全基因组二代测序及甲基化芯片法在探明肠癌患者个体化分子标记物中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
大肠癌是全世界范围内主要致死性疾病之一,转移性结直肠癌的高发病率和较差预后使寻求与疗效、预后密切相关的分子标记物的需求变得非常紧迫。全基因组分析可测定与疾病发生、严重性密切相关,并可导致基因功能丧失的序列改变。同时,表观遗传学修饰,如DNA甲基化,被认为在许多种恶性肿瘤中广泛存在。而亚洲大肠癌患者的甲基化状态仍有待进一步研究。在此,我们报道应用全基因组外显子区域二代测序的方法来测定关键基因的重要突变状态,以及采用全基因组甲基化芯片的方法来测定肠癌特征性的甲基化谱改变。
     第一部分:Ion Torrent二代测序平台对肠癌外显子区域体细胞突变的测定以及关键性药物靶向基因的筛选
     方法:
     收集福尔马林固定石蜡包埋的转移性结直肠癌患者活检标本,应用Ion AmpliSeqTM肿瘤基因列表进行检测。该列表被设计用来检测46个癌基因和抑癌基因中604个位点的739种突变。我们应用Ion的个体化基因组仪@(PGMTM)系统来运行整个反应,并且仅用到低至10纳克的DNA.之后样本经过含有最新版Ampliseq变异识别插件的Ion Torrent软件包分析。Ingenuity软件被用于信号通路分析。Cox回归被用来分析有效率,无病生存时间,总生存时间等临床因素和突变数量的潜在关系。
     结果:
     (1)在10例标本中,我们在根据dbSNP数据库剔除了正常突变后,共在24个基因中发现了65个异常突变。其中35%的突变基因可以在COSMIC数据库(癌症体细胞突变目录)中找到。经过单因素回归分析,并未发现任何临床因素和患者的突变数量有关。
     (2)值得注意的是,有包括意料之中的APC, BRAF, KRAS, PK3CA和TP53等基因在内的11个基因,每个基因至少在2个样本中有表达。Ingenuity信号通路分析证明了“结直肠癌转移信号通路“是主要的固有突变途径。分析更进一步揭示了显著活跃的包括Wnt, PI3K/AKT和TGF-beta/SMAD等在内的经典信号通路及其突变的基因。
     (3)有趣的是,90%的样本含有至少一个可以被作为药靶的基因突变(1到6个不等),而所有该类型突变均有相应的靶向药物或正在进行临床试验的新型靶向治疗的选择。这些药物和靶向基因的组合包括:vemurafenib和BRAF;西妥昔单抗和表皮生长因子受体;palifermin和FGFR2; pazopanib和FGFR3;AEE788和KDR以及BEZ235和PIK3CA..
     第二部分:Illumina的HumanMethylation27芯片平台对肠癌DNA甲基化谱的测定以及显著异常甲基化基因的筛选
     方法:
     肿瘤以及相对应的正常癌旁组织由大肠癌患者手术标本获取。基因组DNA被分离并进行亚硫酸氢盐转化。此后即以Illumina公司的Infinium HumanMethylation27BeadChip平台进行DNA甲基化谱的比较分析。
     结果:
     (1)两个肠癌标本中分别发现了258个和74个,与相应的正常癌旁组织相比,异常甲基化的基因。CMTM2, ECRG4和SH3GL3等三个基因被发现其高甲基化位点在启动子区域,而该三个基因已被前期研究证明与大肠癌生物学行为密切相关。
     (2)在应用热图聚类分析后,发现有8个高甲基化和10个低甲基化基因在肿瘤组织中达到了显著不同于正常癌旁组织的表观遗传学状态改变。
     结论:
     (1)对于癌基因和抑癌基因的二代测序,可在单个结直肠癌患者中探明宜作为药物作用靶点的一个或多个关键突变,凸显了该技术在肿瘤个体化治疗时代的巨大优势和广阔前景。
     (2)对肿瘤细胞的快速和同时性全基因组甲基化谱分析可以灵敏的发现甲基化生物标记,为特异性诊断和预后判断服务。我们的研究显示了现代甲基化高通量芯片技术在探明肠癌潜在甲基化生物标记方面可能发挥的重要作用。
Colorectal cancer is one of the leading causes of mortality worldwide. The frequency and poor prognosis in patients with metastasis colorectal cancer (mCRC) emphasizes the need for better markers usable for both treatment and prognosis. Genome wide analysis studies have identified sequence mutations causing loss-of-function that are associated with disease occurrence and severity. Epigenetic modifications, such DNA methylation, have also been implicated in many cancers but have yet to be examined in the East Asian population of colorectal cancer patients. Here we described an approach of identifying whole genomic variants in exon regions of key genes. Meanwhile, we used genome-wide methylation chip to analysis the characteristic methylation profiles of colorectal cancer patients.
     Part one:"Druggable" alterations of somatic mutation in exon region detected by Ion Torrent in metastasis colorectal cancer patients
     Methods:
     Formalin-fixed paraffin embedded (FFPE) metastasis colorectal cancer patients biopsy tissue were collected. Ion AmpliSeqTM Cancer Panel was designed to detect739COSMIC mutations in604loci from46oncogenes and tumor suppressor genes. We applied the Ion Personal Genome Machine(?)(PGMTM) System to run the whole reaction by using only as little as lOng of input DNA. Samples were then analyzed by the Ampliseq Variant Caller plug-in within the newest version of the Ion Torrent Suite Software. Ingenuity Pathway Software was used to do pathway analysis. Cox regression analysis was tested regarding the potential relationship between the alteration numbers and the clinical factors including response rate, disease free survival and overall survival, etc.
     Results:
     (1) Among10specimens, we identified65genetic alterations in24genes after excluding the germline mutations according the dbSNP database.35%of those alterations were also present in the COSMIC database (Catalogue of Somatic Mutations in Cancer). No clinical factor was found to be significantly associated with the alteration numbers in patients by univariate analysis.
     (2) Notably, there are11genes including the expected APC, BRAF, KRAS, PIK3CA and TP53that were mutated in at least2samples. Pathway analysis identified "Colorectal Cancer Metastasis Signaling" as the top mutated canonical pathway. This analysis further revealed mutated genes in the classic signal pathways of Wnt, PI3K/AKT, and TGF-beta/SMAD as significantly present.
     (3) Interestingly,90%of CRCs (9out of10) harbored at least one "druggable" alteration (range from1-6)that has been linked to a clinical treatment option or is currently being investigated in clinical trials of new targeted therapies. Those pairs of drug and targeted genes are vemurafenib to BRAF; cetuximab to EGFR; palifermin to FGFR2; pazopanib to FGFR3; AEE788to KDR and BEZ235to PIK3CA.
     Part two:Using Illumina HumanMethylation27Chip based platform to detect the methylation profiles and the significant abrant methylated genes of colorectal cancer patients
     Methods:
     Biopsies of tumors and matched non-cancerous tissue types were obtained from colorectal cancer patients. Genomic DNA was isolated and subjected to the bisulphite conversion method for comparative DNA methylation analysis on the Illumina Infinium HumanMethylation27BeadChip.
