无机胶粘贴碳纤维布加固钢筋混凝土梁高温性能的试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着经济的发展,我国的土建行业已经逐渐由“建造”转为“维护、加固”阶段,在众多加固方法中,粘贴碳纤维布(CFRP)加固混凝土构件的方法因碳纤维布轻质高强、耐腐蚀等优点而得到越来越广泛的应用。目前用于粘贴碳纤维布的粘剂大多为环氧树脂类有机胶,但是,这些有机胶玻璃转化温度一般较低,在65℃~150℃之间,在较高温度或者火灾下很容易失去粘结强度,致使碳纤维布脱落从而失去加固效果。针对这个问题,本课题通过试验,使用无机胶凝材料MOC(以下简称MOC)替代有机胶粘贴碳纤维布加固混凝土梁并进行耐高温试验,研究无机胶MOC粘帖碳纤维布加固混凝土梁的抗高温性能。
     本试验所使用的无机胶MOC的主要成分是氯化镁、氧化镁和硅微粉,其在常温下的力学性能除抗弯强度稍逊于环氧树脂类有机胶,其它力学性能均不低于环氧树脂类有机胶。本文通过外表没有采取防火保护的MOC试块高温后的抗压及抗折试验,研究了MOC的耐高温性能,拟合了MOC试块高温后抗压及抗折强度与煅烧温度关系的表达式。试验结果表明在200℃内该胶的抗压强度几乎不降低,反而有一些升高,温度超过250℃以后,强度陡然下降,达到350℃时的抗压强度仅约为常温时的59.74%,温度超过400℃时该胶完全破坏。通过外表采取防火保护的MOC试块的耐高温试验,研究了防火涂料的防护效果以及MOC的耐高温性能,试验结果表明在400℃的高温下,有防火保护的MOC试块仍然有很高的抗压强度,比未加防火保护的MOC试块提高了4.68倍,由此可见采取有效的防火保护可以显著减少无机胶MOC抗压强度的损失。
     本文还对1根采取防火保护并使用有机胶粘贴碳纤维布加固的混凝土简支梁、1根采取防火保护并使用无机胶MOC粘贴碳纤维布加固的混凝土简支梁以及1根不采取防火保护使用无机胶粘贴碳纤维布加固的混凝土简支梁进行高温试验研究,试验结果表明在有防火保护的情况下,有机胶、无机胶粘贴混凝土梁的截面温度场变化规律基本一致,证明两者在高温下的导热性能基本相同,但是,有机胶粘贴的碳纤维布在试验后已经烧成丝状,与混凝土剥离,证明有机胶已经失效,而无机胶粘结的碳纤维布在试验后基本没有剥离破坏,胶层尚有一定的粘结强度,证明无机胶具有较好的耐高温性能。同时,有机胶粘贴碳纤维布加固混凝土梁的跨中挠度达到无机胶粘贴碳纤维布加固混凝土梁的1.5倍,表明无机胶有更好的耐高温性能。对比无机胶粘贴碳纤维布加固混凝土梁有无防火涂料的试验结果表明,没有防火涂料的混凝土梁的截面温度、表层温度以及内部钢筋温度的升高速度、最大值都大大高于涂有防火涂料的混凝土梁,证明了防火涂料对混凝土良好的高温保护作用。同时,没有防火保护的混凝土梁的跨中挠度达到有防火保护的混凝土梁的13.8倍,大大超过了临界值,已经丧失工作能力,而无机胶加固混凝土梁的挠度尚在临界范围之内。
With the development of economy, the civil industry of our country is changing gradually from the stage of 'build'to'maintain and reinforce'. In numerous methods of structural reinforcing, the method of bonding the concrete and CFRP (carbon fiber reinforced polymer) using glues is being used widely and widely due to the lightweight high strength and corrosion resistance of CFRP. At present, the glues used are mainly organic epoxy resin, whose transformation temperature to glass is relatively low (65℃~150℃), resulting that the bonding strength of glues is easily lost in fires and the CFRP is easy to fall off from the concrete. According to this problem, this paper conducted a study on the high temperature behavior of RC beams strengthened with CFRP by inorganic paste through a series of laboratory tests.
