改性粘土治理有害赤潮对生态环境的影响初探
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以室内实验为基础,研究了改性粘土治理有害赤潮的方法对生态环境的影响。研究结果表明:有机和无机改性粘土对溶解氧(DO)、化学耗氧量(COD)、pH等主要水质因子均有改善作用;对营养盐,尤其是磷酸盐有一定的吸附作用,在外加磷酸盐为0-0.3μmol/ml范围内,吸附量随水体中磷酸盐浓度的增加而增大,有机改性粘土对海水中磷酸盐的吸附能力为:有机改性粘土Ⅰ>有机改性粘土Ⅱ>有机改性粘土Ⅲ。通过有机改性粘土对磷酸盐的吸附-再释放情况,进一步探讨了其磷酸盐的释放对赤潮异弯藻(Heterosigma akashiwo)、东海原甲藻(Prorocentrum donghaiense)等赤潮生物生长的影响。实验结果显示,经过有机改性的粘土有利于提高其对磷酸盐的吸附能力,降低对磷酸盐的解吸率,利用有机改性粘土治理赤潮可以缓解海水富营养化程度,即使被吸附的部分磷酸盐能缓慢释放,但仍不足以维持赤潮生物的正常生长。无机改性粘土对磷酸盐和硝酸盐与有机改性粘土有相似的吸附性能。其添加剂PAC的重金属含量符合沉积物排放要求,不会对环境造成压力。
    其次,以太平洋牡蛎(Crassostrea gigas)幼贝为对象,研究了有机改性粘土Ⅱ和无机改性粘土在对海洋底栖生物的影响。急性毒性试验中二者对牡蛎幼贝的半致死浓度(LC50)分别为4.62 g/L和2.67 g/L,均远远大于改性粘土去除赤潮藻的浓度。在能够有效去除赤潮微藻的粘土浓度条件下,经慢性毒性试验发现改性粘土对牡蛎幼贝成活率、生长和摄食略有降低,但无明显影响,在牡蛎幼贝鳃组织和消化道组织的超微结构中未发现机械损伤。
    最后,研究了改性粘土在对去除有毒赤潮藻过程中对底栖生物的影响。以能产生麻痹性贝毒(PSP)的塔玛亚历山大藻(A. tamarense,ATHK)为例,研究了PSP在水体中和粘土沉积层中的分布,发现改性粘土去除塔玛亚历山大藻能有效降低水体中藻细胞浓度及其所携带的PSP毒素。由于藻细胞破裂,虽然沉积层中藻细胞体内部分PSP毒素溢
The primary objective of this study was to determine the environmental influences of clayflocculation in red tide blooms through laboratory test. The result as follows: When modifiedclay to control algae bloom, those water quality parameters were controlled or smoothed, suchas Dissolved Oxygen (DO), Chemical Oxygen Demand (COD) and pH. Moreover those clayscould absorp the eutrophic salt, especially phosphate. When phosphorus concentration rangedfrom 0.1μmol/mL to 0.3 μmol/mL, the phosphate adsorption amounts increased on organicmodified clays. The phosphate adsorption ability of different organic clays is: modifiedclayⅠ> modified clayⅡ> modified clayⅢ> unmodified clay. However, there is no obviousremoval ability of nitrate. To study the absorption-desorption effects on ecology, wesimulated the phosphate desorption and the consequent effect to the growth of Heterosigmaakashiwo and Prorocentrum donghaiense., the result show that d modified clay could holdmore phosphate on itself, which will be helpful to mitigate eutrophication. Moreover,phosphate desorption in sea water could not afford phytoplankton growth. Inorganic modifiedclay is similar to the organic clays of the ability on nitrates. Mitigation or control the red tid byorganic/ inorganic modified clays could enchance the water quality parameters.
