桑树黄化型萎缩病病原及其响应蛋白的蛋白质组学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
植原体病害是世界性植物病害,全球范围内均有不同程度的发生,给农林业生产造成巨大损失。桑黄化型萎缩病是桑树上的重大病害,常导致大片桑树毁灭,严重制约了蚕业生产的发展。由于植原体难以培养,对于植原体的研究进展缓慢,关于植原体诱导植物发病的分子机制知之甚少。自从植原体基因组序列测定完成后,基因组学的研究重心便从揭示植原体的所有遗传信息转移到从整体水平上对植原体的生物过程进行研究,特别是对基因组注解的验证性研究,而蛋白质组学研究便是其中的一项重要的内容。近年来对于桑树黄化型萎缩病发生分子机制的研究并没有取得实质性的进展,桑树萎缩病病原响应蛋白的研究在国内外尚未见报道。本研究通过对植原体蛋白质组学及桑树萎缩病病原响应蛋白的研究,以期为从分子水平上揭示桑树萎缩病的发生机理提供理论基础。
     本研究利用Shotgun策略对植原体表达的蛋白质组进行了分析。结合SDS-PAGE电泳与毛细管液相色谱-串联质谱技术,准确地鉴定了242种植原体蛋白质,其中包括参与氨基酸合成、细胞膜、中间代谢、细胞过程、能量代谢、不饱和脂肪酸和磷脂的代谢、核苷及核苷酸代谢、复制、转录、翻译、运输和结合蛋白和其它功能的相关蛋白质。除了上述已知功能的蛋白外,还鉴定了76种假定蛋白或保守的假定蛋白。所鉴定的蛋白质总量占预测的植原体蛋白质组的35%。如此大通量地对植原体蛋白质组进行鉴定国内外还未见报道,该研究不仅为植原体蛋白质组学研究提供了技术参考,同时提供了一个具有参考价值的植原体蛋白质数据库,为更好地理解植原体的生物过程的功能和机制奠定了基础。
     本研究结合蛋白质双向凝胶电泳和质谱技术,利用差异蛋白质组学策略研究了桑树受植原体侵染后叶片蛋白表达谱的变化。利用ImageMasterTM 2D Platinum软件分析,共检测到500多个叶片可溶性蛋白,发现有37个蛋白点差异表达,其中18个被下调,19个被上调。质谱分析共鉴定出18个蛋白点,代表了15种不同的蛋白。被鉴定的蛋白包括Rubisco大亚基、景天庚酮糖-1,7-二磷酸酶、Rubisco活化酶、防御相关蛋白、蛋白酪氨酸磷酸化酶、NUDIX/mutT类水解酶家族蛋白、成熟酶K、Kunitz型蛋白酶抑制剂-1、20S蛋白酶体亚基、放氧复合体的33 kDa前体蛋白、苹果酸脱氢酶、甲硫氨酸亚砜还原酶、Gm-ck32857、F-box蛋白、未知蛋白。这些蛋白涉及到光合作用、氨基酸代谢、核苷酸代谢、信号传导及调控、防御应答、转录等多个生理过程。本研究为从分子水平上揭示桑树萎缩病的发生机理提供了理论基础。
     景天庚酮糖-1,7-二磷酸酶(SBPase)是卡尔文循环过程中的关键酶。本研究利用RACE技术得到桑树景天庚酮糖-1,7-二磷酸酶基因全长cDNA,命名为MSBPase (GenBank登录号:DQ995346)。MSBPase全长为1 527 bp,该序列含有一个1 179 bp的完整开放读码框,编码393个氨基酸,蛋白质理论分子量约为42.6 kDa,等电点为5.85,其氨基酸序列与其它植物中已分离的SBPase有很高的同源性。对MSBPase编码的蛋白质(命名为MSBPase)进行结构预测分析表明,该蛋白富含无规卷曲(Coil),高达64.29%,其次是α-螺旋(Helix),为22.19 %,而β-折叠(Strand)只有13.52 %。将MSBPase编码区插入原核表达载体pET30a (+),并转化到大肠杆菌菌株BL21中,经过IPTG诱导,MSBPase融合蛋白在BL21菌株中成功表达。将得到的MSBPase编码区插入植物表达载体pBI121中,构建了MSBPase植物表达载体pBI121-SBP。将植物表达载体pBI121-SBP,采用农杆菌介导的方法,转化拟南芥,经卡那霉素筛选获得若干再生植株。经Northern和Western杂交分析,证明MSBPase在转基因拟南芥中已成功得到表达。MSBPase在拟南芥中超表达可以提高拟南芥叶片的SBPase活性和净光合速率,叶片淀粉和可溶性糖含量增加,植物生长旺盛,干物质积累增加,开花提前。本研究为桑树基因工程提供了有效的候选基因,为深入研究SBPase的分子调控机制奠定了基础。
     1,5-二磷酸核酮糖羧化酶活化酶(RCA)广泛存在于光合生物中,它是一种由核基因编码的叶绿体蛋白,具有调节Rubisco活性的功能。本研究根据RCA的保守区域设计一对兼并引物,通过PCR扩增,获得RCA的基因功能区的中间片段,利用RACE技术获得RCA的基因cDNA的3'端片段。对获得的基因片段所编码的氨基酸进行BLAST分析,结果表明,其与GenBank中报道的其它植物来源的RCA有较高的同源性。RCA的部分编码区插入原核表达载体pET30a(+),并转化到大肠杆菌菌株BL21中。经过IPTG诱导,RCA的部分编码区在BL21菌株中成功表达。将得到的RCA基因片段反向插入植物表达载体,构建了RCA基因反义表达载体pBI121-RCA。本研究为深入研究光合作用的机理以及阐明RCA与1,5-二磷酸核酮糖羧化酶相互作用和调控关系奠定了基础。
Phytoplasmas are wide spread pathogens responsible for a broad range of plant diseases and has caused huge losses to agriculture and forestry. The mulberry dwarf disease is one of the most destructive diseases of mulberry and has caused many mulberry trees in large areas destroyed. It is a serious restricting to the development of sericulture. No research laboratory is currently able to cultivate phytoplasmas in cell-free medium, making progress in their study slow. Little is known about the underlying molecular mechanisms for the symptoms evoked in the host plants. With the availability of the complete genome sequence of phytoplasma, attention is now shifting to the components specified by such genomes. In particular, it is becoming increasingly important to confirm that the predicted