     Results:
     (1) A total of258and74genes were found to be differentially methylated in the two tumor tissues, respectively, as compared to the individual's matched control tissue. Interestingly, the three genes that exhibited hypermethylation in their promoter regions, CMTM2, ECRG4, and SH3GL3, are known to be significantly associated with colorectal cancer in previous studies.
     (2) Using heatmap cluster analysis, eight hypermethylated and10hypomethylated genes were identified as significantly differentially methylated genes in the tumour tissues.
     Conclusions:
     (1) DNA deep sequencing of key oncogenes and tumor suppressors enables identification of "druggable" mutations for individual colorectal cancer patients. Our study reveals the Next Generation Sequencing' great advantage and hopeful perspective in the era of individualized medicine.
     (2) Genome-wide methylation profiling facilitates the rapid and simultaneous analysis of cancerous cells which may help to identify methylation markers with high sensitivity and specificity for diagnosis and prognosis. Our results show the promise of the microarray technology in identification of potential methylation biomarkers for colorectal cancers.
引文
[1]Sledge GW, Jr.:The challenge and promise of the genomic era. J Clin Oncol 2012,30:203-209.
    [2]Lin K, Taylor JR, Jr., Wu TD, Gutierrez J, Elliott JM, Vernes JM, Koeppen H, Phillips HS, de Sauvage FJ, Meng YG:TMEFF2 is a PDGF-AA binding protein with methylation-associated gene silencing in multiple cancer types including glioma. PLoS One 2011,6:e18608.
    [3]Robinson T, Killcoyne S, Bressler R, Boyle J:SAMQA:error classification and validation of high-throughput sequenced read data. BMC Genomics 2011,12:419.
    [4]Consortium EP:The ENCODE (ENCyclopedia Of DNA Elements) Project. Science 2004,306:636-640.
    [5]Consortium EP, Birney E, Stamatoyannopoulos JA, Dutta A, Guigo R, Gingeras TR, Margulies EH, Weng Z, Snyder M, Dermitzakis ET, et al: Identification and analysis of functional elements in 1% of the human genome by the ENCODE pilot project. Nature 2007,447:799-816.
    [6]Consortium EP:A user's guide to the encyclopedia of DNA elements (ENCODE). PLoS Biol 2011,9:e 1001046.
    [7]Consortium EP, Dunham I, Kundaje A, Aldred SF, Collins PJ, Davis CA, Doyle F, Epstein CB, Frietze S, Harrow J, et al:An integrated encyclopedia of DNA elements in the human genome. Nature 2012, 489:57-74.
    [8]Soda M, Choi YL, Enomoto M, Takada S, Yamashita Y, Ishikawa S, Fujiwara S, Watanabe H, Kurashina K, Hatanaka H, et al:Identification of the transforming EML4-ALK fusion gene in non-small-cell lung cancer. Nature 2007,448:561-566.
    [9]Soda M, Takada S, Takeuchi K, Choi YL, Enomoto M, Ueno T, Haruta H, Hamada T, Yamashita Y, Ishikawa Y, et al:A mouse model for EML4-ALK-positive lung cancer. Proc Natl Acad Sci U S A 2008, 105:19893-19897.
    [10]Ou SH, Bartlett CH, Mino-Kenudson M, Cui J, Iafrate AJ:Crizotinib for the treatment of ALK-rearranged non-small cell lung cancer:a success story to usher in the second decade of molecular targeted therapy in oncology. Oncologist 2012,17:1351-1375.
    [11]Rashid A, Issa JP:CpG island methylation in gastroenterologic neoplasia:a maturing field. Gastroenterology 2004,127:1578-1588.
    [12]Chan MW, Chan LW, Tang NL, Tong JH, Lo KW, Lee TL, Cheung HY, Wong WS, Chan PS, Lai FM, To KF:Hypermethylation of multiple genes in tumor tissues and voided urine in urinary bladder cancer patients. Clin Cancer Res 2002,8:464-470.
    [13]Issa JP:CpG island methylator phenotype in cancer. Nat Rev Cancer 2004,4:988-993.
    [14]Liu Z, Liu S, Xie Z, Blum W, Perrotti D, Paschka P, Klisovic R, Byrd J, Chan KK, Marcucci G:Characterization of in vitro and in vivo hypomethylating effects of decitabine in acute myeloid leukemia by a rapid, specific and sensitive LC-MS/MS method. Nucleic Acids Res 2007,35:e31.
    [15]Esteller M, Corn PG, Baylin SB, Herman JG:A gene hypermethylation profile of human cancer. Cancer Res 2001,61:3225-3229.
    [16]Siegel R, Naishadham D, Jemal A:Cancer statistics,2012. CA Cancer J Clin 2012,62:10-29.
    [17]Dai Z, Zheng RS, Zou XN, Zhang SW, Zeng HM, Li N, Chen WQ: [Analysis and prediction of colorectal cancer incidence trend in China]. Zhonghua Yu Fang Yi Xue Za Zhi 2012,46:598-603.
    [18]Libioulle C, Louis E, Hansoul S, Sandor C, Farnir F, Franchimont D, Vermeire S, Dewit O, de Vos M, Dixon A, et al:Novel Crohn disease locus identified by genome-wide association maps to a gene desert on 5pl3.1 and modulates expression of PTGER4. PLoS Genet 2007,3:e58.
    [19]Attard TM, Young RJ, Stoner JA, Lynch HT:Population differences in familial adenomatous polyposis may be an expression of geographic differences in APC mutation pattern. Cancer Genet Cytogenet 2007, 172:180-182.
    [20]Aoki K, Taketo MM:Adenomatous polyposis coli (APC):a multi-functional tumor suppressor gene. J Cell Sci 2007,120:3327-3335.
    [21]Pagani F, Baralle FE:Genomic variants in exons and introns:identifying the splicing spoilers. Nat Rev Genet 2004,5:389-396.
    [22]Grosso AR, Martins S, Carmo-Fonseca M:The emerging role of splicing factors in cancer. EMBO Rep 2008,9:1087-1093.
    [23]Cheng Y, Wang J, Shao J, Chen Q, Mo F, Ma L, Han X, Zhang J, Chen C, Zhang C, et al:Identification of novel SNPs by next-generation sequencing of the genomic region containing the APC gene in colorectal cancer patients in China. OMICS 2010,14:315-325.
    [24]Aaltonen L, Johns L, Jarvinen H, Mecklin JP, Houlston R:Explaining the familial colorectal cancer risk associated with mismatch repair (MMR)-deficient and MMR-stable tumors. Clin Cancer Res 2007, 13:356-361.
    [25]Timmermann B, Kerick M, Roehr C, Fischer A, Isau M, Boerno ST, Wunderlich A, Barmeyer C, Seemann P, Koenig J, et al:Somatic mutation profiles of MSI and MSS colorectal cancer identified by whole exome next generation sequencing and bioinformatics analysis. PLoS One 2010, 5:e15661.
    [26]De Grassi A, Segala C, Iannelli F, Volorio S, Bertario L, Radice P, Bernard L, Ciccarelli FD:Ultradeep sequencing of a human ultraconserved region reveals somatic and constitutional genomic instability. PLoS Biol 2010, 8:e1000275.