     The main components of the inorganic paste MOC used in this study are magnesium chloride, magnesia and silica powder. Its mechanical properties at ordinary temperature are similar with the organic paste except that the flexural strength is a little lower. Through compression and transverse tests on the MOC blocks without fire protection which have been burned under high temperatures, this paper makes a study on the high temperature behavior of MOC and obtained a relationship between the compression and flexural strength and the burning temperatures. Test results showed that the compression strength of MOC blocks does not decrease within 200℃,but increases a little. However, when the burning temperature exceeds 200℃, the compression strength drops suddenly, e.g., it is only 59.74% of the compression strength at normal temperature when the burning temperature is 300℃and the MOC blocks have been totally destroyed when the burning temperature reaches 400℃. Through compression and transverse tests on the MOC blocks with fire protection which have been burned under high temperatures, this paper makes a study on fire resistance of refractory coating. Test results showed that the compression strength at 400℃for the MOC blocks with fire protection is 4.68 times as the strength without fire protection, proving the effect of fire resistance using refractory coating.
     Then, through transverse tests on three RC beams which is bonded using inorganic paste with fire protection, bonded using inorganic paste without fire protection and bonded using organic paste with fire protection respectively, this paper makes a study on the high temperature behavior of RC beams strengthened with CFRP by inorganic paste. Comparison between test results of RC beams which is bonded using inorganic paste with fire protection and bonded using organic paste with fire protection showed that the temperature field of RC sections are similar, indicating that the heat conduction performance of the two pastes is similar. However, the CFRP of RC beams using organic paste has been burned to be filamentous after the test and has fall off the concrete, besides that the CFRP using inorganic paste still stick to the concrete, proving that the performance of fire resistance of inorganic paste is better than that of organic paste. Moreover, the midspan deflection of RC beams using organic paste is 1.5 times as that using inorganic paste. Comparison between test results of RC beams which is bonded using inorganic paste with fire protection and bonded using inorganic paste without fire protection showed that the temperatures of RC sections, RC surfaces and steels without fire protection are all much higher than that with fire protection, indicating that the fire resistance of refractory coating. Moreover, the midspan deflection of RC beams without fire protection is 13.8 times as that with fire protection and has exceeded the limited value, besides that the RC beams with fire protection could still work.
引文