genes encode bona fide proteins. Proteomics is becoming one of the most important researches in the post-genomic era. Little is known about the underlying molecular mechanisms for mulberry dwarf disease and these is no reporter about the mulberry dwarf disease phytoplasma responsive proteins in mulberry leaves to my knowledge. In this research, the proteome of mulberry dwarf disease phytoplasmas and its responsive proteins in mulberry leaves were studied to provide a better understanding about the underlying molecular mechanisms for mulberry dwarf disease.
     In this study,the expressed proteome of phytoplasma was surveyed by using shotgun strategy. A combination of one-dimensional SDS-PAGE with capillary liquid chromatography-tandem mass spectrometry allowed a total of 242 phytoplasma proteins to be unambiguously assigned, including amino acid biosynthesis, cell envelope, central intermediary metabolism, cellular processes, energy metabolism, fatty acid and phospholipid metabolism, nucleosides and nucleotides metabolism, replication, transcription, translation, transport and binding proteins and some other function proteins. In addition to those known function proteins, 76 proteins previously was annotated as hypothetical or conserved hypothetical. Taken together, 35% of the predicted proteome for phytoplasma has been experimentally verified, representing the most extensive survey of any phytoplasma proteome to date. This research not only provides a technique to study phytoplasma proteome, but also a valuable dataset of phytoplasma proteins, thus providing better understanding of the functional mechanisms of phytoplasma in many biological processes.
     In this study, differential proteomic analysis was conducted to characterize the proteins in the mulberry leaf that were differently expressed in responsive to mulberry dwarf phytoplasmas with 2-DE, MS and MS/MS. The gels were analyzed by ImageMasterTM 2D Platinum software. About five hundred reproducible protein spots were detected, among which 37 protein spots displayed differential expression. There were 19 up-regulated and 18 down-regulated protein spots in the diseased leaf. MALDI-TOF MS and MALDI-TOF-TOF MS analysis followed by database searching helped to identify 18 spots representing 15 different proteins. The identified proteins include Rubisco activase, Sedoheptulose-1,7-bisphosphatase, RuBisCOLSU, Defense protein-related, Protein tyrosine phosphatase, NUDIX/mutT hydrolase family protein, Maturase K, Kunitz proteinase inhibitor-1, 20S proteasome subunit, 33 kDa precursor protein of oxygen-evolving complex, Malate dehydrogenase, Methionine sulfoxide reductase, Gm-ck32857, F-box protein and unknown protein. These proteins could be grouped into the categorizations such as photosynthesis, amino acid biosynthesis, nucleotides metabolism, transcription, defense response, signal transduction and regulation. This research provides a better understanding for the molecular mechanisms of mulberry dwarf disease.