    [27]Greenman C, Stephens P, Smith R, Dalgliesh GL, Hunter C, Bignell G, Davies H, Teague J, Butler A, Stevens C, et al:Patterns of somatic mutation in human cancer genomes. Nature 2007,446:153-158.
    [28]Howe JR, Bair JL, Sayed MG, Anderson ME, Mitros FA, Petersen GM, Velculescu VE, Traverso G, Vogelstein B:Germline mutations of the gene encoding bone morphogenetic protein receptor 1A in juvenile polyposis. Nat Genet 2001,28:184-187.
    [29]Bodmer WF:Cancer genetics:colorectal cancer as a model. J Hum Genet 2006,51:391-396.
    [30]Cancer Genome Atlas N:Comprehensive molecular characterization of human colon and rectal cancer. Nature 2012,487:330-337.
    [31]Bamford S, Dawson E, Forbes S, Clements J, Pettett R, Dogan A, Flanagan A, Teague J, Futreal PA, Stratton MR, Wooster R:The COSMIC (Catalogue of Somatic Mutations in Cancer) database and website. Br J Cancer 2004, 91:355-358.
    [32]Forbes SA, Bhamra G, Bamford S, Dawson E, Kok C, Clements J, Menzies A, Teague JW, Futreal PA, Stratton MR:The Catalogue of Somatic Mutations in Cancer (COSMIC). Curr Protoc Hum Genet 2008, Chapter 10:Unit 1011.
    [33]Forbes SA, Bindal N, Bamford S, Cole C, Kok CY, Beare D, Jia M, Shepherd R, Leung K, Menzies A, et al:COSMIC:mining complete cancer genomes in the Catalogue of Somatic Mutations in Cancer. Nucleic Acids Res 2011,39:D945-950.
    [34]Olivier M, Petitjean A, Teague J, Forbes S, Dunnick JK, den Dunnen JT, Langerod A, Wilkinson JM, Vihinen M, Cotton RG, et al:Somatic mutation databases as tools for molecular epidemiology and molecular pathology of cancer:proposed guidelines for improving data collection, distribution, and integration. Hum Mutat 2009,30:275-282.
    [35]Tejpar S, Celik I, Schlichting M, Sartorius U, Bokemeyer C, Van Cutsem E:Association of KRAS G13D tumor mutations with outcome in patients with metastatic colorectal cancer treated with first-line chemotherapy with or without cetuximab. J Clin Oncol 2012, 30:3570-3577.
    [36]Richman SD, Seymour MT, Chambers P, Elliott F, Daly CL, Meade AM, Taylor G, Barrett JH, Quirke P:KRAS and BRAF mutations in advanced colorectal cancer are associated with poor prognosis but do not preclude benefit from oxaliplatin or irinotecan:results from the MRC FOCUS trial.J Clin Oncol 2009,27:5931-5937.
    [37]Wertz IE, Kusam S, Lam C, Okamoto T, Sandoval W, Anderson DJ, Helgason E, Ernst JA, Eby M, Liu J, et al:Sensitivity to antitubulin chemotherapeutics is regulated by MCL1 and FBW7. Nature 2011, 471:110-114.
    [38]Campbell PJ, Yachida S, Mudie LJ, Stephens PJ, Pleasance ED, Stebbings LA, Morsberger LA, Latimer C, McLaren S, Lin ML, et al:The patterns and dynamics of genomic instability in metastatic pancreatic cancer. Nature 2010,467:1109-1113.
    [39]Redston M:Carcinogenesis in the GI tract:from morphology to genetics and back again. Mod Pathol 2001,14:236-245.
    [40]Cho KH, Baek S, Sung MH:Wnt pathway mutations selected by optimal beta-catenin signaling for tumorigenesis. FEBS Lett 2006, 580:3665-3670.
    [41]Xiao JH, Ghosn C, Hinchman C, Forbes C, Wang J, Snider N, Cordrey A, Zhao Y, Chandraratna RA:Adenomatous polyposis coli (APC)-independent regulation of beta-catenin degradation via a retinoid X receptor-mediated pathway. J Biol Chem 2003,278:29954-29962.
    [42]Bierie B, Moses HL:TGF-beta and cancer. Cytokine Growth Factor Rev 2006,17:29-40.
    [43]Yang G, Yang X:Smad4-mediated TGF-beta signaling in tumorigenesis. Int J Biol Sci 2010,6:1-8.
    [44]Derynck R, Zhang YE:Smad-dependent and Smad-independent pathways in TGF-beta family signalling. Nature 2003,425:577-584.
    [45]Engelman JA, Luo J, Cantley LC:The evolution of phosphatidylinositol 3-kinases as regulators of growth and metabolism. Nat Rev Genet 2006, 7:606-619.
    [46]Cantley LC:The phosphoinositide 3-kinase pathway. Science 2002, 296:1655-1657.
    [47]O'Reilly KE, Rojo F, She QB, Solit D, Mills GB, Smith D, Lane H, Hofmann F, Hicklin DJ, Ludwig DL, et al:mTOR inhibition induces upstream receptor tyrosine kinase signaling and activates Akt. Cancer Res 2006,66:1500-1508.
    [48]Engelman JA, Settleman J:Acquired resistance to tyrosine kinase inhibitors during cancer therapy. Curr Opin Genet Dev 2008,18:73-79.
    [49]Bcenoue T, Kanai F, Hikiba Y, Obata T, Tanaka Y, Imamura J, Ohta M, Jazag A, Guleng B, Tateishi K, et al:Functional analysis of PIK3CA gene mutations in human colorectal cancer. Cancer Res 2005, 65:4562-4567.
    [50]Torkamani A, Schork NJ:Prediction of cancer driver mutations in protein kinases. Cancer Res 2008,68:1675-1682.
    [51]Welch JS, Westervelt P, Ding L, Larson DE, Klco JM, Kulkarni S, Wallis J, Chen K, Payton JE, Fulton RS, et al:Use of whole-genome sequencing to diagnose a cryptic fusion oncogene. JAMA 2011,305:1577-1584.
    [52]Wagle N, Emery C, Berger MF, Davis MJ, Sawyer A, Pochanard P, Kehoe SM, Johannessen CM, Macconaill LE, Hahn WC, et al:Dissecting therapeutic resistance to RAF inhibition in melanoma by tumor genomic profiling. J Clin Oncol 2011,29:3085-3096.
    [53]Stommel JM, Kimmelman AC, Ying H, Nabioullin R, Ponugoti AH, Wiedemeyer R, Stegh AH, Bradner JE, Ligon KL, Brennan C, et al: Coactivation of receptor tyrosine kinases affects the response of tumor cells to targeted therapies. Science 2007,318:287-290.
    [54]Oldenburg RA, Meijers-Heijboer H, Cornelisse CJ, Devilee P:Genetic susceptibility for breast cancer:how many more genes to be found? Crit Rev Oncol Hematol 2007,63:125-149.
    [55]Zhu ZZ, Wang AZ, Jia HR, Jin XX, He XL, Hou LF, Zhu G:Association of the TP53 codon 72 polymorphism with colorectal cancer in a Chinese population. Jpn J Clin Oncol 2007,37:385-390.
