促红细胞生成素对创伤性脑损伤神经保护的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本研究在建立稳定可靠的颅脑液压损伤模型的基础上,从EPO对TBI大鼠神经细胞凋亡及其相关基因表达的作用及TBI大鼠认知功能的影响等方面说明外源性EPO在TBI大鼠模型中的神经保护作用。
     第一部分促红细胞生成素及受体在TBI大鼠模型的表达
     目的:研究在创伤性颅脑损伤大鼠模型中损伤周围脑组织EPO及其受体的表达。内容和方法:78只SD大鼠随机分为对照组6只,假手术组36只,液压冲击脑创伤模型组36只,根据处死时间,分为6、24 h和3、5、7、14d 6个时相点,每个时相点假手术组和脑损伤组各处死6只大鼠,取损伤周围脑组织。利用实时荧光定量PCR和Western Blot方法检测EPO、EPOR的mRNA表达和蛋白表达。
     结果:EPO在外伤后24h内即可升高,到第3d达到高峰,并可维持2d左右,至伤后第7d开始下降,于伤后14d基本恢复至伤前水平;而EPOR于伤后24h到达高峰,至外伤后14d表达量仍可维持较高的水平。
     结论:TBI后24h即可促进内源性EPO及其受体的表达,但二者的表达具有不一致性,且EPO相对EPOR表达具有短暂性。
     第二部分促红细胞生成素对创伤性神经细胞损伤凋亡作用的体内研究
     目的:探讨EPO对TBI大鼠神经细胞调控凋亡通路,以阐明其作用机制。内容和方法:72只SD大鼠随机分为六组:对照组12只;假手术组12只;TBI组12只;TBI+EPO组12只;TBI+EPO+DMSO组12只;TBI+EPO+LY294002组12只。治疗组腹腔注射EPO 5000u/Kg,Q8H;并分组脑室给予LY294002,以阻断PI-3K通路。于外伤后2d处死大鼠,行Western Blot检测EPO及pAKT的蛋白表达,行免疫组化检测凋亡相关蛋白表达及TUNEL观察凋亡指数。
     结果:Western Blot检测发现治疗组EPO表达明显上调,且LY294002可以阻断PI-3K信号传导通路,下调pAKT的表达,而载体组对pAKT的表达无明显影响。免疫组化检测发现EPO可以明显抑制BAX、Caspase 3的表达,从而抑制凋亡;而LY294002干预组BAX、Caspase 3的表达量明显上调,TUNEL示凋亡指数增高。结论:EPO可以抑制TBI大鼠神经细胞的凋亡,阻断PI3K信号传导通路后,凋亡指数明显增高。
     第三部分促红细胞生成素对创伤性大鼠认知功能影响的实验研究
     目的:探讨EPO对TBI大鼠认知功能的影响。
     内容和方法:48只SD大鼠随机分为4组:对照组12只,假手术组12只,液压冲击脑创伤模型(TBI)组12只,脑创伤促红细胞生成素(EPO+TBI)治疗组12只,TBI+EPO组于外伤后立即腹腔注射EPO(5000U/Kg,Q8H,连续2d);TBI组在同一时间点给予相同剂量的生理盐水腹腔注射。于外伤后8d Morris水迷宫检测认知功能,后处死大鼠灌注,行BDNF免疫组化检测。
     结果:在定位航行实验中,各组大鼠寻找平台的潜伏期都随实验进程越来越短,且各组大鼠游泳速度无差别。而潜伏期的结果表明对照组及假手术组时间最短,外伤组最长,EPO治疗组居于两者之间。提示EPO治疗改善大鼠的定位航行实验表现。空间搜索实验表明::对照组大鼠在平台所在象限停留的时间较长,外伤组在此象限游泳的时间明显短于对照组,EPO治疗介于两者之间,提示EPO治疗大鼠创伤后参考记忆有明显恢复。免疫组化结果表明,EPO可明显上调BDNF的表达,提示EPO可能通过促进BDNF的表达来改善外伤后大鼠的认知功能
     结论:液压冲击造成的颅脑损伤可损害大鼠的认知功能,外源性给予EPO可以使大鼠在Morris水迷宫的检测结果明显提高,提示EPO可以促进大鼠的空间学习记忆能力;与外伤组相比,EPO治疗组中大鼠的BDNF蛋白的表达明显上调,具有统计学差异,说明外源性EPO通过促进BDNF的表达,从而改善TBI大鼠的认知能力。
On the basis of stable and reliable TBI models,we studied the expression oferythropoietin and its receptor around the injured brain tissue in the rats aftertraumatic brain injury;then,by the means of Western blot,immunohistochemisty andTUNEL,the apoptosis index and related apotosis gene expression were tested;at last,it was certified that effect of erythropoietin on the TBI rats' cognitive function.
     Part One:The expression of erythropoietin and its receptor in the rats followingtraumatic brain injury.
     Objective:The part was aimed to study the expression of erythropoietin and itsreceptor around the injured brain tissue in the rats after traumatic brain injury.
     Methods:78 SD rats were randomly divided into 3 groups including controlgroup(six rats),sham group(thirty-six rats) and fluid percussion injurygroup(thirty-six rats).According to the time of death,the latter two groups weredivided into six subgroups which were 6 hours,twenty-four hours,three days,fivedays,seven days and fourteen days after traumatic brain injury (TBI).Six rats weresentenced to death in the sham and TBI group at each time point.It test the messengerRNA and protein of erythropoietin and its receptor of the brain tissue surrounding theinjuries by the methods of real-time PCR and Western Blot respectively.
     Results:EPO and its receptor mRNA expressed in normal control and sham groupat each time point were just a small amount.Real-time PCR and Western Blotindicated that EPO mRNA and protein expressions increased at 6h,peaked at 3d,which sustained two days,and gradually declined to 7 d,returned to normal level at14d.EPOR mRNA and protein expressions in the TBI group began to increase at 6hafter injury,peaked at 24h,sustained to 14d.
     Conclusion:EPOR expression was significantly upregulated at least for 14 daysafter traumatic brain injury,while EPO mRNA and its protein were only shortlyelevated.The protective mechanism of EPO on central nervous system is possiblyrelated to the markedly increased expression of erythropoietin receptor after TBI.
     Part Two:The effect of erythropoietin on apoptosis of nerve cells in the TBI modelsin Vivo.
     Objective:The part was aimed to evaluate the effect of erythropoietin on apoptosis inthe TBI model,so as to conclude the neuroprotection mechanism of erythropoietin.