    Then modified clays were tested for the potential environmental impact on benthicorganism. Laboratory experiments were conducted to investigate the survival and physiologicalchanges of infant oyster (Crassostrea gigas). LC50 (96h ) of organic and inorganic modifiedclay are 4.62 g/L和2.67g/L,which is higher than clay concentration in practical red tidmanagment. The percentage survivals of oysters,Filtering rate and growth in modified clays at
    practical concentration are almost equal to those in control during acute and chronic toxicity. in56 days erposure in 0.10 g /L organic or inorganic modified clays. Results of TransmissionElectron microscopy showed that both clays have no physical hurt to the gill and digestivegland of infant oyster after chronic test. Clay modification was not acutely or chronically toxicin most cases.Finally, because paralytic Shellfish Poisoning (PSP) is the most serious and widespreadshellfish toxicity, this study was undertaken to assess the ability of phosphatic clay to removethe toxic dinoflagellate, A. tamarense, which produce PSP toxins. Results showed that theaddition of aqueous slurry can reduce A. tamarense and PSP from seawater. In clay sedimentwhen upon rupture or lysing of the cells, the toxins can be released into the water column asextracelluar toxin, however, it has little effect on oyster compared with control for toxinsdiluted in seawater after cell break, and oyster get lease toxicity form gulf or rupture the PSP inseawater than algae directly. Moreover, laboratory tests simulated the toxicity to C. gigas byclay flocculation of the toxic dinoflagellate, A. tamarense (ATHK), Heterosigma akashiwo andProrocentrum donghaiense. The result suggests that clay flocculation of algae cell will increasethe survival rate of infant oyster compared with untreated blooms. Therefore, modified clayshave prospective future in control harmful algal blooms as emergency methods.
引文
1. 奥田庚二.赤潮沉淀法.日本公开特许公报,1989,JP 平 1-285134
    2. 奥田庚二.赤潮沉淀法.日本公开特许公报,1990,JP 平 2-86888
    3. 曹西华.有机改性粘土去除赤潮生物的机制与方法研究. 2004,中国科学院研究生院博士学位论文,P29
    4. 曹西华,俞志明.季铵盐类化合物灭杀赤潮藻的试验研究. 海洋与湖沼,2003,34(2):201-207
    5. 曹西华,俞志明.有机改性粘土去除有害赤潮藻研究.应用生态学报,2003,14(7):1169-1172
    6. 曹西华,宋秀贤,俞志明.改性粘土去除赤潮生物及其对养殖生物的影响.环境科学,2004,25(5):148-152
    7. 陈慈美,苏泽彤.蒙托石-Ca(OH)2对河口赤潮的抑制效应及其机制的实验室模拟研究.海洋通报,1989(2):75-85
    8. 大须贺龟丸.1983,赤潮处理剂およびその制造方法,日本公开特许公报,JP 昭58-32805
    9. 代田昭彦. 赤潮防治策(特集),海洋污染. 产业と环境,1977(6): 37-42
    10. 代田昭彦. 赤潮-发生机构と对策. 东京: 恒星社厚生阁,1980,105-124
    11. 戴树桂,1997。环境化学。北京:高等教育出版社,200-217
    12. 傅萌,颜天。塔玛亚历山大藻对墨西哥湾扇贝幼贝发育的影响。海洋科学,2000,24(3):8-11
    13. 葛忠华等. 国内外非金属矿资源的开发与利用. 化工生产与技术,1995,2: 3-7
    14. 郭卫东等.台湾海峡,中国近岸海域潜在性富营养化程度的评价. 1980,16(1):64-70
    15. 黑木阳等. 赤潮沉淀法.日本公开特许公报,1989a,JP 平 1-210095
    16. 黑木阳等. 赤潮沉淀法.日本公开特许公报,1989b,JP 平 1-225430
    17. 华泽爱. 赤潮灾害,海洋出版社,1984,p1
    18. 黄民生,史宇凯,朱莉. 微生物絮凝剂净化废水实验研究. 工业水处理, 2000, 20(5):13-15
    19. 龚良玉等. 生物表面活性剂对东海原甲藻生长的影响.中国环境科学,2004,24(6):692-696
    20. 李全生, 俞志明. 用改性粘土去除赤潮生物的优化条件研究.海洋与湖沼,1998, 29(3):313-317
    21. 李文权, 蔡阿根.锌对聚生角毛藻生长影响的研究. 海洋环境科学,1993,12 (1):1-5
    22. 梁松等.暨南大学学报 (赤潮研究专刊). 1989,90-93
    23. 梁松, 钱宏林等.赤潮研究的现状和有关问题.生态科学, 1992(1): 120-126
    24. 梁想, 尹平河, 赵玲等.生物载体除藻剂去除海洋原甲藻赤潮的研究. 中国环境科学,2001,21(1): 15-17
    25. 林昱, 陈孝麟.围隔生态系中可溶性锰对两种形成赤潮藻类增殖的影响.海洋学报,1993,15 (4):91-97
    26. 刘红涛, 李杰, 席宇, 赵以军, 薛乐勋. 铜离子对铜绿微囊藻生长及生理的影响. 郑州大学学报:医学版,2004,39(1):57-60
    27. 陆斗定,齐雨藻、Goebel J.等.东海原甲藻修订及与相关原甲藻的分类学比较.应用生态学报,2003,14(17):1060-1064
    28. 吕颂辉、张玉宇、陈菊芳.东海具齿原甲藻的扫描电子显微结构.应用生态学报,2003,14(17):1070-1072
    29. 马军. 高铁酸盐复合药剂预氧化除藻效能研究. 中国给水排水,1998,14(5): 9-11
    30. 缪锦来,石红旗.赤潮灾害的发展趋势、防治技术及其研究进展.安全与环境学报,2002,2(3):40-44
    31. 潘纲,张明明等.粘土絮凝沉降藻铜绿微囊藻的动力学及其作用机理.环境科学, 2003,24 (5):1-11.