    [56]Lievre A, Bachet JB, Le Corre D, Boige V, Landi B, Emile JF, Cote JF, Tomasic G, Penna C, Ducreux M, et al:KRAS mutation status is predictive of response to cetuximab therapy in colorectal cancer. Cancer Res 2006,66:3992-3995.
    [57]Di Nicolantonio F, Martini M, Molinari F, Sartore-Bianchi A, Arena S, Saletti P, De Dosso S, Mazzucchelli L, Frattini M, Siena S, Bardelli A: Wild-type BRAF is required for response to panitumumab or cetuximab in metastatic colorectal cancer.J Clin Oncol 2008, 26:5705-5712.
    [58]Mao M, Tian F, Mariadason JM, Tsao CC, Lemos R, Jr., Dayyani F, Gopal YN, Jiang ZQ, Wistuba, Ⅱ, Tang XM, et al:Resistance to BRAF Inhibition in BRAF-Mutant Colon Cancer Can Be Overcome with PI3K Inhibition or Demethylating Agents. Clin Cancer Res 2013, 19:657-667.
    [59]Gulhati P, Zaytseva YY, Valentino JD, Stevens PD, Kim JT, Sasazuki T, Shirasawa S, Lee EY, Weiss HL, Dong J, et al:Sorafenib enhances the therapeutic efficacy of rapamycin in colorectal cancers harboring oncogenic KRAS and PIK3CA. Carcinogenesis 2012,33:1782-1790.
    [60]Morgillo F, Martinelli E, Troiani T, Orditura M, De Vita F, Ciardiello F: Antitumor activity of sorafenib in human cancer cell lines with acquired resistance to EGFR and VEGFR tyrosine kinase inhibitors. PLoS One 2011,6:e28841.
    [61]Yasumoto H, Matsubara A, Mutaguchi K, Usui T, McKeehan WL: Restoration of fibroblast growth factor receptor2 suppresses growth and tumorigenicity of malignant human prostate carcinoma PC-3 cells. Prostate 2004,61:236-242.
    [62]Matsuda Y, Ishiwata T, Yamahatsu K, Kawahara K, Hagio M, Peng WX, Yamamoto T, Nakazawa N, Seya T, Ohaki Y, Naito Z:Overexpressed fibroblast growth factor receptor 2 in the invasive front of colorectal cancer:a potential therapeutic target in colorectal cancer. Cancer Lett 2011,309:209-219.
    [63]Sakurai K, Yamada N, Yashiro M, Matsuzaki T, Komatsu M, Ohira M, Miwa A, Hirakawa K:A novel angiogenesis inhibitor, Ki23057, is useful for preventing the progression of colon cancer and the spreading of cancer cells to the liver. Eur J Cancer 2007,43:2612-2620.
    [64]Jang JH:Reciprocal relationship in gene expression between FGFR1 and FGFR3:implication for tumorigenesis. Oncogene 2005, 24:945-948.
    [65]Sonvilla G, Allerstorfer S, Heinzle C, Stattner S, Karner J, Klimpfinger M, Wrba F, Fischer H, Gauglhofer C, Spiegl-Kreinecker S, et al:Fibroblast growth factor receptor 3-IIIc mediates colorectal cancer growth and migration. Br J Cancer 2010,102:1145-1156.
    [66]Bukowski RM, Yasothan U, Kirkpatrick P:Pazopanib. Nat Rev Drug Discov 2010,9:17-18.
    [67]Courtney KD, Corcoran RB, Engelman JA:The PI3K pathway as drug target in human cancer.J Clin Oncol 2010,28:1075-1083.
    [68]Garcia-Echeverria C, Sellers WR:Drug discovery approaches targeting the PI3K/Akt pathway in cancer. Oncogene 2008,27:5511-5526.
    [69]Serra V, Markman B, Scaltriti M, Eichhorn PJ, Valero V, Guzman M, Botero ML, Llonch E, Atzori F, Di Cosimo S, et al:NVP-BEZ235, a dual PI3K/mTOR inhibitor, prevents PI3K signaling and inhibits the growth of cancer cells with activating PI3K mutations. Cancer Res 2008,68:8022-8030.
    [70]Crowder RJ, Phommaly C, Tao Y, Hoog J, Luo J, Perou CM, Parker JS, Miller MA, Huntsman DG, Lin L, et al:PIK3CA and PIK3CB inhibition produce synthetic lethality when combined with estrogen deprivation in estrogen receptor-positive breast cancer. Cancer Res 2009, 69:3955-3962.
    [71]Ihle NT, Lemos R, Jr., Wipf P, Yacoub A, Mitchell C, Siwak D, Mills GB, Dent P,Kirkpatrick DL,Powis G:Mutations in the phosphatidylinositoI-3-kinase pathway predict for antitumor activity of the inhibitor PX-866 whereas oncogenic Ras is a dominant predictor for resistance. Cancer Res 2009,69:143-150.
    [72]Reynolds CP, Kang MH, Carol H, Lock R, Gorlick R, Kolb EA, Kurmasheva RT, Keir ST, Maris JM, Billups CA, et al:Initial testing (stage 1) of the phosphatidylinositol 3'kinase inhibitor, SAR245408 (XL 147) by the pediatric preclinical testing program. Pediatr Blood Cancer 2012.
    [73]Mueller A, Bachmann E, Linnig M, Khillimberger K, Schimanski CC, Galle PR, Moehler M:Selective PI3K inhibition by BKM120 and BEZ235 alone or in combination with chemotherapy in wild-type and mutated human gastrointestinal cancer cell lines. Cancer Chemother Pharmacol 2012,69:1601-1615.
    [74]Scappaticci FA:Mechanisms and future directions for angiogenesis-based cancer therapies. J Clin Oncol 2002,20:3906-3927.
    [75]Shaheen RM, Ahmad SA, Liu W, Reinmuth N, Jung YD, Tseng WW, Drazan KE, Bucana CD, Hicklin DJ, Ellis LM:Inhibited growth of colon cancer carcinomatosis by antibodies to vascular endothelial and epidermal growth factor receptors. Br J Cancer 2001,85:584-589.
    [76]Dong G, Guo X, Fu X, Wan S, Zhou F, Myers RE, Bao G, Burkart A, Yang H, Xing J:Potentially functional genetic variants in KDR gene as prognostic markers in patients with resected colorectal cancer. Cancer Sci 2012,103:561-568.
    [77]Wedge SR, Kendrew J, Hennequin LF, Valentine PJ, Barry ST, Brave SR, Smith NR, James NH, Dukes M, Curwen JO, et al:AZD2171:a highly potent, orally bioavailable, vascular endothelial growth factor receptor-2 tyrosine kinase inhibitor for the treatment of cancer. Cancer Res 2005,65:4389-4400.
    [78]Ruggeri B, Singh J, Gingrich D, Angeles T, Albom M, Yang S, Chang H, Robinson C, Hunter K, Dobrzanski P, et al:CEP-7055:a novel, orally active pan inhibitor of vascular endothelial growth factor rvtejuor tyrosine kinases with potent aotiangiogenic activity and antituroor efficacy in preclinical models. Cancer Res 2003,63:5978-5991
    [79J Pal SK, Bergerot PG, Figlin RA:Tivozanib:current status and future directions in the treatment of solid tumors. Expert Opin Investig Drugs 2012,21:1851-1859.