     Methods:76 SD rats was randomly divided into six groups including control,sham, TBI,EPO,EPO+DMSO and EPO+LY294002 group,each group had twelve rats.Thelatter three groups were injected with erythropoietin (5000u/Kg,Q8h) by the way ofintraperitoneal.Meanwhile,the latter two groups were injected with DMSO orLY294002 through intraventricule in order to block PI3K pathway.After 2 days,allrats were sentenced to death,in order to test the protein of EPO and pAKT byWestern Blot,and the protein of apoptosis by immunohistochemisty,and apoptosisindex by TUNEL.
     Results:it is indicated in Western Blot that the erythropoietin treatment can promotethe expression of its protein,while downregulated the expression of pAKT.It isindicated in immunohistochemisty that EPO can inhibit the expression of BAX andCaspase-3,thus reduce apoptosis,while LY294002 can block the PI3K pathway andupregulated BAX and Caspase-3,so the apoptosis index was more than the EPOtreatment group.
     Conclusion:EPO can inhibit the apoptosis in the TBI model,when it is blocked withthe PI-3K pathway,which increased the apoptosis index.
     Part Three:The effect on cognitive function of erythropoietin in the rats aftertraumatic brain injury.
     Objective:The part was aimed to evaluate the effect on cognitive function oferythropoietin.
     Methods:48 SD rats were randomly divided into four groups including control,sham,TBI and EPO+TBI group,each have twelve rats.The last group were injected witherythropoietin immediately after injury,the others were injected with saline at thesame time.After eight days,we used the Morris Water Maze to evaluate the referencememory and expression of BDNF by immunohistochemisty.
     Results:In the navigation experiment,the latent period that all the rats found theplatform was shorter and shorter,and there is no difference in speed,while the controland sham groups' latent period was the shortest,and the TBI group's was longest,EPO can improve the latent period.Meanwhile,it can promote the expression ofBDNF.
     Conclusion:TBI can damage the cognitive function of rats,while exogenous EPOcan improve the rats' cognitive function and upregulated the expression of BDNF.
引文
1.赵雅度.神经病学第11卷神经系统外伤[M].人民军医出版社,2001: 3
    2.王忠诚神经外科学[M].人民卫生出版社,2005: 305
    3.Wu X, Hu J, Zhuo L et al.Epidemiology of traumatic brain injury in eastern China, 2004: a prospective large case study[J].J Trauma, 2008, 64(5):1313-9.
    4.Tan CC, Eckardt KU, Firth JD et al.Feedback modulation of renal and hepatic erythropoietin mRNA in response to graded anemia and hypoxia[J].Am J Physiol,1992, 263(3 Pt 2):F474-81.
    5.Lewczuk P, Hasselblatt M, Kamrowski-Kruck H et al.Survival of hippocampal neurons in culture upon hypoxia: effect of erythropoietin[J].Neuroreport,2000 ,11(16):3485-8.
    6.Sinor AD, Greenberg DA.Erythropoietin protects cultured cortical neurons, but notastroglia,fromhypoxiaandAMPAtoxicity[J].NeurosciLett,2000,290(3):213-5
    7.Sir(?)n AL, Fratelli M, Brines M et al.Erythropoietin prevents neuronal apoptosis after cerebral ischemia and metabolic stress[J].Proc Nat]Acad Sci U S A, 2001,98(7):4044-9.
    8.Bernaudin M, Marti HH, Roussel S et al.A potential role for erythropoietin in focal permanent cerebral ischemia in mice[J].J Cereb Blood Flow Metab, 1999,9(6):643-51.
    9.Narayan RK, Michel ME, Ansel]B et al.Clinical trials in head injury[J].J Neurotrauma, 2002, 19(5):503-57.
    10.Parikh S, Koch M, Narayan RK et al.Traumatic brain injury[J].Int Anesthesiol Clin, 2007, 45(3):119-35.
    11.Heegaard W, Biros M et al.Traumatic brain injury[J].Emerg Med Clin North Am,2007, 25(3):655-78.
    12.Martin NA, Patwardhan RV, Alexander MJ et al.Characterization of cerebral hemodynamic phases following severe head trauma: hypoperfusion, hyperemia,and vasospasm[J].J Neurosurg, 1997, 87(1):9-19.
    13.Ray SK, Dixon CE, Banik NL.Molecular mechanisms in the pathogenesis of traumatic brain injury[J].Histol Histopathol, 2002, 17(4):1137-52.
    14.Enriquez P, BullockR.Molecular and cellular mechanismsin the pathophysiology of severe head injury[J].Curr Pharm Des, 2004, 10(18):2131-43.
    15. Raghupathi R. Cell death mechanisms following traumatic brain injury[J]. Brain Pathol,2004, 14(2):215-22.
    
