苏云金芽孢杆菌中脂肽类抗生素Iturins的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
多种芽孢杆菌尤其是枯草芽孢杆菌(Bacillus subtilis)在生长代谢过程中能够产生不同种类的抗菌物质,包括非核糖体合成的脂肽类抗生素(lipopeptide antibiotics)生物表面活性素(surfactin)、丰原素(fengycin)和伊枯草菌素(iturin)等。其中的iturin家族类抗生素在农业、生物防治、医学等方面得到越来越广泛的应用。本研究尝试利用PCR、真菌抑制实验和HPLC等三种方法来鉴别生产iturin的菌株,以期从与枯草芽孢杆菌亲缘关系相近但目前尚未发现产iturin家族类抗生素的苏云金芽孢杆菌中发现生产iturinA等具有抗菌作用的脂肽类抗生素的菌株。
     利用GenBank上已登录的ituD序列设计引物,以本实验室保存的苏云金芽孢杆菌、枯草芽孢杆菌、解淀粉芽孢杆菌和蜡质芽孢杆菌等菌株的总DNA为模板进行PCR扩增,获得了9株PCR阳性菌株。对克隆得到的ituD基因进行测序及Blast序列分析,结果表明,所克隆的基因与GenBank上已登录iturin家族脂肽抗生素的基因具有95%以上的同源性。对这9株菌株的的发酵液经过酸沉淀、甲醇抽提等步骤获得脂肽类粗提物,并进行抑制香蕉炭疽病菌(Colletotrichum musae)、黄瓜枯萎病菌( Fusarium oxysporum)、灰葡萄孢霉(Botrytis cinerea)和水稻纹枯病菌(Rhizoctonia solani)等常见植物病原真菌的测定。结果表明,所提取的脂肽类粗提物中,枯草芽孢杆菌EPL8、解淀粉芽孢杆菌TB2对4种真菌菌丝生长均有较强的抑制作用,枯草芽孢杆菌BS1对Colletotrichum musae和Botrytis cinere菌丝生长有抑制作用,而苏云金芽孢杆菌BRC-XQ16则对Colletotrichum musae菌丝生长具有抑制作用。
     将对部分真菌菌丝具有抑制作用的这4株菌的脂肽粗提物纯化后经过反相HPLC分析,结果表明,EPL8和TB2脂肽类提取物中,峰值最高的3个组分与iturinA标准样品有相对应的接近的峰,据此推测EPL8和TB2中的脂肽类提取物中可能存在与iturinA结构类似的组分。BS1的脂肽提取物中峰值最高的组分保留时间几乎与iturinA标准样品中的同样峰值最高的保留时间相一致,据此推测该组分很可能就是iturinA标准样品中含量最高的组分。BRC-XQ16中峰值最高的2个组分保留时间与iturinA标准样品中的前2个组分保留时间相近,同样推测,BRC-XQ16中的这2种组分结构也类似iturinA。
     根据实验推测,本实验中的EPL8、TB2、BS1和BRC-XQ16共4株菌株可产生iturinA或者与iturinA结构类似的其他iturin家族成员。这一实验结果为这些菌株中产生的脂肽类抗生素的进一步的结构测定奠定了基础,也为拓宽苏云金芽孢杆菌的应用奠定基础。
Many different Bacillus spp., especially Bacillus subtilis strains often produce a variety of antimicrobial cyclic lipopeptides, including the non-ribosomal biosynthesis of surfactins, fengycins, and iturins. The iturins shows a strong antibiotic activity with a broad antifungal spectrum, making it an ideal potential biological control agent with the aim of reducing the use of chemical pesticides in agriculture and medical science. This study used three methods, such as polymerase chain reaction (PCR) , fungal growth inhibition assay and quantitative high-performance liquid chromatography (HPLC) to identify whether a number of Bacillus strains can produce iturin A. In order to find the iturins in the B. thuringiensis which has closer genetic relationship with B.subtilis but had not been found to produce iturins.