    32. 孙晓霞 张波.无机高分子絮凝剂 PSAS 的制备及其在赤潮防治中的应用, 应用生态学报,2002,13 (11):1468-1470
    33. 汤鸿霄,栾兆坤。聚合氯化铝与传统混凝剂的凝聚一絮凝行为差异[J].环境化学,1997,16(16):497-505
    34. 丸山俊郎等.赤潮处理剂. 日本公开特许公报,1984,昭59-21607
    35. 丸山俊郎等. 酸处理粘土にちる海产赤潮ブランクトンの除去. Nippon suisan Gakkaishi,1987,53 (10):1811-1819
    36. 吕颂辉、张玉宇、陈菊芳.东海具齿原甲藻的扫描电子显微结构.应用生态学报,2003,14(17):1070-1072
    37. 王晓蓉,吴顺年,李万山等.有机粘土矿物对污染环境修复的研究进展.环境化学,1997,16(1):1-14
    38. 王昭萍、李赘、于瑞海等.三倍体牡蛎在繁殖季节的生长研究[J].青岛海洋大学学报,2002,32 (5):701-706
    39. 王镇, 王孔星. 微生物絮凝剂的研究概括.微生物学通报,1993,20 (6):362-367
    40. 尾原忠彦,石田祀郎.赤潮プランクトの防除剂.日本公开特许公报,1990,JP 平2-67205
    41. 魏宏斌,郭藏生.阴阳离子表面活性剂在粘土矿物表面的混合吸附.同济大学学报,1997,24(3):269-274
    42. 吴健, 戴桂馥.微生物细胞的絮凝及微生物絮凝剂. 环境污染与防治,1994,16(6):27-30
    43. 小岛祯男.プランクトン藻类の凝集处理(Ι)凝集处理の室内实验.水处理技术,1961,2(1):21-27
    44. 颜天,傅萌等.塔玛亚历山大藻对栉孔扇贝胚胎和早期幼虫的影响.环境科学学报,2002,22(2):241-246
    45. 俞志明,马锡年,谢阳。粘土矿物对海水中主要营养盐的吸附研究[J]. 海洋与湖沼, 1995,26(2):208-213
    46. 俞志明, 邹景钟, 马锡年.治理赤潮的化学方法.海洋与湖沼,1993,24(3):314-318
    47. 俞志明, 邹景忠, 马锡年. 一种提高粘土矿物去除赤潮生物能力的新方法. 海洋与湖沼,1994,25(2):226-232
    48. 俞志明, 邹景忠, 马锡年等. 粘土矿物去除赤潮生物的动力学研究. 海洋与湖沼,1995,26(1):1-6
    49. 俞志明,邹景忠,马锡年.一种去除赤潮生物更有效的粘土土种类自然灾害学报,1994,3(2):105-109
    50. 俞志明, D V Subba Rao. 粘土矿物对尖刺拟菱形藻多列型生长和藻毒素产生的影响. 海洋与湖沼,1998,29(1):47-52
    51. 张青田,张兆琪. 环境因子对赤潮藻类增殖及相关特性的影响. 海洋湖沼通报,2002,1:79-84
    52. 郑爱荣,沈海为、李文权. 沉积物中磷的存在形式及生物的可利用性. 海洋学报,2004,24(6):49-57
    53. 郑天凌, 庄铁城, 蔡立哲. 微生物在海洋污染环境中的生物修复作用. 厦门大学学报(自然科学版),2001,40(2):524-534
    54. 中华人民共和国国家标准水处理剂聚合氯化铝(GB15892-1955).国家技术监督局1995-12-20 批准,1996-08-01 实施
    55. 周名江,颜天,傅萌,王云峰,于仁诚,李钧.塔玛亚历山大藻对海产双壳类生命活动的影响.海洋学报,2004,3:81-84
    56. 周凡.赤潮的成因、危害及治理.生物学教学,2004,29(1):1-3
    57. 邹华,潘纲,陈灏.壳聚糖改性粘土对水华优势藻铜绿微囊藻的絮凝去除.环境科学,2004,25(6):40-43
    58. Anderson, D.M.. Toxic algal blooms and red tides: a global perspective Red Tides. Biology, Environmental Science and Toxicology, 1989: 11-16
    59. Anderson M. D. Turning back the harmful red tide. Nature, 1997, 388: 513-514
    60. Anderson, Donald M., David M. Kulis., Yu-Zao Qi. Paralytic shellfish poisoning in southern China . Toxicon, 1996, 34 (5): 579-590
    61. Barbara Kirkpatrick, Lora E. Fleming, Dominick Squicciarini et al. Literature review of Florida red tide: implications for human health effects. Harmful Algae, 2004, 3 (2):99-115
    62. Boyd, S. A., Laynes, W. F., Ross, B. S. Immobilization of organic contaminants by organoclays: Application to soil restoration and hazardous waste contaminants. In: Baker R A (ed.) Organic substances and sediments in water, 1991,1: 181-200
    63. Brownlee E F, Sellner S G, Sellner K G, Prorocentrum minimum blooms: potential impacts on dissolved oxygen and Chesapeak Bay oyster settlement and growth. Harmful algae, 2005, 4: 593-602