    16. Farkas O, Povlishock JT. Cellular and subcellular change evoked by diffuse traumatic brain injury: a complex web of change extending far beyond focal damage[J]. Prog Brain Res, 2007, 161:43-59.
    
    17. Golding EM. Sequelae following traumatic brain injury. The cerebrovascular perspective[J]. Brain Res Brain Res Rev, 2002, 38(3):377-88.
    
    18. Unterberg AW, Stover J, Kress B et al. Edema and brain trauma[J]. Neuroscience,2004,129(4):1021-9.
    
    19. Joyeux-Faure M. Cellular protection by erythropoietin: new therapeutic implications?[J]. J Pharmacol Exp Ther, 2007, 323(3):759-62.
    
    20. Akdemir Ozisik P, Oruckaptan H, Ozdemir Geyik P et al. Effect of erythropoietin on brain tissue after experimental head trauma in rats[J]. Surg Neurol, 2007 ,68(5):547-55.
    
    21. Jelkmann W. Effects of erythropoietin on brain function[J]. Curr Pharm Biotechnol, 2005,6(1):65-79.
    
    22. Maiese K, Chong ZZ, Li F et al. Erythropoietin: elucidating new cellular targets that broaden therapeutic strategies[J]. Prog Neurobiol, 2008, 85(2):194-213.
    
    23. Grasso G, Sfacteria A, Meli F et al. Neuroprotection by erythropoietin administration after experimental traumatic brain injury[J]. Brain Res, 2007,1182:99-105.
    
    24. Cherian L, Goodman JC, Robertson C. Neuroprotection with erythropoietin administration following controlled cortical impact injury in rats[J]. J Pharmacol Exp Ther, 2007, 322(2):789-94.
    
    25. Temkin NR, Anderson GD, Winn HR et al. Magnesium sulfate for neuroprotection after traumatic brain injury: a randomised controlled trial[J].Lancet Neurol, 2007 , 6(1):29-38.
    
    26. LaPlaca MC, Simon CM, Prado GR et al. CNS injury biomechanics and experimental models[J]. Prog Brain Res, 2007,161:13-26.
    
    27. Cernak I. Animal models of head trauma[J]. NeuroRx, 2005,2(3):410-22.
    
    28. Digicaylioglu M, Bichet S, Marti HH et al. Localization of specific erythropoietin binding sites in defined areas of the mouse brain[J]. Proc Natl Acad Sci U S A,1995,92(9):3717-20.
    
    29. Marti HH, Wenger RH, Rivas LA et al. Erythropoietin gene expression in human,monkey and murine brain[J]. Eur J Neurosci,. 1996, 8(4):666-76.
    30. Fisher JW. Erythropoietin: physiology and pharmacology update[J]. Exp Biol Med (Maywood), 2003, 228(1):1-14.
    
    31. Mulcahy L. The erythropoietin receptor[J]. Semin Oncol, 2001, 28(2 Suppl 8):19-23.
    
    32. Jelkmann W. Molecular biology of erythropoietin[J]. Intern Med, 2004,43(8):649-59.
    
    33. Hilton DJ, Watowich SS, Katz L et al. Saturation mutagenesis of the WSXWS motif of the erythropoietin receptor[J]. J Biol Chem, 1996,271(9):4699-708.
    
    34. Ebie AZ, Fleming KG. Dimerization of the erythropoietin receptor transmembrane domain in micelles[J]. J Mol Biol, 2007,366(2):517-24.
    