     This study made use of the Bacillus thuringiensis, Bacillus subtilis, Bacillus amyloliquefaciens and Bacillus cereus to examine the feasibility of screening iturin A-producing Bacillus strains by PCR using specific primers for ituD amplification. Nine of Bacillus strains exhibited positive results. Blast sequence analysis shows that the PCR products are over 95% homologous to genes of iturins operon. Crude lipopeptides were extracted with methanol from the precipitate which were obtained by adding 6 mol/L HC1 to the cell-free culture broth. The assay for potential production of iturin A was carried out by placing crude lipopeptides of the tested Bacillus strains on a PDA agar plate with Colletotrichum musae, Fusarium oxysporum, Botrytis cinerea and Rhizoctonia solani. The fungal growth inhibition assay exhibited that four Bacillus strains-- Bacillus subtilis EPL8, Bacillus subtilis BS1, Bacillus amyloliquefaciens TB2, Bacillus thuringiensis BRC-XQ16 have inhibitory activity against some important plant pathogenic fungi.
     Crude lipopeptides of the four antifungal Bacillus species were purified and then run on lichrosphere C18 column in reverse phase HPLC system. With HPLC method , it was determined that the antifungal lipopeptides was composed of many components , so as the iturinA standard, because it has different homologues . Through the HPLC analysis , it shows that three major components of the lipopeptides extracted from EPL8 and TB2 had similar retention time to three components of the iturinA standard. The results indicates that the three major components of the lipopeptides extracted from EPL8 and TB2 maybe the other iturin family members , such as mycosubtilin and bacillomycin D. The major component of the lipopeptides extracted from BS1 has almost the same retention time as the major component of iturinA standard, and it maybe just the major component of the iturinA standard. Two major components of the lipopeptides extracted from BRC-XQ16 had similar retention time to two components of the iturinA standard. As the analysis above, the results indicated that the two major components of the lipopeptides extracted from BRC-XQ16 maybe the other iturin family members , such as mycosubtilin and bacillomycin D.
     Based on the above analysis , the four Bacillus strains , Bacillus subtilis EPL8, Bacillus subtilis BS1, Bacillus amyloliquefaciens TB2, Bacillus thuringiensis BRC-XQ16 could product the iturinA or other iturin family members.The result of this study settle the basis for the further study on the determination of structures of the lipopeptides extracted from EPL8, TB2, BS1 and BRC-XQ16. If the speculation concluded from the HPLC were consistent with the result of the determination of structures,and widen the application of the B. thuringiensis.
引文
[1]余峰玉,李振华,曾会才.抑真菌农用抗生素的研究进展[J].热带农业科学, 2005, 25(1): 61-66.
    [2]李巧丽,袁月星.抗植物真菌病害基因及其应用[J].生物学教学, 2000, 25 (12): 2-4.
    [3]蒋琳,马承铸.生物农药研究进展(综述)[J].上海农业学报, 2000, 16: 73-77.
    [4] Cook R J. Making greater use of introduced microorganisms for biological control of plant pathogens[J]. Ann Rev Phytopathol, 1993, 31: 53-80.
    [5] Cook R J, Bruckrt W L, Collson J R, et al. Safety of microorganisms intended for pest and plant disease control:a framework for scientific evaluation[J]. Biol Control, 1996, 7: 333-351.
    [6] Kerr A, Htay k. Biological control of crown gall through bacterioncin production[J]. Plant Pathol, 1974, 4: 37-44.
    [7]程亮,游春平,肖爱萍.拮抗细菌的研究进展[J].江西农业大学学报. 2003, 25(5): 732 -737.
    [8] Obagwu J, Korsten L. Integrated control of citrus green and blue molds using Bacillus subtilis in combination with sodium bicarbonate or hotwater[J]. Postharvest Biology and Technology, 2003, 28: 187-194.
    [9] Elizabeth A, Bemmert, Johandelsman. Biocontrol of plant disease: a Gram-positive perspective [J]. FEMS Microbiol Letters, 1999, 171: 1-9.
    [10]杨佐忠等.枯草杆菌拮抗体在植物病害生物防治中的应用[J].四川林业科技. 2001(9): 41-43.
    [11] Shoda M. Bacterial control of plant diseases[J]. Biosci Bioeng, 2000, 89 (6): 515-521.
    [12]陈中义,张杰,黄大昉.植物病害生防芽孢杆菌抗菌机制与遗传改良研究[J].植物病理学报, 2003, 33 (2) : 97-103.
    [13] Tsuge K, Akiyama T, Shoda M, et al. Cloning, sequencing, and characterization of the Iturin A operon[J]. Journal of Bacteriol, 2001, 183 (21): 6265-6273.
    [14]张桂英,廖咏梅,张君成.甘蔗黑穗病菌拮抗性芽孢杆菌的抗菌作用与伊枯草菌素A的产生有关[J].广西科学, 2004, (11): 269-272.