    64. Cembella, Allan D., John J. Sullivan., Gregory L. Boyer. Variation in paralytic shellfish toxin composition within the Protogonyaulax tamarensis/catenella species complex: red tide dinoflagellates Biochemical Systematics and Ecology. 1987, 15 (2):171-186
    65. Cheung S G. Size effects of suspended particles on gill damage in green-lipped mussel Perna viridis . Marine pollution bulletin, 2005, 51: 801-810
    66. Denn et al., Effect of Cyrodinium (F.Aureolion )on pectan mamius (post laver, Juveniles and adults). Toxic marine phytoplacten, Science Publishing Co. Inc, 1990: 132-136
    67. Edvardsen, B., Moy, F., Paasche, E.. Hemolytic activity in extracts of Chrysochromulina polylepis grown at differentlevels of selenite and phosphate. In: Granéli, E., Sundstr?m, B., Edler, L., Anderson, D.M. (Eds.), Toxic Marine Phytoplankton. Elsevier Science Co. Inc., New York, , 1990,284–289
    68. Elisabeth, M.G., Holger, M., Gerharo, S., Release and ecological impact of algicidal hydrolysable polyphenols in Myriophyllum spicatum. Phytochemistry, 1996, 41(1): 133-138
    69. Frace A M, Hall S, Brodwick M S, Eaton D C. Effects of saxtoxin analogues and ligand competition on sodium currents of squid axons. Am. J Physiol., 1986, 251: 159-166
    70. Froelich P N.. Kinetic control of dissolved phosphate in natural rivers and estuaries, A primer on the phosphate buffer mechanism.Limnol Oeeanogr, 1988, 33 (4):649-668
    71. Gang Pan, Ming-Ming Zhang, Hao Chen, Hua Zou and Hai Yan. Removal of cyanobacterial blooms in Taihu Lake using local soils. I. Equilibrium and kinetic screening on the flocculation of Microcystis aeruginosa using commercially available clays and minerals. Environmental Pollution, 2006, 14 (2):195-200
    72. G. Morel,A.Graciaa,J. Lachaise et al.Enhanced nitrate ultrafiltration by cationic surfactant. Journal of Membrane Science,2001, 56 (1):1-12
    73. Granéli, E., Carlsson, P., Legrand, C.. The role of C, N and P in dissolved and particulate organic matter as a nutrient source for phytoplankton growth, including toxic species. Aquat. 1999, 33: 17–27
    74. Hallegraeff, G.M. A review of harmful algal blooms and their apparent global increase. Phycologya. 1993, 32 (2): 79-99
    75. Hayashida Shinsaku, Furukawa Kensuke, Yoshino Teizo, Tanaka Shinji. Pseudomonas stutzeri-containing compositions for red tide control. 1993, 5: 11-16
    76. Helenius, A., Simons, K.. Solubilization of membranes by detergents. Bio-Chem Biophys Acta, 1975, 415: 29-79
    77. Hiroshi, k., Fumika, A., et al.. An allelopathic fatty acid from the brown alga Cladosiphon okamuranus. Phytochemistry, 1988, 27 (3): 731-735