    35. Pelletier S, Gingras S, Funakoshi-Tago M et al. Two domains of the erythropoietin receptor are sufficient for Jak2 binding/activation and function[J].Mol Cell Biol, 2006,26(22):8527-38.
    
    36. Klingmuller U. The role of tyrosine phosphorylation in proliferation and maturation of erythroid progenitor cells—signals emanating from the erythropoietin receptor[J]. Eur J Biochem, 1997,249(3):637-47.
    
    37. Bernaudin M, Bellail A, Marti HH et al. Neurons and astrocytes express EPO mRNA: oxygen-sensing mechanisms that involve the redox-state of the brain[J].Glia,2000,30(3):271-8.
    
    38. Bernaudin M, Marti HH, Roussel S et al. A potential role for erythropoietin in focal permanent cerebral ischemia in mice[J]. J Cereb Blood Flow Metab, 1999 ,19(6):643-51.
    
    39. Brines ML, Ghezzi P, Keenan S et al. Erythropoietin crosses the blood-brain barrier to protect against experimental brain injury[J]. Proc Natl Acad Sci U S A,2000,97(19):10526-31.
    
    40. Genc K, Genc S, Baskin H et al. Erythropoietin decreases cytotoxicity and nitric oxide formation induced by inflammatory stimuli in rat oligodendrocytes[J].Physiol Res, 2006,55(1):33-8.
    
    41. Nagai A, Nakagawa E, Choi HB et al. Erythropoietin and erythropoietin receptors in human CNS neurons, astrocytes, microglia, and oligodendrocytes grown in culture[J]. J Neuropathol Exp Neurol, 2001, 60(4):386-92.
    
    42. Zhu H, Jackson T, Bunn HF. Detecting and responding to hypoxia[J]. Nephrol Dial Transplant, 2002,17 Suppl 1:3-7.
    
    43. Fandrey J. Oxygen-dependent and tissue-specific regulation of erythropoietin gene expression[J]. Am J Physiol Regul Integr Comp Physiol, 2004 , 286(6):R977-88.
    
    44. Maiese K, Chong ZZ, Hou J et al. Erythropoietin and oxidative stress[J]. Curr Neurovasc Res, 2008, 5(2): 125-42.
    
    45. Chavez JC, Baranova O, Lin J et al. The transcriptional activator hypoxia inducible factor 2 (HIF-2/EPAS-1) regulates the oxygen-dependent expression of erythropoietin in cortical astrocytes[J]. J Neurosci, 2006, 26(37):9471-81.
    
    46. Stockmann C, Fandrey J. Hypoxia-induced erythropoietin production: a paradigm for oxygen-regulated gene expression. [J] Clin Exp Pharmacol Physiol, 2006,33(10):968-79.
    
    47. Chandel NS, Maltepe E, Goldwasser E et al. Mitochondrial reactive oxygen species trigger hypoxia-induced transcription[J]. Proc Natl Acad Sci U S A, 1998,95(20): 11715-20.
    
    48. Masuda S, Chikuma M, Sasaki R. Insulin-like growth factors and insulin stimulate erythropoietin production in primary cultured astrocytes[J]. Brain Res,1997, 746(1-2):63-70.
    
    49. Nagai A, Nakagawa E, Choi HB et al. Erythropoietin and erythropoietin receptors in human CNS neurons, astrocytes, microglia, and oligodendrocytes grown in culture[J]. J Neuropathol Exp Neurol, 2001,60(4):386-92.
    
    50. Marti HH, Gassmann M, Wenger RH et al. Detection of erythropoietin in human liquor: intrinsic erythropoietin production in the brain[J]. Kidney Int, 1997,51(2):416-8.
    
    51. Brines ML, Ghezzi P, Keenan S et al. Erythropoietin crosses the blood-brain barrier to protect against experimental brain injury[J]. Proc Natl Acad Sci U S A,2000, 97(19): 10526-31.
    
    52. Shi F, Bailey C, Malick AW et al. Biotin uptake and transport across bovine brain microvessel endothelial cell monolayers[J]. Pharm Res, 1993, 10(2):282-8.
    
    53. Banks WA, Jumbe NL, Farrell CL et al. Passage of erythropoietic agents across the blood-brain barrier: a comparison of human and murine erythropoietin and the analog darbepoetin alfa[J]. Eur J Pharmacol, 2004, 505(1-3):93-101.
    
    54. Ehrenreich H, Degner D, Meller J et al. Erythropoietin: a candidate compound for neuroprotection in schizophrenia[J]. Mol Psychiatry, 2004, 9(1):42-54.
    
    55. Eid T, Brines M. Recombinant human erythropoietin for neuroprotection: what is the evidence? [J]. Clin Breast Cancer, 2002, 3 Suppl 3:S109-15.
    
    56. Jumbe NL. Erythropoietic agents as neurotherapeutic agents: what barriers exist?[J]. Oncology (Williston Park), 2002, 16(9 Suppl 10):91-107.
    57. Grasso G, Buemi M, Alafaci C et al. Beneficial effects of systemic administration of recombinant human erythropoietin in rabbits subjected to subarachnoid hemorrhage[J]. Proc Natl Acad Sci U S A, 2002, 99(8):5627-31.
    