    [15] Peypoux F , Guimand M, Michel G, et al. Structure of iturinA, a peptidolipid antibiotic from Bacillus subtilis[J]. Biochemistry, 1978, 17: 3992 - 3996.
    [16] Peypoux F, Bonmatin JM, Wallach J. Recent trends in the biochemistry of surfactin[J]. Applied Microbiology Biotechnology, 1999, 51: 553 - 563.
    [17] Vanittanakom N, Loeffler W, Koch U , et al. Fengycin a novel antifungal lipopeptide anti -biotic produced by Bacillus subtilis F29-3[J]. Journal of Antibiotics, 1986, 39: 888– 901.
    [18] Stein T. Bacillus subtilis antibiotics: structures, syntheses and specific functions[J]. Molecular Microbiology, 2005, 56(4): 845– 857.
    [19] Moyne A, Cleveland T, Tuzun S. Molecular characterization and analysis of the operon encoding the antifugal lipopeptide bacillomycin D[J]. FEMS Microbiology Letters, 2004 , 234 (1) : 43 - 49.
    [20] Koumoutsi A, Chen X, Henne A, et al. Structural and functional characterization of gene clusters directing nonribosomal synthesis of bioactive cyclic lipopeptides in Bacillus amyloloquefaciens strain FZB42[J]. Journal of Bacteriology, 2004 , 186 (4): 1084 - 1096.
    [21] Hung-Yuh Lin, Yerra Koteswara Rao, Wen-Shi Wu, et al. Ferrous ion Enhanced Lipopeptide Antibiotic Iturin A Production from Bacillus amyloliquefaciens B128[J]. International Journal of Applied Science and Engineering, 2007, 5 , 2: 123-132.
    [22] Feng-Chia Hsieh, Tsung-Chun Lin, Suey-Sheng Kao, et al. Comparing Methods for Identifying Bacillus Strains Capable of Producing the Antifungal Lipopeptide Iturin A[J]. Curr Microbiol, 2008, 56: 1–5.
    [23]林毅,关雄.苏云金杆菌几丁质酶新基因的筛选和全长基因的扩增[J].生物技术, 2004, 14(3): 1-2.
    [24]周世力.苏云金杆菌毒素[J].生物学通报, 1998, 33(1): 18-19.
    [25]李洁,吴光华.卫生害虫的生物防治[J].中国生物防治, 2000, 16(1): 35-37.
    [26]邓洪渊,孙雪文,谭红.生物农药的研究和应用进展[J].世界科技研究与发展, 2005, 27(1): 76-80.
    [27]关海宁,徐桂花,刁小琴.几丁质酶的研究概况及其应用[J].中国食物与营养, 2006, (8): 33-35.
    [28]邱立友.微生物几丁质酶与害虫防治[J].河南农业大学学报, 1995, 29(2): 184-191.
    [29]邱立友,贾新成,朱义彬,等.黄淮地区部分土壤中几丁质降解微生物及土壤几丁质酶活性[J].土壤肥料, 1994, (6): 37-39.
    [30] Sonen AL, et a1. Bacillus subtilis and its closest relatives:From genes to cells[D] .Washington DC American Society for Microbiology Press, 2001.
    [31] Moszer I, Jonesl M, Morera S, et a1. Subtilist: the reference database for the Bacillus subtilis genome. Nucleic Acids Res, 2002, 30(1): 62-65.
    [32]顾真荣,陈伟,程洪斌,等.吖啶橙诱变提高枯草芽孢杆菌G3抗真菌活性[J].植物病理学报, 2008, 38(2): 185-191.
    [33]别小妹,吕凤霞,陆兆新,等. Bacillus subtilis fmbJ脂肽类抗菌物质的分离和鉴定[J].生物工程学报, 2006, 22(4): 644-649.
    [34] Mohamed A, Marahiel M A. Protein templates for the biosynthesis of peptide antibiotics[J]. Chemistry and Biology, 1997, 4: 561-567.
    [35] Doekel S, Marahiel M A. Biosynthesis of natural products on modular peptide synthetases[J]. Metabolic Engineering, 2001, 3: 64-77.
    [36] Axel S, Mohamed A, Marahiel M A. Genetic evidence for a role of thioesterase domains integrated in or associated with peptide synthetases, in non-ribosomal peptide biosynthesis in Bacillus subtilis[J]. Arch Microbiology, 1998, 169: 404-410.