    78. Hohman, J. C., Martin, D. F.. The continued use of copper sulfate pentahydrate in the Hillsborough River reservoir. Florida Scientist, 1995, 58 (2): 83-91
    79. H. Zou, G. Pan, H. Chen and X.Z. Yuan, Removal of cyanobacterial blooms in Taihu lake using local soils. II. Effective removal of Microcystis aeruginosa using local soils and sediments modified by Chitosan, Environmental Pollution, 2006, 141 (2): 201–205
    80. Igarishi, T. Y. Oshima , M. Murata. and T. Yasumoto. Chemical studies on prymnesins isolated from Prymnesium parvum. Harmful Marine Algal Blooms, 1995: 303-308
    81. Jaynes, W. F., Boyd, S. A.. Clay mineral type and organic compound sorption by hexadecyltrimethylammonium exchanged clays. Soil Sci. Soc. Amer. J., 1991, 55: 43-48
    82. Johansson, N., Graneli, E., 1999. Influence of different nutrient conditions on cell density, chemical composition and toxicity of Prymnesium parvum (Haptophyta) in semi-continuous cultures. J. Exp. Mar. Biol. Ecol., 1999, 239: 243–258
    83. Jeroen C. J. M. van den Bergh, Paulo A. L. D. Nunes, Harm M. Dotinga, Wiebe H. C. F. Kooistra, Engel G. Vrieling and Louis Peperzak. Exotic harmful algae in marine ecosystems: an integrated biological–economic–legal analysis of impacts and policies . Marine Policy, 2002, 26 (1): 59-74
    84. Johannes A. Hagstr?m., Edna Granéli. Removal of Prymnesium parvum (Haptophyceae) cells under different nutrient conditions by clay. Harmful Algae, 2005, 4: 49–260
    85. Kanako Naito, Masakazu Matsui and Ichiro Imai. Ability of marine eukaryotic. red tide microalgae to utilize insoluble iron. Harmful Algae, 2005, 4 (6): 1021-1032
    86. Kitae Baek, Bo-Kyong Kim, Ji-Won Yang. Application of micellar enhanced ultrafiltration for nutrients removal Desalination, 2003, 156 (1-3): 137-144
    87. Kuninao Tada, Masakazu Morishita, Ken-ichiro Hamada, Shigeru Montani and Machiko Yamada.Standing Stock and Production Rate of Phytoplankton and a Red Tide Outbreak in a Heavily Eutrophic Embayment, Dokai Bay. Japan Marine Pollution Bulletin, 2001, 42 (11): 1177-1186
    88. Kutt, E C , Martin, D F. Report on a biochemical red tide repressive agent. Environ. Lett , 1974, 9: 195–208
    89. K.W. Bruland, J.R. Donat and D.A. Hutchins, Bruland et al. Interactive influences of bioactive trace metals on biological production in oceanic waters, Limnol. Oceanogr. 1991,36: 1555–1577
    90. Kijima Yasuhiko, Oshida Yutaka, Nishimura Kunio, Wakao Yoshiji. Biofouling prevention of marine organism adhering to waterside of process pipings in seawater cooling system. Jpn. Kokai Tokkyo Koho JP 2000070954 A2 7 Mar 2000.