    58. Kerr JF, Wyllie AH, Currie AR. Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics[J]. Br J Cancer, 1972,6(4):239-57。
    
    59. Waterhouse NJ, Ricci JE, Green DR. And all of a sudden it's over: mitochondrial outer-membrane permeabilization in apoptosis[J]. Biochimie, 2002,84(2-3):113-21.
    
    60. Ly JD, Grubb DR, Lawen A. The mitochondrial membrane potential (deltapsi(m)) in apoptosis; an update[J]. Apoptosis, 2003, 8(2): 115-28.
    
    61. Boehning D, Patterson RL, Sedaghat L et al. Cytochrome c binds to inositol (1,4,5) trisphosphate receptors, amplifying calcium-dependent apoptosis[J]. Nat Cell Biol,2003, 5(12):1051-61.
    
    62. Boehning D, van Rossum DB, Patterson RL et al. A peptide inhibitor of cytochrome c/inositol 1,4,5-trisphosphate receptor binding blocks intrinsic and extrinsic cell death pathways[J]. Proc Natl Acad Sci U S A, 2005,102(5):1466-71.
    
    63. Rao RV, Hermel E, Castro-Obregon S et al. Coupling endoplasmic reticulum stress to the cell death program. Mechanism of caspase activation[J]. J Biol Chem,2001,276(36):33869-74.
    
    64. Mesaeli N, Nakamura K, Zvaritch E et al. Calreticulin is essential for cardiac development[J]. J Cell Biol, 1999,144(5):857-68.
    
    65. Noguchi CT, Asavaritikrai P, Teng R et al. Role of erythropoietin in the brain[J].Crit Rev Oncol Hematol, 2007, 64(2): 159-71.
    
    66. Sola A, Wen TC, Hamrick SE et al. Potential for protection and repair following injury to the developing brain: a role for erythropoietin? [J]. Pediatr Res,2005,57(5 Pt 2):110R-117R.
    
    67. Rabie T, Marti HH. Brain protection by erythropoietin: a manifold task[J].Physiology (Bethesda), 2008,23:263-74.
    
    68. Maiese K, Chong ZZ, Li F et al. Erythropoietin: elucidating new cellular targets that broaden therapeutic strategies[J]. Prog Neurobiol, 2008, 85(2): 194-213.
    
    69. Vivanco I, Sawyers CL. The phosphatidylinositol-3-kinase-AKT pathway in human cancer[J]. Nature Rev, 2002,489-501.
    
    70. Vanhaseboreck B, Aless DR.The PI3K-PDK1 connection:more than just a road to PKB[J].Biochem J, 2000, 346:561-576
    
    71. Vazquez F, Sellers WR.The PTEN tumor supressor protein:an antagonist of phosphoinositide 3-kinase signaling.Biochimica Biophysica[J] Acta,2000, 1470:M21-M35
    
    72. Staal SP. Molecular cloning of the akt oncogene and its human homologues AKT1 and AKT2: amplification of AKT1 in a primary human gastric adenocarcinoma[J].Proc Natl Acad Sci USA, 1987, 84:5034-5037
    
    73. Murthy SS, Tosolini A, Taguchi T, Testa JR.Mapping of AKT3, encoding a member of the Akt/protein kinase B family, to human and rodent chromosomes by fluorescence in situ hybridization[J]. Cytogenet Cell Genet, 2000, 88:38-40
    
    74. Cheng JQ, Godwin AK, Bellacosa A, Taguchi T, Franke TF, Hamilton TC, Tsichlis PN, Testa JR. AKT2, a putative oncogene encoding a member of a subfamily of protein-serine/threonine kinases, is amplified in human ovarian carcinomas[J].Proc Natl Acad Sci USA,1992, 89:9267-9271
    
    75. Frank TF.Kaplan DR,Cantley LS.PI3K:Dowstream AKTion blocks apoptosos[J].Cell,1997,21:435-437.
    
    76. Cantley, L. C.; Neel, B. G. New insights into tumor suppression: PTEN suppresses tumor formation by restraining the phosphoinositide 3-kinase/AKT pathway[J].Proc Nat Acad Sci USA, 1999, 96: 4240-4245
    
    77. Kohn AD, Takeuchi F, Roth RA.Akt, a pleckstrin homology domain containing kinase, is activated primarily by phosphorylation[J]. J Biol Chem,1996, 271: 21920 21926
    
    78. Hemmings BA. Update: PtdIns(3,4,5)P3 gets its message across[J].Science, 1998, 277: 534
    
    79. Kim JA. Targeted therapies for the treatment of cancer[J]. Am J Surg, 2003,186(3):264-8.
    
    80. Vlahos CJ, Matter WF, Hui KY et al. A specific inhibitor of phosphatidylinositol 3-kinase, 2-(4-morpholinyl)-8-phenyl-4H-1-benzopyran-4-one (LY294002) [J]. J Biol Chem, 1994,269(7) :5241-8.
    