    [80]Hu-Lowe DD, Zou HY, Grazzini ML, Hall in ME, Wickman GR, Amundson K, Chen JH, Rewolinski DA, Yamazaki S, Wu EY, et al:Nonclinical antiangiogenesis and antitumor activities of axitinib (AG-013736), an oral, potent, and selective inhibitor of vascular endothelial growth factor receptor tyrosine kinases 1,2,3. Clin Cancer Res 2008,14:7272-7283.
    [81]Traxler P, Allegrini PR, Brandt R, Brueggen J, Cozens R, Fabbro D, Grosios K, Lane HA. McSheehy P, Mestan J, et al:AEE788:a dual family epidermal growth fat-tor receptor/ErbB2 and vascular andothelial growth factor receptor tyrosine kinase inhibitor with (?)tumor and anriangiosjenic activity. Cancer Res 2004,64:4931-4941.
    [82]Pakkala S, Ramalingain SS:Combined inhibition of vascular endothelial growth factor and epidermal growth factor signaling in non-small-cell lung cancer therapy. Clin Lung Cancer 2009,10 Suppl 1:S 17-23.
    [83]Diaz-Padilla I, Siu LL:Brivanib alaninate for cancer. Expert Opin Investig Drugs 2011,20:577-586.
    [84]Carrato A, Swieboda-Sadlej A, Staszewska-Skurczynska M, Lim R, Roman L, Shparyk Y, Bondarenko I, Jonker DJ, Sun Y, De la Cruz JA, et al:Fluorouracil, Leucovorin, and Irinotecan Plus Either Sunitinib or Placebo in Metastatic Colorectal Cancer:A Randomized, Phase Ⅲ Trial. J Clin Oncol 2013.
    [85]Scagliotti G, Govindan R:Targeting angiogenesis with multitargeted tyrosine kinase inhibitors in the treatment of non-small cell lung cancer. Oncologist 2010,15:436-446.
    [86]Nikolinakos PG, Altorki N, Yankelevitz D, Tran HT, Yan S, Rajagopalan D, Bordogna W, Ottesen LH, Heymach JV:Plasma cytokine and angiogenic factor profiling identifies markers associated with tumor shrinkage in early-stage non-small cell lung cancer patients treated with pazopanib. Cancer Res 2010,70:2171-2179.
    [87]Payman Amiri MEA, Jeff Dove, Darrin D. Stuart, Daniel Poon, Teresa Pick, Savithri Ramurthy, Sharadha Subramanian, Barry Levine, Abran Costales, Alex Harris and Renhow Paul CHIR-265 is a potent selective inhibitor of c-Raf/B-Raf/mutB-Raf that effectively inhibits proliferation and survival of cancer cell lines with Ras/Raf pathway mutations In Proc Amer Assoc Cancer Res.2006
    [88]Garton AJ, Crew AP, Franklin M, Cooke AR, Wynne GM, Castaldo L, Kahler J, Winski SL, Franks A, Brown EN, et al:OSI-930:a novel selective inhibitor of Kit and kinase insert domain receptor tyrosine kinases with antitumor activity in mouse xenograft models. Cancer Res 2006,66:1015-1024.
    [89]Mross K, Frost A, Scheulen ME, Krauss J, Strumberg D, Schultheiss B, Fasol U, Buchert M, Kratzschmer J, Delesen H, et al:Phase I study of telatinib (BAY 57-9352):analysis of safety, pharmacokinetics, tumor efficacy, and biomarkers in patients with colorectal cancer. Vasc Cell 2011,3:16.
    [90]Khare S, Verma M:Epigenetics of colon cancer. Methods Mol Biol 2012, 863:177-185.
    [91]Sjoblom T, Jones S, Wood LD, Parsons DW, Lin J, Barber TD, Mandelker D, Leary RJ, Ptak J, Silliman N, et al:The consensus coding sequences of human breast and colorectal cancers. Science 2006,314:268-274.
    [92]Weber M, Davies JJ, Wittig D, Oakeley EJ, Haase M, Lam WL, Schubeler D:Chromosome-wide and promoter-specific analyses identify sites of differential DNA methylation in normal and transformed human cells. Nat Genet 2005,37:853-862.
    [93]Bell CG, Teschendorff AE, Rakyan VK, Maxwell AP, Beck S, Savage DA: Genome-wide DNA methylation analysis for diabetic nephropathy in type 1 diabetes mellitus. BMC Med Genomics 2010,3:33.
    [94]Thirlwell C, Eymard M, Feber A, Teschendorff A, Pearce K, Lechner M, Widschwendter M, Beck S:Genome-wide DNA methylation analysis of archival formalin-fixed paraffin-embedded tissue using the Illumina Infinium HumanMethylation27 BeadChip. Methods 2010,52:248-254.
    [95]Van der Auwera I, Yu W, Suo L, Van Neste L, van Dam P, Van Marck EA, Pauwels P, Vermeulen PB, Dirix LY, Van Laere SJ:Array-based DNA methylation profiling for breast cancer subtype discrimination. PLoS One 2010,5:e12616.
    [96]Harm MA, Pfeifer GP:Methods for genome-wide analysis of DNA methylation in intestinal tumors. Mutat Res 2010,693:77-83.
    [97]Costello JF, Fruhwald MC, Smiraglia DJ, Rush LJ, Robertson GP, Gao X, Wright FA, Feramisco JD, Peltomaki P, Lang JC, et al:Aberrant CpG-island methylation has non-random and tumour-type-specific patterns. Nat Genet 2000,24:132-138.
    [98]Ang PW, Loh M, Liem N, Lim PL, Grieu F, Vaithilingam A, Platell C, Yong WP, Iacopetta B, Soong R:Comprehensive profiling of DNA methylation in colorectal cancer reveals subgroups with distinct clinicopathological and molecular features. BMC Cancer 2010,10:227.
    [99]Esteller M:Cancer epigenomics:DNA methylomes and histone-modification maps. Nat Rev Genet 2007,8:286-298.
    [100]Li H, Guo X, Shao L, Plate M, Mo X, Wang Y, Han W:CMTM5-vl, a four-transmembrane protein, presents a secreted form released via a vesicle-mediated secretory pathway. BMB Rep 2010,43:182-187.
    [101]Shao L, Cui Y, Li H, Liu Y, Zhao H, Wang Y, Zhang Y, Ng KM, Han W, Ma D, Tao Q:CMTM5 exhibits tumor suppressor activities and is frequently silenced by methylation in carcinoma cell lines. Clin Cancer Res 2007,13:5756-5762.
    [102]Shao L, Guo X, Plate M, Li T, Wang Y, Ma D, Han W:CMTM5-vl induces apoptosis in cervical carcinoma cells. Biochem Biophys Res Commun 2009,379:866-871.
    [103]Guo X, Li T, Wang Y, Shao L, Zhang Y, Ma D, Han W:CMTM5 induces apoptosis of pancreatic cancer cells and has synergistic effects with TNF-alpha. Biochem Biophys Res Commun 2009,387:139-142.