    91. Lantz. S., Lin. J. E., Mueller, J. G.. Effects of surfactants on fluranthrene mineralization by Sphingomonas paucimobilis Strain EPA 505. In: Hinchee R E, Brockman FJ and Vogel CM eds. Microbial processes for Bioremediation. Columbus: Battelle press, 1995: 7-14
    92. Leverone J R. Growth and survival of caged adult bay scallops (Argopecten irradians concentricus) in Tampa Bay with respect to levels of turbidity, suspended solids and chlorophyll [J]. Florida Science , 1995,58:216–227
    93. MacDonald B A, Bacon G S, Ward J E. Physiological response of infernal (Mya arenaria) and epifaunal (Placopecten magellanicus) bivalves to variations in the concentration and quality of suspended particles II. Absorption efficiency and scope of growth. Journal of Experimental Marine Biology and Ecology, 1998, 219:127–141
    94. MacDonald D.D., Carr R.S., Calder F.D., Long, E.R., Ingersoll C.. Development and evaluation of sediment quality, guidelines for Florida coastal waters. Ecotoxicology.1996,5: 253– 278
    95. Marie-Claude Archambault V. , Monica Bricelj Jon Grant , Donald M. Anderson,Effects of suspended and sedimented clays on juvenile hard clams, Mercenaria mercenaria, within the context of harmful algal bloom mitigation. Marine Biology, 2004, 144: 553–565
    96. Mario R S , Johannes A H, Edna G et al.. Removal of Prymnesium parvum (Haptophyceae) and its toxins using clay minerals. [J].Harmful Algae, 2005, 4: 261–274
    97. Mario R. Sengco,Donald M. Anderson.Controlling harmful algal blooms through clay flocculation. The Journal of Eukaryotic Microbiology, 2004, 51 (2): 169–172
    98. Martin D. F., Martin, B. B.. Aponin, a cytolytic factor toward the red tide organism, Gymnodinium breve. Biological assay and preliminary characterization APONIN, J. Environ. Sci. Health, Part A, 1976, 11 (10-11): 613-622
    99. Michael A. Lewis., Darrin D. Dantin, Calvin C. Walker, et al. Toxicity of clay flocculation of the toxic dinoflagellate, Karenia brevis, to estuarine invertebrates and fish.Harmful Algae,2003, 2: 235–246
    100. Moon R. E., Martin D. F.. Potential management of red tide blooms. Treatment with concentrated, frozen Gomphosphaeria aponina cultures. J. Environ. Sci. Health, Part A, 1979, 14 (3): 195-199
    101. Morlais Martin, Patrick, Lassus. Influence de l'azote et du phosphore sur la croissance et la toxicite de prorocentrum lima (Ehrenberg) Dodge Cryptogamie, Algol. 1992, 13 (3):187-195
    102. Negoro Masaaki, Shioji Norio, Akamatsu Takehito. Agents for inhibiting red-tide plankton in seawater. 1993, 7 (51): 69-88
    103. Newcombe C.P., MacDonald D. Effects of suspended sediment on aquatic ecosystems. [J] North American Journal of Fisheries Management, 1991, 11:72–82
    104. Okaichi, T., Montani, S., Lirdwitayaprasit, T., et al.. Countermeasures aimed at the Chattonella red tide in Shido bay, the Seto Inland Sea in 1987.Second Asian Fisheries Forum, Tokyo (Japan), 1989: 17-22
    105. Oshima, Y., Blackbun, S.I.., G.N. Hallegreaf. Comparative study on paralytic shellfish toxin profiles of the dinoflagellate Gymnodinium catenatum from three different countries. Marine Biology. 1993, 116: 471-476
    106. Parthasarathy N.Buflle J.Study of polymeric aluminum (Ⅲ) hydroxide solutions for application in waste water treatment.Properties for the polymer and optimal conditions for Preparation,Wat.Res [J].1985,19:25-24
    107. Peta J. Mudie, André Rochon and Elisabeth Levac, Palynological records of red tide-producing species in Canada: past trends and implications for the future . Palaeogeography, Palaeoclimatology, Palaeoecology, 2002,180 (1-3): 159-186
    108. P.K.S. Shin, F.N. Yau, et al. Responses of the green-lipped mussel Perna viridis (L.) tosuspended solids, Marine Pollution Bulletin , 2002, 45: 157–162
    109. Richard H. Pierce, Michael S. Henry, Christopher J. Higham,et al. Removal of harmful algal cells (Karenia brevis) and toxins from seawater culture by clay flocculation. Harmful Algae,2004, 3: 141–148
    110. Richardson B A. The impact of forest road construction on the benthic invertebrate fauna of a coastal stream in southern New South Wales [J]. Bulletin of Australian Society of Limnology, 1985, 10: 65–88
    111. Sam Geun Lee, Hak Gyoon Kim, et al. Harmful algal blooms(red tides): management and mitigation in the Republic of Korea, http://www.pices.int/publications/scientific_reports/Report23/HAB_Korea.pdf
    112. Seed R., Richardson C A. Evolutionary traits in Perna viridis (Linnaeus) and Septifer virgatus (Wiegmann) (Bivalvia: Mytilidae) [J]. Journal of Experimental Marine Biology and Ecology, 1999 (239): 237–287.