    81. Lindsley CW, Barnett SF, Layton ME et al. The PI3K/Akt pathway: recent progress in the development of ATP-competitive and allosteric Akt kinase inhibitors[J]. Curr Cancer Drug Targets, 2008, 8(1):7-18.
    
    82. Wu H, Lu D, Jiang H, Xiong Y et al. Increase in phosphorylation of Akt and its downstream signaling targets and suppression of apoptosis by simvastatin after traumatic brain injury[J]. J Neurosurg, 2008,109(4):691-8.
    
    83. Stauffer F, Holzer P, Garcia-Echeverria C. Blocking the PI3K/PKB pathway in tumor cells[J]. Curr Med Chem Anticancer Agents, 2005, 5(5):449-62.
    84. Franke TF, Kaplan DR, Cantley LC. PI3K: downstream AKTion blocks apoptosis[J]. Cell, 1997, 88(4):435-7.
    
    85. Franke TF. Intracellular signaling by Akt: bound to be specific[J]. Sci Signal,2008 ,1(24):pe29.
    
    86. Marone R, Cmiljanovic V, Giese B et al. Targeting phosphoinositide 3-kinase:moving towards therapy[J]. Biochim Biophys Acta, 2008, 1784(1):159-85.
    
    87. Yap TA, Garrett MD, Walton MI et al. Targeting the PI3K-AKT-mTOR pathway:progress, pitfalls, and promisesV. Curr Opin Pharmacol, 2008, 8(4):393-412.
    
    88. Ruggero D, Sonenberg N The Akt of translational control[J]. Oncogene, 2005,24(50):7426-34.
    
    89. Song G, Ouyang G, Bao S. The activation of Akt/PKB signaling pathway and cell survival[J]. J Cell Mol Med, 2005, 9(1):59-71.
    
    90. McAllister TW, Flashman LA, Sparling MB, Saykin AJ.Working memory deficits after traumatic brain injury: catecholaminergic mechanisms and prospects for treatment--a review [J] .Brain Inj, 2004,18(4):331-50.
    
    91. Morris R. Developments of a water-maze procedure for studying spatial learning in the rat[J]. J Neurosci Methods, 1984, 11(1):47-60.
    
    92. Morris RG, Garrud P, Rawlins JN et al. Place navigation impaired in rats with hippocampal lesions[J]. Nature, 1982,297(5868):681-3.
    
    93. Blokland A, Geraerts E, Been M. A detailed analysis of rats' spatial memory in a probe trial of a Morris task[J]. Behav Brain Res, 2004,154(1):71-5.
    
    94. Baldi E, Lorenzini CA, Corrado B. Task solving by procedural strategies in the Morris water maze[J]. Physiol Behav., 2003, 78(4-5):785-93.
    
    95. Wenk GL. Assessment of spatial memory using the radial arm maze and Morris water maze[J]. Curr Protoc Neurosci, 2004, 8:Unit 8.5A.
    
    96. Schallert T. Behavioral tests for preclinical intervention assessment[J]. NeuroRx,2006, 3(4):497-504
    
    97. Vorhees CV, Williams MT. Morris water maze: procedures for assessing spatial and related forms of learning and memory[J]. Nat Protoc, 2006,1(2):848-58.
    
    98. Pontecorvo MJ, Sahgal A, Steckler T. Further developments in the measurement of working memory in rodents[J]. Brain Res Cogn Brain Res, 1996,3(3-4):205-13.
    
    99. Dalm S, Grootendorst J, de Kloet ER et al. Quantification of swim patterns in the Morris water maze[J]. Behav Res Methods Instrum Comput, 2000, 32(1): 134-9.
    
    100. Ormerod BK, Beninger RJ. Water maze versus radial maze: differential performance of rats in a spatial delayed match-to-position task and response to scopolamine[J]. Behav Brain Res, 2002,128(2): 139-52.
    
    101. D'Hooge R, De Deyn PP. Applications of the Morris water maze in the study of learning and memory[J]. Brain Res Brain Res Rev, 2001, 36(1):60-90.
    
    102. Marsh JT, Brown WS, Wolcott D et al. rHuEPO treatment improves brain and cognitive function of anemic dialysis patients[J]. Kidney Int,, 39(1):155-63.
    
    103. Sakanaka M, Wen TC, Matsuda S et al. In vivo evidence that erythropoietin protects neurons from ischemic damage[J]. Proc Natl Acad Sci U S A, 1998,95(8):4635-40.
    
    104. Catania MA, Marciano MC, Parisi A et al. Erythropoietin prevents cognition impairment induced by transient brain ischemia in gerbils[J]. Eur J Pharmacol,2002, 437(3): 147-50.
    