[1]王文炜.FRP加固混凝土结构技术及应用[M].中国建筑工业出版社,2007-
    [2]ACI.440.2R.02:Guide for the Design and Construction of Externally Bonded FRP Systems for Strengthening Concrete Structures-Farmington Hills, Michigan:American Concrete Institute, 2002
    [3]CECS146中国工程建设标准化协会标准-碳纤维片材加固混凝土结构技术规程[S].2003,中国计划出版社,2003年,北京
    [4]吴启鸿,肖学锋,朱东杰.今后若干年内我国火灾发展趋势的探讨消防技术与学科[J].2003,22(5):367-370
    [5]TANG Longgui. Anti.oxidation treatment on carbon fiber [J] Chemical Journal of Chinese Universities,1995,16(8):1310
    [6]陈荣毅,沈祖炎.钢筋混凝土结构抗火设计评述[J]. 工业建筑,1999,(3):13-16
    [7]李卫,过镇海-高温下混凝土的强度和变形性能试验研究[J].建筑结构,1993,26(5):9-16
    [8]Z,Ma, M,Pentti,Temperature analysis of steel-concrete slim floor structures exposed to fire[J]. Helsinki University of technology laboratory of steel structure publications,1999
    [9]李国强,殷颖智,蒋首超.火灾下组合楼板的温度场分析[J].工业建筑,1999,(12):47-49
    [10]陆洲导,朱仁龙.一种预测钢筋混凝土梁耐火时间的方法[J].建筑结构学报,1997,18(1):41-48
    [11]查晓雄,钟善桐.钢筋混凝土受弯构件三面受火时非线性分析[J].华中科技大学学报,2002,(7):92-94
    [12]时旭东,过镇海.不同混凝土保护层厚度钢筋混凝土梁的耐火性能[J].工业建筑,1996,26(9):12-19
    [13]GB 50045-95中华人民共和国国家标准-高层民用建筑设计防火规范[S].中国计划出版社,2005
    [14]GBJ16-87中华人民共和国国家标准建筑设计防火规范[S].中国计划出版社,2001
    [15]Harmathy T Z. Thermal Properties of Concrete at Elevated Temperature [J]. ASTM Journal of Materials,1970,5(1):47-74
    [16]Harada T.Strength, Elasticity and Thermal Properties of Concrete Subjected to Elevated Temperature Concrete for Nuclear Reactors[J]. ACI SP—34, Detroit,1972:377-406
    [17]Commission of the European Communities. Design of Concrete Structures [S]. Eurocode No.2, Part10:Structural Fire Design,Apr,1990
    [18]Abrams M.S.Behavior of Inorganic Materials in Fire[S]. ASTM STB 685, American Society for Testing and Materials,1979
    [19]Schneider Ulrich.Modeling of Concrete Behavior at High TemperatureDesign of Structure against Fire[J]. Elsevier Applied Science Publishers, London,1986
    [20]陆洲导,朱伯龙,周跃华.钢筋混凝土简支梁对火灾反应的试验研究[J].土木工程学报,1993,26(3):47-54
    [21]时旭东,过镇海.高温下钢筋混凝土受力性能的试验研究[J].土木工程学报,2000,33(6):6-16
    [22]Lie TT. A Procedure to Calculate Fire Resistance of Structural Members[C]//International Seminar on Three Decades of Structural Fire Safety[C]//Herts:Fire Research station,1983: 139-153
    [23]李卫,过镇海.高温下混凝土的强度和变形性能试验研究[J].建筑结构学报,1993,14(1):8-16
    [24]南建林,过镇海,时旭东.混凝土的温度—应力耦合本构关系[J].清华大学学报,1997,37(6):87-90
    [25]朱伯龙,陆洲导,胡克旭-高温(火灾)下混凝土与钢筋的本构关系[J].四川建筑科学研究,1990(1):37-43
    [26]钮宏,陆洲导,陈磊-高温下钢筋与混凝土本构关系的试验研究[J].同济大学学报,1990,18(3):287-297
    [27]路春森,屈立军,等-建筑结构耐火设计[M].北京:中国建材工业出版社,1995
    [28]过镇海.钢筋混凝土原理[M].北京:清华大学出版社,1999
    [29]姚亚雄,朱伯龙.钢筋混凝土框架结构抗火试验研究[J].同济大学学报,1996,24(6):619-624
    [30]Diederichs V.and Schneider Ulrich. Bond Strength at high Temperature[J]. Magazine of Concrete Research,1981-33(115):75-84
    [31]Moeley P. D. and Royles R. Response of the Bond in Reinforced Concrete To High Temperature [J]. Magazine of Concrete Research,1983-35(123):67-74
    [32]Morley P. D. and Royles R.Further Response of the Bond in Reinforced Concrete to High Temperature[J]. Magazine of Concrete Research,1983-35(124):157-163