    [37] Besson F, Michel G. Biosynthesis of bacillomycin D by Bacillus subtilis. Evidence for amino acid-activating enzymes by the use of affinity chromatography[J]. FEBS Letters, 1992, 308: 18-21.
    [38] Steller S, Vollenbroich D, Leenders F, et al. Structural and functional organization of the fengycin synthetase multienzyme system from Bacillus subtilis b213 and A1/3[J]. Chemistry and Biology, 1999, 6: 31-41.
    [39] Lambalot R H, Gehring A M, Flugel R S, et al. A new enzyme superfamily-the phosphopantetheinyl transferases[J]. Chemistry and Biology, 1996, 3: 923-936.
    [40] Arima K, Kakinuma A, Tamura G. Surfactin, a crystalline peptidelipid surfactant produced by Bacillus subilis: Isolation, characterization and its inhibion of fibrin clot formation[J]. Biochem Biophys Res Commun, 1968, 31: 488-494.
    [41] Ron E Z, Rosenberg E. Biosurfactant and oil bioremediation[J]. Curr in Biotechnol, 2002, 13: 249-252.
    [42] Catherine N M. Environmental applications for biosurfactants[J]. Environmental Pollution, 2005, 133(2 ): 183-198.
    [43] Mulligan C N, Yong R N. Surfactant-enhanced remediation of contaminated soil[J].Engineering Geology, 2001, 60: 371-380.
    [44] Thennarasu S, Lee D K, Tan A, et al. Antimicrobial activity and membrane selective interactions of a synthetic lipopeptide MSI-843[J]. Biochim Biophysi Acta , 2005, 1711 (1) : 49-58.
    [45] Kim S Y, Kim J Y, Kim S H, et al. Surfactin from Bacillus subtilis displays antiproliferative effect via apoptosis induction, cell cycle arrest and survival signaling suppression[J]. FEBS Letters, 2007, 581 (5) : 865-871.
    [46] Imai Y, Sugino H, Takeshi, et al. Hypocholesterolemic effect of surfactin, a novel bacterial peptide lipid[J]. Takeda Res Lab, 1971, 30: 728-734.
    [47] Ran N P, Alain B, Henri W, et al. Susceptibilities of Mycoplasma hyorhinis to membrane-active peptides and enrofloxacin in human tissue cell cultures[J]. Antimicrobial Agents and Chemotherapy, 2002, 46 (5) : 1218-1225.
    [48]曹小红,廖振宇,王春玲,等. Bacillus natto TK21产脂肽的纯化、抑菌活性及其表面活性剂特性[J]. China Biotechnology, 2008, 28 (1) : 44-48.
    [49]吕应年,杨世恭,牟伯中.脂肽的分离纯化与结构研究[J].微生物学通报, 2005, 32(1): 67-73.
    [50] Bais H P, Fall R, Vivanco J M. Biocontrol of Bacillus subtilis against infection of Arabidopsis roots by pseudomonas syringae is facilitated by biofilm formation and surfactin production[J]. Plant Physiol, 2004, 134: 307-319.
    [51] Tschen J S M. Conrtol of Rizoctonia soanli by Bacillus subtilis[J]. Trans Mysol Soc Japan, 1987, 28: 483-493.
    [52] Vanittanakom N, Loefler W, Koch U, et al. Fengycin-a novel antifungal lipopeptide antibiotic produced by Bacillus subtilis F29-3[J]. J Antibiot, 1986, 39: 888-901.
    [53] Loefler W, Tschen J S M, Vanittanakom N, et al. Antifungal effects of bacilysin and fengycin from Bacillus subtilis F29-3, a comparison with activities of other Bacillus antibiotics[J]. J Phytopathol, 1986, 11(5): 204-213.
    [54]王启军,陈守文,喻子牛.一种改进的分离纯化枯草芽胞杆菌产脂肽抗生素的方法[J].孝感学院学报, 2007, 27(6): 15-17.
    [55] Yu G Sinclair JB, Hartman GL, et a1. Production of iturinA by Bacillus amyloliquefaciens suppressing Rhizoctonia solani[J]. Soil Biol Biochem, 2002, 34: 955-963.
    [56] Vater J, Kablitz B, Wilde C, et a1. Matrix-assisted laser desorption ionization-time of flight mass spectrometry of lipopeptide biosurfactants in whole cells and culture filtrates of Bacillus subtilis C-1 isolated from petroleum sludge[J]. Appl Environ Microbiol, 2002 , 68(12): 6210-219.