    105. Lu D, Mahmood A, Qu C et al. Erythropoietin enhances neurogenesis and restores spatial memory in rats after traumatic brain injury[J]. J Neurotrauma,2005, 22(9): 1011-7.
    
    106. Grasso G, Sfacteria A, Meli F et al. Neuroprotection by erythropoietin administration after experimental traumatic brain injury[J]. Brain Res, 2007,1182:99-105.
    
    107. Xiong Y, Lu D, Qu C et al. Effects of erythropoietin on reducing brain damage and improving functional outcome after traumatic brain injury in mice[J]. J Neurosurg, 2008,109(3):510-21.
    
    108. Xiong Y, Mahmood A, Lu D et al. Role of gender in outcome after traumatic brain injury and therapeutic effect of erythropoietin in mice[J]. Brain Res, 2007,1185:301-12.
    
    109. Xiong Y, Mahmood A, Lu D et al. Histological and functional outcomes after traumatic brain injury in mice null for the erythropoietin receptor in the central nervous system[J]. Brain Res, 2008,1230:247-57.
    
    110.Nawa H, Takei N. BDNF as an anterophin; a novel neurotrophic relationship between brain neurons[J]. Trends Neurosci, 2001,24(12):683-4.
    111.Kelly-Spratt KS, Klesse LJ, Parada LF. BDNF activated TrkB/IRR receptor chimera promotes survival of sympathetic neurons through Ras and PI-3 kinase signaling[J]. J Neurosci Res, 2002, 69(2):151-9.
    112. Wang L, Zhang Z, Wang Y et al. Treatment of stroke with erythropoietin enhances neurogenesis and angiogenesis and improves neurological function in rats[J]. StrokeV 2004, 35(7):1732-7.
    113. Zhang J, Li Y, Cui Y et al. Erythropoietin treatment improves neurological functional recovery in EAE mice[J]. Brain Res, 2005,1034(1-2):34-9.
    
    114. Binder DK, Scharfman HE. Brain-derived neurotrophic factor[J]. Growth Factors,2004,22(3):123-31.
    
    115. Alonso M, Bekinschtein P, Cammarota M et al. Endogenous BDNF is required for long-term memory formation in the rat parietal cortex[J]. Learn Mem, 2005 ,12(5):504-10.
    1.Wu X, Hu J, Zhuo L et al.Epidemiology of traumatic brain injury in eastern China, 2004: a prospective large case study[J].J Trauma, 2008, 64(5):1313-9.
    2.Tan CC, Eckardt KU, Firth JD et al.Feedback modulation of renal and hepatic erythropoietin mRNA in response to'graded anemia and hypoxia[J].Am J Physiol,1992, 263(3 Pt 2):F474-81.
    3.Fisher JW.Erythropoietin: physiologic and pharmacologic aspects[J].Proc Soc Exp Biol Med, 1997, 216(3):358-69.
    4.Mulcahy L.The erythropoietin receptor[J].Semin Oncol, 2001,28(2 Suppl8):19-23.
    5.Ebie AZ, Fleming KG.Dimerization of the erythropoietin receptor transmembrane domain in micelles[J].J Mol Biol, 2007, 366(2):517-24.
    6.Pelletier S, Gingras S, Funakoshi-Tago M et al.Two domains of the erythropoietin receptor are sufficient for Jak2 binding/activation and function[J].Mol Cell Biol, 2006, 26(22):8527-38.
    7.王静,初桂兰.促红细胞生成素的神经保护作用[J].国外医学·生理、病理科学与临床分册,2004, 24 (3) : 214-216.
    8.Marti HH, Gassmann M, Wenger RH et al.Detection of erythropoietin in human liquor: intrinsic erythropoietin production in the brain[J].Kidney Int, 1997,51(2):416-8.
    9.Brines ML, Ghezzi P, Keenan S et al.Erythropoietin crosses the blood-brain barrier to protect against experimental brain injury[J].Proc Natl Acad Sci U S A,2000, 97(19):10526-31.
    10.Maiese K, Chong ZZ, Hou J et al.Erythropoietin and oxidative stress[J].Curr Neurovasc Res, 2008, 5(2):125-42.
    11.Ratcliffe PJ, O'Rourke JF, Maxwell PH et al.Oxygen sensing, hypoxia-inducible factor-1 and the regulation of mammalian gene expression[J].J Exp Biol, 1998,201(Pt 8):1153-62.
    12.Remy I, Wilson IA, Michnick SW.Erythropoietin receptor activation by a ligand-induced conformation change[J].Science, 1999, 283(5404):990-3.
    13.Neubauer H, Cumano A, M(u|¨)ller M et al.Jak2 deficiency defines an essential developmentalcheckpointindefinitivehematopoiesis[J].Cell,1998,93(3):397-409.
    14.Klingm(u|¨)ller U.The role of tyrosine phosphorylation in proliferation and maturationof erythroid progenitor cells--signalsemanatingfromthe erythropoietin receptor[J].Eur J Biochem, 1997, 249(3):637-47.
    15.Gregory RC, Jiang N, Todokoro K et al.Erythropoietin receptor and STAT5-specific pathways promote SKT6 cell hemoglobinization[J].Blood, 1998,92(4):1104-18.
    16.Digicaylioglu M, Lipton SA et al.Erythropoietin-mediated neuroprotection involves cross-talk between Jak2 and NF-kappaB signalling cascades[J].Nature,2001,412(6847):641-7.
    17.Bittorf T, Biichse T, Sasse T et al.Activation of the transcription factor NF-kappaB by the erythropoietin receptor: structural requirements and biological significance[J].
    