    [33]Gurtin M.E.Vanational for Linear Initial Value Problems[J]. Quarterly of Applied Mathematics 22 cot,1964
    [34]W. Visser.A Finite Element Method for Determination of Nonstationary Temperature Distribution and Thermal Deformation[J]. Proc.Conf on Matrix Methods In Structural Mach, Air Force lust Of Tech,1965
    [35]Wilson E.L.and Nicked R. E. Application of the Finite Element Method To Heat Conduction Analysis[J]. Journal Nuclear Engineering and design,1966,4(1):276-286
    [36]Ellingwood B.and James R S. Reliability of RC Subjected to Fire[J]. Journal of the Structure Division, ASCE,1977:1047-1059
    [37]吴波,马忠诚.钢筋混凝土结构在火灾和低周反复荷载作用下的损伤分析[J].哈尔滨建筑大学学报,1997,30(3):7-12
    [38]徐或.火灾高温后钢筋力学性能的试验研究[D].长沙,氏沙铁道学院,2000
    [39]过镇海,时旭东.钢筋混凝土的高温性能及其计算[M].北京:清华大学出版社,2002
    [40]朱伯龙,陆洲导等.高温(火灾)下混凝土与钢筋的本构关系[J].四川建筑科学研究,1990(1),37-43
    [41]朱伯龙,陆洲导.高温下混凝士与钢筋的本构关系[J].四川建筑科学研究,1990,1
    [42]钮宏,陆洲导,陈磊.高温下钢筋与混凝十本构关系的试验研究[J].同济大学学报,1990,18(3):287-297
    [43]李卫,过镇海.高温下硅的强度和变形性能试验研究[J].建筑结构学报,1993,14(1):8-16
    [44]过镇海,李卫.混凝土在不同应力-温度途径下的变形试验和本构关系[J].土木工程学报,1993,26(5):58-69
    [45]LieT.T.and Harmathy T. Z. Fire endurance of concrete protected steel columns[J]. ACI Journal Proceeddings,1974,71(1):29-32
    [46]]BaileyC.G., Lennon T. and Moore D.B. The behavior of full-scale steel-framed buildings subjected to compartment fires[J]. The Structural Engineer,1999,77(8):15-21
    [47]Lan W. Burgess and Roger J. Plank. Nonlinear analysis of reinforced concrete slabs subjected to fire[J]. ACI Structural Journal, January-February,1999,96(1):127-135
    [48]Abrams M.5.Compressive strength of Concrete at temperature to 1600F. [J]. SP.25, ACI, Detroit,1971:33-58
    [49]Mohamedbhai G.T.G. Effect of exposure time and rates of heating and cooling on residual strength of heated concrete[J]. Magazine of concrete Research,1986,38(136):151-158
    [50]陆洲导,朱伯龙.钢筋混凝土框架火灾反应分析[J].土木工程学报,1995,28(6):18-27
    [51]陆洲导,朱伯龙.钢筋混凝土简支梁对火灾反应的试验研究[J].土木工程学报,1993,26(3):47-54
    [52]]时旭东,过镇海.高温下钢筋混凝土连续梁的受力性能试验研究[J].士木工程学报,1997,30(4):26-34
    [53]周新刚,张林成.钢筋混凝土受弯构件压区受高温影响的非线性分析[J].工业建筑,1995,25(8):36-39
    [54]陆洲导.钢筋混凝土梁对火反应的研究[D].上海,同济大学,1989
    [55]时旭东.高温下钢筋混凝土杆系结构试验研究和非线性有限元分析[D].北京,清华大学,1992
    [56]胡克旭.高温下钢筋混凝土粘结滑移性能及钢筋混凝土门式框架抗火性能研究[D].上海,同济大学,1989
    [57]U.Meier. Strengthening of Structures Using Carbon Fibred Epoxy Composites[J]. Construction and Building Materials,1995,19(6)
    [58]国家工业建筑诊断与改造工程技术研究中心碳纤维片材加固混凝土结构技术规程[S].北京,中国计划出版社,2003
    [59]Ali Chahrour, Khaled Soudki.Flexural response of reinforced concrete beams strengthened with End-Anchored Partially bonded carbon fiber-reinforced polymer strips[J]. Journal of composites for construction, A SCE/March/April,2005:170-177
    [60]Tom Norris,Hamd Saadatmanesh,Member,ASCE, Mohammad R.Ehsani, Member, ASCE Shear and flexural strengthening of R/C beams with carbon fiber sheets[J]. Journal of Stmral Engineering,1997:903-911
    [61]赵彤,谢剑,戴自强.碳纤维布加固钢筋混凝土梁的受弯承载力试验研究[J].建筑结构,2000,30(7):11-15
    [62]叶列平,方团卿,杨勇新,岳清瑞. CFRP布在混凝土梁受弯加固中抗剥离性能的试验研究[C].高性能纤维增强复合材料在土木工程中应用的基础研究研究论文集,337-349