    [104]Gotze S, Feldhaus V, Traska T, Wolter M, Reifenberger G, Tannapfel A, Kuhnen C, Martin D, Muller O, Sievers S:ECRG4 is a candidate tumor suppressor gene frequently hypermethylated in colorectal carcinoma and glioma. BMC Cancer 2009,9:447.
    [105]Li LW, Yu XY, Yang Y, Zhang CP, Guo LP, Lu SH:Expression of esophageal cancer related gene 4 (ECRG4), a novel tumor suppressor gene, in esophageal cancer and its inhibitory effect on the tumor growth in vitro and in vivo. Int J Cancer 2009,125:1505-1513.
    [106]Mori Y, Ishiguro H, Kuwabara Y, Kimura M, Mitsui A, Kurehara H, Mori R, Tomoda K, Ogawa R, Katada T, et al:Expression of ECRG4 is an independent prognostic factor for poor survival in patients with esophageal squamous cell carcinoma. Oncol Rep 2007,18:981-985.
    [107]Vanaja DK, Ehrich M, Van den Boom D, Cheville JC, Karnes RJ, Tindall DJ, Cantor CR, Young CY:Hypermethylation of genes for diagnosis and risk stratification of prostate cancer. Cancer Invest 2009, 27:549-560.
    [108]Li L, Zhang C. Li X, Lu S, Zhou Y:The candidate tumor suppressor gene ECRG4 inhibits cancer cells migration and invasion in esophageal carcinoma. J Exp Clin Cancer Res 2010,29:133.
    [109]Nguyen ST. Hasegawa S, Tsuda H, Tomioka H, Ushijima M, Noda M, Omura K, Miki Y:Identification of a predictive gene expression signature of cervical lymph node metastasis in oral squamous cell carcinoma. Cancer Sci 2007,98:740-746.
    [110]Pogribny IP, B eland FA:DNA hypomethylation in the origin and pathogenesis of human diseases. Cell Mol Life Sci 2009,66:2249-2261.
    [111]Wang TP, Hsu SH, Feng HC, Huang RF:Folate deprivation enhances invasiveness of human colon cancer cells mediated by activation of sonic hedgehog signaling through promoter hypomethylation and cross action with transcription nuclear factor-kappa B pathway. Carcinogenesis 2012,33:1158-1168.
    [112]Sakashita K, Mimori K, Tanaka F, Kamohara Y, Inoue H, Sawada T, Hirakawa K, Mori M:Prognostic relevance of Tensin4 expression in human gastric cancer. Ann Surg Oncol 2008,15:2606-2613.
    [1]Sledge GW, Jr.:The challenge and promise of the genomic era. J Clin Oncol 2012,30:203-209.
    [2]Weinstein IB, Joe A:Oncogene addiction. Cancer Res 2008,68:3077-3080; discussion 3080.
    [3]Weinstein IB:Cancer. Addiction to oncogenes--the Achilles heal of cancer. Science 2002,297:63-64.
    [4]Pfeifer GP, Hainaut P:Next-generation sequencing:emerging lessons on the origins of human cancer. Curr Opin Oncol 2011,23:62-68.
    [5]Shokralla S, Spall JL, Gibson JF, Hajibabaei M:Next-generation sequencing technologies for environmental DNA research. Mol Ecol 2012, 21:1794-1805.
    [6]Cronin M, Ross JS:Comprehensive next-generation cancer genome sequencing in the era of targeted therapy and personalized oncology. Biomark Med 2011,5:293-305.
    [7]Cooke S, Campbell P:Circulating DNA and next-generation sequencing. Recent Results Cancer Res 2012,195:143-149.
    [8]Ross JS, Cronin M:Whole cancer genome sequencing by next-generation methods. Am J Clin Pathol 2011,136:527-539.
    [9]Meyerson M, Gabriel S, Getz G:Advances in understanding cancer genomes through second-generation sequencing. Nat Rev Genet 2010, 11:685-696.
    [10]Thomas RK, Baker AC, Debiasi RM, Winckler W, Laframboise T, Lin WM, Wang M, Feng W, Zander T, MacConaill L, et al:High-throughput oncogene mutation profiling in human cancer. Nat Genet 2007,39:347-351.
    [11]Thomas RK, Nickerson E, Simons JF, Janne PA, Tengs T, Yuza Y, Garraway LA, LaFramboise T, Lee JC, Shah K, et al:Sensitive mutation detection in heterogeneous cancer specimens by massively parallel picoliter reactor sequencing. Nat Med 2006,12:852-855.
    [12]Guan YF, Li GR, Wang RJ, Yi YT, Yang L, Jiang D, Zhang XP, Peng Y: Application of next-generation sequencing in clinical oncology to advance personalized treatment of cancer. Chin J Cancer 2012,31:463-470.
    [13]Edlund K, Larsson O, Ameur A, Bunikis I, Gyllensten U, Leroy B, Sundstrom M, Micke P, Botling J, Soussi T:Data-driven unbiased curation of the TP53 tumor suppressor gene mutation database and validation by ultradeep sequencing of human tumors. Proc Natl Acad Sci U S A 2012, 109:9551-9556.
    114] Ley TJ, Mardis ER, Ding L, Fulton B, McLellan MD, Chen K, Dooling D, Dunford-Shore BH, McGrath S, Hickenbotham M, et al:DNA sequencing of a cytogenetically normal acute myeloid leukaemia genome. Nature 2008, 456:66-72.
    [15]International Cancer Genome C, Hudson TJ, Anderson W, Artez A, Barker AD, Bell C, Bernabe RR, Bhan MK, Calvo F, Eerola I, et al:International network of cancer genome projects. Nature 2010,464:993-998.
    [16]Ku CS, Cooper DN, Iacopetta B, Roukos DH:Integrating next-generation sequencing into the diagnostic testing of inherited cancer predisposition. Clin Genet 2012.
    [17]Zhang W, Cui H, Wong LJ:Application of Next Generation Sequencing to Molecular Diagnosis of Inherited Diseases. Top Curr Chem 2012.
    [18]Pritchard CC, Smith C, Salipante SJ, Lee MK, Thornton AM, Nord AS, Gulden C, Kupfer SS, Swisher EM, Bennett RL, et al:ColoSeq provides comprehensive lynch and polyposis syndrome mutational analysis using massively parallel sequencing. J Mol Diagn 2012,14:357-366.
    [19]Jia P, Zhao Z:Personalized pathway enrichment map of putative cancer genes from next generation sequencing data. PLoS One 2012,7:e37595.
    [20]Schramm A, Koster J, Marschall T, Martin M, Schwermer M, Fielitz K, Buchel G, Barann M, Esser D, Rosenstiel P, et al:Next-generation RNA sequencing reveals differential expression of MYCN target genes and suggests the mTOR pathway as a promising therapy target in MYCN-amplified neuroblastoma. Int J Cancer 2012.
    [21]Hardt O, Wild S, Oerlecke I, Hofmann K, Luo S, Wiencek Y, Kantelhardt E, Vess C, Smith GP, Schroth GP, et al:Highly sensitive profiling of CD44(+)/CD24(-) breast cancer stem cells by combining global mRNA amplification and next generation sequencing:Evidence for a hyperactive PI3K pathway. Cancer Lett 2012,325:165-174.