    18. Siren AL, Fratelli M, Brines M et al. Erythropoietin prevents neuronal apoptosis after cerebral ischemia and metabolic stress[J]. Proc Natl Acad Sci U S A, 2001,98(7):4044-9.
    
    19. Chikuma M, Masuda S, Kobayashi T et al. Tissue-specific regulation of erythropoietin production in the murine kidney, brain, and uterus[J]. Am J Physiol Endocrinol Metab, 2000, 279(6):E1242-8.
    
    20. Hartley CE, Varma M, Fischer JP et al. Neuroprotective effects of erythropoietin on acute metabolic and pathological changes in experimentally induced neurotrauma[J]. J Neurosurg, 2008,109(4):708-14.
    
    21. Chen G, Shi JX, Hang CH et al. Inhibitory effect on cerebral inflammatory agents that accompany traumatic brain injury in a rat model: a potential neuroprotective mechanism of recombinant human erythropoietin (rhEPO) [J]. Neurosci Lett,2007,425(3): 177-82.
    
    22. Akdemir Ozisik P, Oruckaptan H, Ozdemir Geyik P et al. Effect of erythropoietin on brain tissue after experimental head trauma in rats[J]. Surg Neurol, 2007,68(5):547-55;
    
    23. Adembri C, Bechi A, Meli E et al. Erythropoietin attenuates post-traumatic injury in organotypic hippocampal slices[J]. J Neurotrauma, 2004, 21(8):1103-12.
    
    24. Adembri C, Massagrande A, Tani A et al. Carbamylated erythropoietin is neuroprotective in an experimental model of traumatic brain injury[J]. Crit Care Med, 2008,36(3):975-8.
    
    25. Liao ZB, Zhi XG, Shi QH et al. Recombinant human erythropoietin administration protects cortical neurons from traumatic brain injury in rats[J]. Eur J Neurol, 2008, 15(2): 140-9.
    
    26. Xiong Y, Chopp M, Lee CP. Erythropoietin improves brain mitochondrial function in rats after traumatic brain injury[J]. Neurol Res, 2008,18.
    
    27. Wang L, Zhang Z, Wang Y et al. Treatment of stroke with erythropoietin enhances neurogenesis and angiogenesis and improves neurological function in rats[J].Stroke, 2004, 35(7): 1732-7.
    
    28. Cherian L, Goodman JC, Robertson C. Neuroprotection with erythropoietin administration following controlled cortical impact injury in rats[J]. J Pharmacol Exp Ther, 2007V 322(2):789-94.
    
    29. Grasso G, Sfacteria A, Meli F et al. Neuroprotection by erythropoietin administration after experimental traumatic brain injury[J]. Brain Res, 2007, 1182:99-105.
    
    30. Mahmood A, Lu D, Qu C et al. Treatment of traumatic brain injury in rats with erythropoietin and carbamylated erythropoietin[J]. J Neurosurg, 2007,107(2):392-7.
    
    31. Lu D, Mahmood A, Qu C et al. Erythropoietin enhances neurogenesis and restores spatial memory in rats after traumatic brain injury[J]. J Neurotrauma, 2005,22(9):1011-7.
    
    32. Xiong Y, Lu D, Qu C et al. Effects of erythropoietin on reducing brain damage and improving functional outcome after traumatic brain injury in mice[J]. J Neurosurg, 2008,109(3):510-21.
    
    33. Xiong Y, Mahmood A, Lu D et al. Role of gender in outcome after traumatic brain injury and therapeutic effect of erythropoietin in mice[J]. Brain Res, 2007,1185:301-12.
    
    34. Xiong Y, Mahmood A, Lu D et al. Histological and functional outcomes after traumatic brain injury in mice null for the erythropoietin receptor in the central nervous system[J]. Brain Res, 2008,1230:247-57.
    
    35. Yatsiv I, Grigoriadis N, Simeonidou C et al. Erythropoietin is neuroprotective,improves functional recovery, and reduces neuronal apoptosis and inflammation in a rodent model of experimental closed head injury[J]. FASEB J, 2005,19(12):1701-3.
    
    36. Siren AL, Fasshauer T, Bartels C et al. Therapeutic potential of erythropoietin and its structural or functional variants in the nervous system[J]. Neurotherapeutics,2009,6(1):108-27.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700