    113. Seki, T., M. Satake, L. Mackenzie. Gymnodimine, A novel toxic imine isolated from the Foveaux Strait oysters and Gymnodinium sp. Harmful and Toxic Algal Blooms, 1996: 495-498
    114.Sato Masao, Kageyama Mikio. Compositions for improving the living enviroment of aquatic animals and plants. Jpn. Kokai Tokkyo Koho JP 61209285 A2 17 Sep 1986
    115. Sheng, G., Wang, X., Wu, S., Body, S. A.. Enhanced sorption of organic contaminants by smectitic soils modified with a cationic surfactant. J. Environ. Qual., 1998, 27: 806-814
    116. Shirota A. Red tide problem and countermeasures ( Ⅱ) . International Journal of Aquaculture and Fisheries Technology, 1989, 1: 195-293
    117.Wagner J., Chen H., Brownawell J. B., Westall C. J.. Use of cationic surfactants to modify soil surface to promote sorption and retard migration of hydrophobic organic compounds. Environmental Science and Technology, 1994(28): 231-237
    118. Shumway, S. A review of the effects of algal blooms on shellfish and aquaculture. World Aquaculture Soc., 1990, 21: 65– 104
    119. Shunmay S E. A review of the effects of algal blooms on shellfish culture. Journal of the World Aquaculture Society, 1990, 21: 65-104
    120. Sikkema, J., De Bont, JAM., Poolman, B.. Mechanisms of membrane toxicity of hydrocarbons. Microbiol Rev., 1995, 59: 201-222
    121. Smayda, T. Novel and nuisance phytoplankton blooms in the sea: evidence for a global epidemic. toxic Marine Phytoplankton.1990:29-40
    122. Stace E. Beaulieu, Mario R. Sengco, Donald M. Anderson, Using clay to control harmful algal blooms: deposition and resuspension of clay/algal flocs. Harmful Algea, 2005, 4 (1): 123-138
    123. Swartzen-Allen, S. L. and Matijevic. E.. Surface and solloid chermistry of clays. Chemical Review,1974, 74 (3): 38-400
    124. Terao, K., E, Tto., T. Igarashi. Effects of prymnesin, maitotoxin and gymnodimine on the structure of the gills of small fish akahire, Tanichthys albonubes. Harmful and Toxic Algal Blooms. 1996: 479-482.
    125. Tomas, Carmelo R.and Daniel G. Baden. The influence of phosphorus source on the growth and cellular toxic content of the benthic dinoflagellate Prorocentrum lima. Toxic Phytoplankton Blooms in the Sea.,1993: 565-570
    126. USEPA, Quality Criteria for Water EPA-440/5-86-001 [M]. US Environmental Protection Agency, Office of Water, Washington, DC. 1986.
    127. White A W. Marine zooplankton can accumulate and retain dinoflagellate toxins and cause dish kills. Limnology Oceanography, 1981, 26(1): 103-109
    128. Xu, S., Boyd, A. S.. Cationic surfactant adsorption by swelling and nonswelling layer silicates. Langmuir, 1995, 11: 2508-2514
    129. Yasumoto,T.. Marine microorganisms toxins — an overview. Toxic Marine Phytoplankton. 1990: 3-8
    130. Yu Z-M, Zou J-Z, Ma X-N. Application of Clays to Removal of Red Tide Organisms I. Coagulation of Red Tide Organisms with Clays. Chinese Journal of Oceanology and Limnology, 1994, 12 (3): 193~200
    131. Yu Z-M, Zou J-Z, Ma X-N. Application of Clays to Removal of Red Tide Organisms II. Coagulation of Different Species of Red Tide Organisms with Montmorillonite and Effect of Clay Pretreatment. Chinese Journal of Oceanology and Limnology, 1994, 12 (4):316~32

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700