B, Kita M, Moriguchi T. Molecular cloning and functional characterization of two apple S-adenosylmethionine decarboxylase genes and their different expression in fruit development, cell growth and stress responses. Gene. 2005, 350(1):41-50.
    [279] Yamaguchi T, Minami E, Ueki J, Shibuya N. Elicitor-induced activation of phospholipases plays an important role for the induction of defense responses in suspension-cultured rice cells. Plant Cell Physiol. 2005, 46(4):579-87.
    [280] Seternes OM, Johansen B, Hegge B, Johannessen M, Keyse SM, Moens U. Both binding and activation of p38 mitogen-activated protein kinase (MAPK) play essential roles in regulation of the nucleocytoplasmic distribution of MAPK-activated protein kinase 5 by cellular stress. Mol Cell Biol. 2002, 22(20):6931-45.
    [281] Riera M, Figueras M, Lopez C, Goday A, Pages M. Protein kinase CK2 modulates developmental functions of the abscisic acid responsive protein Rab17 from maize. Proc Natl Acad Sci U S A. 2004, 101(26):9879-84.
    [282] Yan J, Wang J, Li Q, Hwang JR, Patterson C, Zhang H. AtCHIP, a U-box-containing E3 ubiquitin ligase, plays a critical role in temperature stress tolerance in Arabidopsis. Plant Physiol. 2003, 132(2):861-9.
    [283] Marri L, Sparla F, Pupillo P, Trost P. Co-ordinated gene expression of photosynthetic glyceraldehyde-3-phosphate dehydrogenase, phosphoribulokinase, and CP12 in Arabidopsis thaliana. J Exp Bot. 2005, 56(409):73-80.
    [284] Michelot A, Guerin C, Huang S, Ingouff M, Richard S, Rodiuc N, Staiger CJ, Blanchoin L. The formin homology 1 domain modulates the actin nucleation and bundling activity of Arabidopsis FORMIN1. Plant Cell. 2005, 17(8):2296-313.
    [285] Sambrook J, Fritsch EF, Maniatis T. Molecular Cloning: A laboratory Manual, 2nd Edn, 1989, Cold Spring Harbor, NY: Cold Spring Laboratory Press.
    [286] 王宝山. 植物液泡膜质子泵的研究. 植物学通报, 1997, 14: 25-30.
    [287] Mandala M, Taiz L. Partial purification of a tonoplast ATPase from corn coleoptiles. Plant Physiology, 1985, 78: 327-333.
    [288] Bradford MM. A rapid and sensitive method for the quantitation of mocrogram quantities of protein utilizing the principle of protein-dye binding. Analytical biochemistry, 1976, 72: 248-254.
    [289] Verstappen R, Ranostaj S, Rausch T. The hexose transporters at the plasma membrane and the tonoplast of transformed plant cells: kinetic characterization of two distinct carriers. Biochimica et Biophysica Acta, 1991, 1073: 366-373.
    [290] Fischer-Schliebs E, Mariaux JB, Lüttge U. Stimulation of H~+-transport activity of vacuolar H~+-ATPase by activation of H+-PPase in Kalanchoe blossfeldiana. Biologia Plantarum, 1997, 39: 169-177.
    [291] Nakanishi, Y., Maeshima, M. Molecular cloning of vacuolar H~+-pyrophosphatase and its developmental expression in growing hypocotyl of mung bean. Plant Physiol, 1998, 116:589-597.
    [292] Kim, E.J., Zhen, R.G., Rea, P.A. Heterologous expression of plant vacuolar pyrophosphatase in yeast demonstrates sufficiency of substrate-binding subunit for transport. Proc Natl Acad Sci USA, 1994, 91: 6128-6132.
    [293] Docampo, R., and Moreno, S.N.J. The acidocalcisome. Mol Biochem Parasitol, 2001, 33: 151-159.
    [294] Drozdowicz, Y., Kissinger, J.C., Rea, P.A. AVP2, a sequence-divergent, K+-insensitive H~+-translocating inorganic pyrophosphatase from Arabidopsis. Plant Physiol, 2000, 123: 353-362.
    [295] Ballesteros, E., Donaire, J.P., Belver, A. Effects of salt stress on H+-ATPase and H+-PPase activities of tonoplast-enriched vesicles form sunflower roots. Physiologia Plantarum, 1996, 97: 259-568.
    [296] Parks, G.E., Dietrich, M.A., Schumaker, K.S. Increased vacuolar Na~+/H~+ exchange activity in Salicornia bigelovii Torr. in response to NaCl. J Exp Bot, 2002, 53 (371): 1055-1065.
    [297] Wang, B.S., Ratajczak, R., Zhang, J.H. Activity, amount and subunit composition of vacuolar-type H+-ATPase and H+-PPase in wheat roots under severe NaCl stress. Journal of Plant Physiology, 2000, 157: 109-116.
    [298] Nakamura, Y., Kasamo, K., Shimosato, et al. Stimulation of the extrusion of protons and proton ATPase activities with the decline in pyrophosphatase activity of the tonoplast in intact mung bean roots under high sodium chloride stress and its relation to external levels of calcium ions. Plant and Cell Physiol, 1992, 33: 139-149.
    [299] Otoch, M.L.O., Sobreira, A.C.M., de-aragao, M.E.F., et al. Salt modulation of vacuolar H~+-ATPase and H~+-phrophosphatase activities in Vigna unguiculata. Journal of Plant Physiology, 2001, 158: 545-551.
    [300] Shanli Guo, Haibo Yin, Xia Zhang. et al. Molecular cloning and characterization of a vacuolar H~+-pyrophosphatase gene, SsVP, from the halophyte Suaeda salsa and its overexpression increases salt and drought tolerance of Arabidopsis. Plant Molecular Biology, 2005
    [301] 林植芳,李双顺,林桂珠,等. 水稻叶片的衰老与超氧化物歧化酶活性及膜脂过氧化作用的关系. 植物学报, 1984, 26 (6): 605-615.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700