    [57] Soo-Jin Cho, Sam Keun Lee, Byeong Jin Cha, et al. Detection and characterization of the Gloeosporium gloeosporioides growth inhibitory compound iturinA from Bacillus subtilis strainKS03[J]. FEMS Microbiology Letters , 2003, 223: 47-51.
    [58] Moyne, A L, Shelby R, Cleveland T E, et al. Bacillomycin D: an iturin with antifungal activity against Aspergillus flavus[J]. Appl. Microbiol, 2001, 90, 622–629.
    [59] Huang CC, Ano T, Shoda M . Nucleotide sequence and characteristics of the gene, lpa-14, responsible for biosynthesis of the lipopeptide antibiotics iturin A and surfactin from Bacillus subtilis RB14[J]. J Ferment Bioeng, 1993, 76: 445–450.
    [60] Ohno A, Ano T, Shoda M. Production of the antifungal peptide antibiotic, iturin by Bacillus subtilis NB22 in solid state fermentation[J]. J Ferment Bioeng , 1993, 75: 23–27.
    [61] Tokuda Y, Ano T, Shoda M. Survival of Bacillus subtilis NB22, an antifungal antibiotic iturin A producer, and its transformant in soil-systems[J]. J Ferment Bioeng, 1993, 75: 107–111.
    [62] Nakayama S, Takahashi S, Hirai M, et al. Isolation of new variants of surfaction by a recombinant Bacillus subtilis[J]. Appl Microbiol Biotechnol, 1997, 48(48): 80-82.
    [63] Yoshida S, Hiradate S, Tsukamoto T, et al. Antimicrobial activity of culture filtrate of Bacillus amyloliquefaciens RC22 isolated from mulberry leaves[J]. Phytopathology, 2001, 91: 181-187.
    [64] Anne-Laure Moyne, Thomas E Cleveland, Sadik Tuzun. Molecular characterization and analysis of the operon encoding the antifungal lipopeptide bacillomycin D[J]. FEMS Microbiology Letters, 2004, 234: 43-49.
    [65] Compant S, Duffy B, Nowak J, et a1. Use of plant growth promoting bacteria for biocontrol of plant diseases: principles, mechanisms of action, and future prospects[J]. Appl Environ Microbiol, 2005, 71(9): 4951-4959.
    [66] Ezra D, Hess WM, Strobel GA. New endophytic isolates of Muscodor albus,a volatile an tibiotic-producing fungus[J]. Microbiology, 2004, 150(12): 4023-4031.
    [67] Fernandoa D, Ramarathnam R, Krishnamoorthy A S, et a1. Identification and use of potential bacterial organic antifungal volatiles in biocontro1[J]. Soil Biol Biochem, 2005, 37(5):955-964.
    [68]陈华,郑之明,余增亮.枯草芽孢杆菌JA脂肽类及挥发性物质抑菌效应的研究[J].微生物学通报, 2008, 35(1): 1-4.
    [69] Erwin H Duitman, LeendertW Hamoen, M artina Rembold, et al. The mycosubtilin synthetase of Bacillus subtilis ATCC6633: A multifunctional hybrid between a peptide synthetase, an amino transferase, and a fatty acid synthase [J]. Proc Natl Acad Sci USA, 1999, 96(23): 13294- 13299.
    [70] Maier R M, Soberon C G. Pseudomonas aeruginosa rhamnolipids: biosynthesis and potential applications[J]. Appl Microbiol Biotechnol, 2000, 54(5): 625-633.
    [71] Kim H S, Yoon B D, ChoungD H, et al. Characterization of a biosurfactant, mannosylerythritol lipid, produced from Candida sp.SY161[J]. App. Microbiol Biotechnol, 1999, 52: 713-721.
    [72]刘向阳,杨世忠,牟伯中.微生物脂肽的结构[J].生物技术通报, 2005, 4: 18 - 26.
    [73] Martin K, Joachim V, Britta K, et al. Separation and characterization of surfactin isoforms produced by Bacillus subtilis OKB 105[J]. Journal of Collioid and Interface Science , 1998, 204:1- 8.
    [74] Miyuki K, Yoshio K. New antifungal antibiotics , bacillopeptins and fusaricidins [J]. Journal of the Pharmaceutical Society of Japan, 2002,122 (9): 651-671.
    [75] Francisco J, Aranda JA, Teruel AO. Further aspects on the hemolytic activity of the antibiotic lipopeptide iturin A[J]. Biochimical Biophysica Acta, 2005 , 1713 (1): 51 - 56.