    [22]Git A, Dvinge H, Salmon-Divon M, Osborne M, Kutter C, Hadfield J, Bertone P, Caldas C:Systematic comparison of microarray profiling, real-time PCR, and next-generation sequencing technologies for measuring differential microRNA expression. RNA 2010,16:991-1006.
    [23]Teng X, Xiao H:Perspectives of DNA microarray and next-generation DNA sequencing technologies. Sci China C Life Sci 2009,52:7-16.
    [24]Hurd PJ, Nelson CJ:Advantages of next-generation sequencing versus the microarray in epigenetic research. Brief Funct Genomic Proteomic 2009, 8:174-183.
    [25]Hawkins RD, Hon GC, Ren B:Next-generation genomics:an integrative approach. Nat Rev Genet 2010,11:476-486.
    [26]Schweiger MR, Kerick M, Timmermann B, Isau M:The power of NGS technologies to delineate the genome organization in cancer:from mutations to structural variations and epigenetic alterations. Cancer Metastasis Rev 2011,30:199-210.
    [27]Normanno N, Rachiglio AM, Roma C, Fenizia F, Esposito C, Pasquale R, La Porta ML, Iannaccone A, Micheli F, Santangelo M, et al:Molecular diagnostics and personalized medicine in oncology:Challenges and opportunities. J Cell Biochem 2012.
    [28]Tran B, Brown AM, Bedard PL, Winquist E, Goss GD, Hotte SJ, Welch SA, Hirte HW, Zhang T, Stein LD, et al:Feasibility of real time next generation sequencing of cancer genes linked to drug response:Results from a clinical trial. Int J Cancer 2012.
    [29]Wadelius M, Alfirevic A:Pharmacogenomics and personalized medicine: the plunge into next-generation sequencing. Genome Med 2011,3:78.
    [30]Carlson B:Next Generation Sequencing:The Next Iteration of Personalized Medicine:Next generation sequencing, along with expanding databases like The Cancer Genome Atlas, has the potential to aid rational drug discovery and streamline clinical trials. Biotechnol Healthc 2012, 9:21-25.
    [31]Luo C, Tsementzi D, Kyrpides N, Read T, Konstantinidis KT:Direct comparisons of Illumina vs. Roche 454 sequencing technologies on the same microbial community DNA sample. PLoS One 2012,7:e30087.
    [32]Soares AR, Pereira PM, Santos MA:Next-generation sequencing of miRNAs with Roche 454 GS-FLX technology:steps for a successful application. Methods Mol Biol 2012,822:189-204.
    [33]Caporaso JG, Lauber CL, Walters WA, Berg-Lyons D, Huntley J, Fierer N, Owens SM, Betley J, Fraser L, Bauer M, et al:Ultra-high-throughput microbial community analysis on the Illumina HiSeq and MiSeq platforms. ISME J 2012,6:1621-1624.
    [34]Minoche AE, Dohm JC, Himmelbauer H:Evaluation of genomic high-throughput sequencing data generated on Illumina HiSeq and genome analyzer systems. Genome Biol 2011,12:R112.
    [35]Ondov BD, Varadarajan A, Passalacqua KD, Bergman NH:Efficient mapping of Applied Biosystems SOLiD sequence data to a reference genome for functional genomic applications. Bio informatics 2008,24: 2776-2777.
    [36]Ondov BD, Cochran C, Landers M, Meredith GD, Dudas M, Bergman NH: An alignment algorithm for bisulfite sequencing using the Applied Biosystems SOLiD System. Bioinformatics 2010,26:1901-1902.
    [37]Daum LT, Rodriguez JD, Worthy SA, Ismail NA, Omar SV, Dreyer AW, Fourie PB, Hoosen AA, Chambers JP, Fischer GW:Next-Generation Ion Torrent Sequencing of Drug Resistance Mutations in Mycobacterium tuberculosis Strains. J Clin Microbiol 2012.
    [38]Quail MA, Smith M, Coupland P, Otto TD, Harris SR, Connor TR, Bertoni A, Swerdlow HP, Gu Y:A tale of three next generation sequencing platforms:comparison of Ion Torrent, Pacific Biosciences and Illumina MiSeq sequencers. BMC Genomics 2012,13:341.
    [39]Vogel U, Szczepanowski R, Claus H, Junemann S, Prior K, Harmsen D: Ion torrent personal genome machine sequencing for genomic typing of Neisseria meningitidis for rapid determination of multiple layers of typing information. J Clin Microbiol 2012,50:1889-1894.
    [40]Liu L, Li Y, Li S, Hu N, He Y, Pong R, Lin D, Lu L, Law M:Comparison of next-generation sequencing systems. J Biomed Biotechnol 2012, 2012:251364.
    [41]Teo SM, Pawitan Y, Ku CS, Chia KS, Salim A:Statistical challenges associated with detecting copy number variations with next-generation sequencing. Bioinformatics 2012.
    [42]Garcia-Alcalde F, Okonechnikov K, Carbonell J, Cruz LM, Gotz S, Tarazona S, Dopazo J, Meyer TF, Conesa A:Qualimap:evaluating next-generation sequencing alignment data. Bioinformatics 2012,28:2678-2679.
    [43]Fu L, Niu B, Zhu Z, Wu S, Li W:CD-HIT:accelerated for clustering the next generation sequencing data. Bioinformatics 2012.
    [44]Mullins JG:Structural modelling pipelines in next generation sequencing projects. Adv Protein Chem Struct Biol 2012,89:117-167.
    [45]Preston MD, Manske M, Horner N, Assefa S, Campino S, Auburn S,. Zongo I, Oudraogo JB, Nosten F, Anderson T, Clark TG:VarB:A Variation Browsing and analysis tool for variants derived from next-generation sequencing data. Bioinformatics 2012.
    [46]Borozan I, Wilson S, Blanchette P, Laflamme P, Watt SN, Krzyzanowski PM, Sircoulomb F, Rottapel R, Branton PE, Ferretti V:CaPSID:A bioinformatics platform for computational pathogen sequence identification in human genomes and transcriptomes. BMC Bioinformatics 2012,13:206.
    [47]Brautigam A, Mullick T, Schliesky S, Weber AP:Critical assessment of assembly strategies for non-model species mRNA-Seq data and application of next-generation sequencing to the comparison of C(3) and C(4) species. J Exp Bot 2011,62:3093-3102.
    [48]Sajnani MR, Patel AK, Bhatt VD, Tripathi AK, Ahir VB, Shankar V, Shah S, Shah TM, Koringa PG, Jakhesara SJ, Joshi CG:Identification of novel transcripts deregulated in buccal cancer by RNA-seq. Gene 2012, 507:152-158.
    [49]Liu P, Fang X, Feng Z, Guo YM, Peng RJ, Liu T, Huang Z, Feng Y, Sun X, Xiong Z, et al:Direct sequencing and characterization of a clinical isolate of Epstein-Barr virus from nasopharyngeal carcinoma tissue by using next-generation sequencing technology. J Virol 2011,85:11291-11299.