    [63]孔祥菲,张鑫.无机胶粘贴U形碳纤维片材加固钢筋混凝土梁的抗剪性能研究[D].济南,山东建筑大学,2009-3
    [64]Zhang Zhichao, Cheng.Tzu Thomas Hsu, F, ASCE.Shear strengthening of reinforced concrete beams using carbon-fiber-reinforced polymer laminates[J]. Journal of composites for construction,2005,March/April:158-169
    [65]Zhang Zhi chao, Cheng.Tzu Thomas Hsu, F, ASCE, Moren Jon.Shear strengthening of reinforced concrete deep beams using carbon fiber reinforced polymer laminates[J]. Journal of composites for construction,2004,September/October,403-414
    [66]Sergio F.Brena,Regan M.Bramblet,Sharon L.Wood. Increasing Flexural Capacity of Reinforced Concrete Beams Using Carbon Fiber-Reinforced Polymer Composites [J]. ACI Structural Journal,2003,100(1):36-46
    [67]Sergio F.Brena, Sharon L.Wood,Michael E.Kreger.Full. Scale Tests of Bridge Components Strengthened Using Carbon Fiber.Reinforced Polymer Composites [J]. ACI Structural Journal,2003,100(6):775-785
    [68]Bimal Babu Adhikar, Hiroshi Mutsuyoshi, Muhammad Ashraf. Shear strengthening of reinforced concrete beams using fiber-reinforced polymer sheets with bonded anchorage [J]. ACI Structural Jounral,2004,101 (5),660-668
    [69]吴刚,吕志涛.外贴碳纤维加固混凝土梁的抗剪设计方法[J].工业建筑,2000,20(10):35-38,
    [70]杨莅滦,张鑫.无机胶粘贴碳纤维片材加固钢筋混凝土梁的抗弯性能研究[D].济南,山东建筑大学,2009-3
    [71]Kodur Venkatesh K.R, Bisby Luke A, Foo Siren H.C. Thermal behavior of fire-exposed concrete slabs reinforced with fiber-reinforce depolymer bars[J]. ACI Structural Jounral,2005,102(6):799-807
    [72]Kodur V.K.R, Bisby L. A,Green.M.F. Fir endurance of FRP.strengthened reinforced concrete coloumns[R]. NRC.CVRCInternal Report.No.46633,2004
    [73]Kodur V.K.R, Bisby L. A,Green.M.F.Performance in fire of FRP confine reinfined concrete columns [R]. NRC.CVRC Internal Report.No.46966,2004
    [74]蔡正华-高温下CFRP-混凝土界面受剪性能研究[D]-同济大学硕士学位论文
    [75]吴波,王军丽.碳纤维加固钢筋混凝土板的耐火性能试验研究[J].土木工程学报,2007,40(6):26-31
    [76]Williams BK.Fire performance of FRP strengthened reinforced concrete flexural members[J]. PhD The sis Kingston Canada Department of Civil Engineering Queen's University;2004,164-170
    [77]Williams BK, Bisby L A, Kodur,V.K.R. Fire insulation schemes for FRP-strengthened concrete slabs[J]. Composites Part A:Applied Science an Manufacturing,2006:1151-1160
    [78]Gamage, J.C.P.H,Al.MhaidiR,Wong M.B. Bond characteristics of CFRP plated concrete members under elevated temperatures[J]. Composite Structures,2006,75:199-205
    [79]王昊,冯鹏,叶列平,覃维祖.用于纤维片材加固混凝土结构的无机粘结材料的聚合物[J].工业建筑,2004,(34):16-20
    [80]熊光晶,马晓升,傅剑波.纤维复合材料加固混凝土研发方向浅议[J].第七届全国建筑物鉴定与加固改造学术会议,2004
    [81]傅剑波,熊光晶.改性氯氧镁水泥性能的若干影响因素及其改性机理初探[D].汕头,汕头大学,2005-9
    [82]陈忠范,万黎黎,李建龙,李宗津.无机胶粘贴碳纤维布加固钢筋混凝土梁的高温性能试验研究[J].四川建筑科学研究,2007,33(12):169-173
    [83]王明敏,郑文忠.用碱矿渣胶粘材料粘贴碳纤维加固混凝土梁受力性能研究[D].哈尔滨,哈尔滨工业大学,2008-7
    [84]KodurV.K.R,Green.M.F,Bisby.L.A,Williams,B.Evaluating the fire performance of FRP-strengthened structures[R]. Concrete Engineering Intemationl,2004,8 (2),48-50

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700