    [76] Kenji T, Takahashi A, Makoto S. Isolation of a gene essential for biosynthesis of the lipopeptide antibiotics plipastatin B1 and surfactin in Bacillus subtilis YB81[J]. Archive Microbiology, 1996, 165: 243 -251.
    [77]张杰,张双全.抗真菌肽对真菌作用机制研究进展[J].生物化学与生物物理进展, 2005, 32(1).
    [78] De Lucca A J, Walsh T J. Antifungal peptides: Novel therapeutic compounds against emerging pathogens[J]. Antimicrobial Agents and Chemotheraphy, 1999, 43(I): 1-11.
    [79] Wiederhold N P, Lewis R E. The echinocandin antifungals:an overview of the pharmacology,spectrum and clinical efficacy[J]. Expert Opinion, 2003, 12 (8): 1313-1333.
    [80] Helmerhorst E J,Troxler R F,Oppenheim F G.The human salivary peptide histatin 5 exerts its antifungal activity through the form ation ofreactive oxygen species[J].Proc Natl Sci USA, 2001, 98(25): l4637-l4642.
    [81] Lee D G, Shin S Y, Kim D H, et al. Antifungal mechanism of a cysteine-rich antimicrobial peptide, Ib-AMP1, from Impatiens bolsamina against Candida albicans[J]. Biotechnol Lett, 1999, 21(12): l047-l050.
    [82] Park C B, Kim M S, Kim S C. A novel antimicrobial peptide from Bufo bufo gargarizans[J]. Biochem Biophys Res Commun, 1996, 218 (1): 408--4l3.
    [83] Klich MA, Arthur KS, Lax AR, et a1. Iturin A: a potential new fungicide for stored grains[J]. Mycopathologia, 1994, 127(2): 123-127.
    [84]刘静,王军,姚建铭,等.枯草芽孢杆菌JA抗菌物特性的研究及抗菌肽的分离纯化[J].微生物学报, 2004, 44(4): 5 l0-5 l4.
    [85]高学文,姚仕义. Pham H,等.枯草芽孢杆菌B2菌株产生的表面活性素变异体的纯化和鉴定[J].微生物学报, 2003, 43(5): 647-652.
    [86]陈华,袁成凌,郑之明,等.枯草芽孢杆菌JA产生的脂肽类抗生素iturinA的纯化及电喷雾质谱鉴定[J].微生物学报, 2008, 48(1): 116-120.
    [87] Ohno A, Aao T, Shoda M. Effect of temperature on production of lipopeptide antibiotics, iturin A and surfactin by a dual producer, Bacillus subtilis RB14, in Solid State fermentation[J]. Journal of Fermentation and Bioengineering, 1995, 80: 517-519.
    [88] Koumoutsi A, Chen X H, Henne A, et al. Structural and functional characterization of gene clusters directing nonribosomal synthesis of bioactive cyclic lipopeptides in Bacillus amyloliquefaciens strain FZB42[J]. Journal of Bacteriology, 2004, 186: 1084-1096.
    [89]李晶,杨谦,赵丽华等.生防枯草芽孢杆菌B29菌株抗菌物质的初步研究[J].中国生物工程杂志, 2008, 28(2): 59-65.
    [90] Maget-Dana R, Peypoux F. Iturins, a special class of poreforming lipopeptides: biological and physicochemical properties[J]. Toxicology, 1994, 87(1-3): 151–174.
    [91] Yao S, Gao X, Fuchsbauer N, et al. Cloning, sequencing, and characterization of the genetic region relevant to biosynthesis of the lipopeptides iturin A and surfactin in Bacillus subtilis[J]. Curr Microbiol, 2003, 47: 272–277.
    [92]侯红漫,靳艳,金美芳,虞星炬等.环脂肽类生物表面活性剂结构、功能及生物合成[J].微生物学通报, 2006, 33(5): 122-128.
    [93] Yu GY, Sinclair J B, Hartman GL, et a1. Production of iturinA by Bacillus amyloliquefa -ciens faciens suppressing Rhizoctonia solani[J]. Soil Biol Biochem, 2002, 34: 955-963.
    [94] Akpa E, Jacques P, Wathelet B, et a1. Influence of culture conditions on lipopeptide production by Bacillus subtilis[J]. Appl Biochem Biotech, 2001, 91-93: 551-561.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700