    [50]Kwok H, Tong AH, Lin CH, Lok S, Farrell PJ, Kwong DL, Chiang AK: Genomic sequencing and comparative analysis of Epstein-Barr virus genome isolated from primary nasopharyngeal carcinoma biopsy. PLoS One 2012,7:e36939.
    [51]Nichols AC, Yoo J, Palma DA, Fung K, Franklin JH, Koropatnick J, Mymryk JS, Batada NN, Barrett JW:Frequent mutations in TP53 and CDKN2A found by next-generation sequencing of head and neck cancer cell lines. Arch Otolaryngol Head Neck Surg 2012,138:732-739.
    [52]Peled N, Palmer G, Hirsch FR, Wynes MW, Ilouze M, Varella-Garcia M, Soussan-Gutman L, Otto GA, Stephens PJ, Ross JS, et al:Next-generation sequencing identifies and immunohistochemistry confirms a novel crizotinib-sensitive ALK rearrangement in a patient with metastatic non-small-cell lung cancer. J Thorac Oncol 2012,7:el4-16.
    [53]Keller A, Backes C, Leidinger P, Kefer N, Boisguerin V, Barbacioru C, Vogel B, Matzas M, Huwer H, Katus HA, et al:Next-generation sequencing identifies novel microRNAs in peripheral blood of lung cancer patients. Mol Biosyst 2011,7:3187-3199.
    [54]Daniels M, Goh F, Wright CM, Sriram KB, Relan V, Clarke BE, Duhig EE, Bowman RV, Yang IA, Fong KM:Whole genome sequencing for lung cancer. J Thorac Dis 2012,4:155-163.
    [55]Campbell PJ, Stephens PJ, Pleasance ED, O'Meara S, Li H, Santarius T, Stebbings LA, Leroy C, Edkins S, Hardy C, et al:Identification of somatically acquired rearrangements in cancer using genome-wide massively parallel paired-end sequencing. Nat Genet 2008,40:722-729.
    [56]Stephens PJ, Greenman CD, Fu B, Yang F, Bignell GR, Mudie LJ, Pleasance ED, Lau KW, Beare D, Stebbings LA, et al:Massive genomic rearrangement acquired in a single catastrophic event during cancer development. Cell 2011,144:27-40.
    [57]Russnes HG, Navin N, Hicks J, Borresen-Dale AL:Insight into the heterogeneity of breast cancer through next-generation sequencing. J Clin Invest 2011,121:3810-3818.
    [58]Ozcelik H, Shi X, Chang MC, Tram E, Vlasschaert M, Di Nicola N, Kiselova A, Yee D, Goldman A, Do war M, et al:Long-range PCR and next-generation sequencing of BRCA1 and BRCA2 in breast cancer. J Mol Diagn2012,14:467-475.
    [59]Desmedt C, Voet T, Sotiriou C, Campbell PJ:Next-generation sequencing in breast cancer:first take home messages. Curr Opin Oncol 2012, 24:597-604.
    [60]Wu Q, Lu Z, Li H, Lu J, Guo L, Ge Q:Next-generation sequencing of microRNAs for breast cancer detection. J Biomed Biotechnol 2011, 2011:597145.
    [61]Stephens PJ, McBride DJ, Lin ML, Varela I, Pleasance ED, Simpson JT, Stebbings LA, Leroy C, Edkins S, Mudie LJ, et al:Complex landscapes of somatic rearrangement in human breast cancer genomes. Nature 2009, 462:1005-1010.
    [62]Radovich M:Next-generation sequencing in breast cancer:translational science and clinical integration. Pharmacogenomics 2012,13:637-639.
    [63]Holbrook JD, Parker JS, Gallagher KT, Halsey WS, Hughes AM, Weigman VJ, Lebowitz PF, Kumar R:Deep sequencing of gastric carcinoma reveals somatic mutations relevant to personalized medicine. J Transl Med 2011,9:119.
    [64]Mardis ER:Applying next-generation sequencing to pancreatic cancer treatment. Nat Rev Gastroenterol Hepatol 2012,9:477-486.
    [65]Budhu A, Wang XW:At the cancer steering wheel:defining key genomic drivers of liver cancer with next generation sequencing. J Hepatol 2012, 56:1412-1414.
    [66]Li S, Mao M:Next generation sequencing reveals genetic landscape of hepatocellular carcinomas. Cancer Lett 2012.
    [67]Marquardt JU, Galle PR, Teufel A:Molecular diagnosis and therapy of hepatocellular carcinoma (HCC):an emerging field for advanced technologies. J Hepatol 2012,56:267-275.
    [68]Cheng Y, Wang J, Shao J, Chen Q, Mo F, Ma L, Han X, Zhang J, Chen C, Zhang C, et al:Identification of novel SNPs by next-generation sequencing of the genomic region containing the APC gene in colorectal cancer patients in China. OMICS 2010,14:315-325.
    [69]Timmermann B, Kerick M, Roehr C, Fischer A, Isau M, Boerno ST, Wunderlich A, Barmeyer C, Seemann P, Koenig J, et al:Somatic mutation profiles of MSI and MSS colorectal cancer identified by whole exome next generation sequencing and bioinformatics analysis. PLoS One 2010, 5:el5661.
    [70]Cowey CL, Hutson TE:Molecularly targeted agents for renal cell carcinoma:the next generation. Clin Adv Hematol Oncol 2010,8:357-360, 361-354.
    [71]Kim J, Yu J:Interrogating genomic and epigenomic data to understand prostate cancer. Biochim Biophys Acta 2012,1825:186-196.
    [72]Collins CC, Volik SV, Lapuk AV, Wang Y, Gout PW, Wu C, Xue H, Cheng H, Haegert A, Bell RH, et al:Next generation sequencing of prostate cancer from a patient identifies a deficiency of methylthioadenosine phosphorylase, an exploitable tumor target. Mol Cancer Ther 2012,11:775-783.
    [73]Chow A, Amemiya Y, Sugar L, Nam R, Seth A:Whole-transcriptome Analysis Reveals Established and Novel Associations with TMPRSS2: ERG Fusion in Prostate Cancer. Anticancer Res 2012,32:3629-3641.
    [74]Bolton KL, Ganda C, Berchuck A, Pharaoh PD, Gayther SA:Role of common genetic variants in ovarian cancer susceptibility and outcome: progress to date from the Ovarian Cancer Association Consortium (OCAC). J Intern Med 2012,271:366-378.
    [75]Barzon L, Militello V, Lavezzo E, Franchin E, Peta E, Squarzon L, Trevisan M, Pagni S, Dal Bello F, Toppo S, Palu G:Human papillomavirus genotyping by 454 next generation sequencing technology. J Clin Virol 2011,52:93-97.
    [76]Dutton-Regester K, Hayward NK:Reviewing the somatic genetics of melanoma:from current to future analytical approaches. Pigment Cell Melanoma Res 2012,25:144-154.
    [77]Lindeman N:Molecular diagnostics of lung cancers at the Brigham and Women's Hospital and Dana-Farber Cancer Institute:technology in rapid evolution. Arch Pathol Lab Med 2012,136:1198-1200.
    [78]Gustin JP, Cosgrove DP, Park BH:The PIK3CA gene as a mutated target for cancer therapy. Curr Cancer Drug Targets 2008,8:733-740.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700