     Sedoheptulose-1,7-bisphosphatase (SBPase) is a key enzyme in the regenerative phase of Calvin cycle. A full-length cDNA encoding SBPase (designated as MSBPase, GenBank accession No. DQ995346) was cloned from mulberry by rapid amplification of cDNA ends. The cDNA was 1 527 bp containing a 1 179 bp open reading frame which was deduced to encode a peptide of 393 amino acids whose predicted molecular mass was 42.6 kDa and isoelectric point was 5.85. Sequence comparison analysis showed that the SBPase from mulberry (MSBPase) had highest homology to SBPases from other plants. It was predicted that the structure of MSBPase was rich in coils and helixes, and was poor in strands. The coding region of the MSBPase was inserted into an expression vector, pET30a (+), and transformed into Escherichia coli BL2l. The fusion protein was successfully expressed with IPTG induction. The plant expression vector with this fragment under the control of 35S promoter was constructed and transformed into Arabidopsis thaliana plants. Northern blot and Western blot analysis indicated that the MSBPase was expressed successfully in the Arabidopsis thaliana plants. Activity of SBPase was increased by overexpression of MSBPase in Arabidopsis thaliana plants. In plants with increased SBPase activity, photosynthetic rates were increased, higher levels of soluble sugars and starch were accumulated and an increase in dry weight was also evident. Compared to wild-type plants, the onset of flowering was advanced. The results of this study may be useful in the mulberry gene engineering and the results may be helpful to study the regulation of SBPase.
     Rubisco activase (RCA) is a soluble chloroplast protein, coded in nucleus, and has the activation of Rubisco in photosynthetic autotrophs. The degenerate primers designed based on the conserved sequences among the known RCA were used to amplify the RCA fragment by PCR using the first strand of cDNA as templates. Amino acid sequence analysis indicated that the sequence deduced from the cloned cDNA fragment showed highly homology to other plant RCAs. The fragment of the RCA coding region was inserted into an expression vector (pET30a) and then was transformed into the Escherichia coli BL2l. The coding protein was successfully expressed in the Escherichia coli BL2l with IPTG induction. The antisense expression vector with the same fragment under the control of 35S promoter was constructed. The results of this study may be helpful to study the photosynthetic mechanism, the relationship and regulation between RCA and Rubisco.
引文
蔡红,杨根华,孔宝华等.应用分子生物学方法检测植原体研究进展[J].云南农业大学学报, 2002, 17(2): 188-191
    柴小清,靳飞,张艳萍等.缺铁逆境胁迫下水稻叶蛋白质组的双向电泳分析[J].首都师范大学学报(自然科学版), 2004, 25(3): 45-51
    陈捷, Harman G.G., Comis A., et al..哈茨木霉菌(Trichoderma harzianum)和终极腐霉菌(Pythium ultimum)对玉米蛋白质组的影响[J].植物病理学报, 2004, 34(4): 319-328
    陈根云.高光效作物基因工程中的几个问题[J].植物生理学通讯, 2002, 38(6): 541-544
    陈金娥,李建营,叶键等.霰弹策略在蛋白质组学研究中的应用与发展[J].蚕桑通报, 2006, 37(3): 6-11
    陈培根,蒯元璋,夏志松.用组织培养法保存、增殖桑黄化型萎缩病病原的研究[J].蚕业科学, 1996, 22(1): 5-8
    陈子文.枣疯病研究的进展[J].南京农业大学学报, 1991, 14(4): 49-55
    迟峰.根瘤菌在植物内的迁移运动及其与植物相互作用的蛋白质组学研究[D].中国科学院研究生院博士学位论文, 2006
    崔世明.留条留芽夏伐与桑树再生长及萎缩病发生的关系[J].江苏蚕业, 1987, (3): 48-49
    川北弘.桑萎缩病的生态及防治[J].蚕丝科学与技术, 1992, 26(2): 52-54
    川北弘.桑萎缩病病原类菌质体的液氮冷冻保存法(J).日本蚕丝学杂志, 1993, 3: 238 -242
    戴荷芳,林寿康,洪本元等.不同桑树种质资源对桑黄化型萎缩病的抗病性鉴定[J].江苏蚕业, 1992, (1): 54-57
    戴群,赵启韬,刘相国.桑树萎缩病茎段再生健康植株[J].山东大学学报(自然科学版), 1997, 32(1): 104-107
    戴群,刘秉胜,何泼等.桑树萎缩病类菌原体的PCR检测[J].山东大学学报(自然科学版), 1997, 32(3): 337-341
    戴群,刘秉胜,何放亭等.温度周年变化与桑树植原体消长的关系[J].林业科学, 1998, 34(5): 74-78
    丁正民,蒯元章.晚秋桑树健株与黄化型萎缩病株的同功酶[J].上海师范大学学报(自然科学版), 1983, (4): 31-36
    丁正民,蒯元章.桑树黄化型萎缩病株的同功酶检测[J].蚕业科学, 1985, 11(1): 18-21
    董晓丽,周集体,杜翠红等. RubisCO的分子生物学研究[J].高技术通讯, 2001, (12): 95-97
    范国强,李有,郑建伟等.泡桐丛枝病发生相关蛋白质的电泳分析[J].林业科学, 2003, 39(2): 119-122
    范海延,陈捷,吕春茂.黄瓜杂交二代抗黄瓜白粉病的蛋白质组学初步分析[J].园艺学报, 2007, 34(2): 349-354
    范怀忠,赖文姜,陈鼎新等.广东桑树萎缩病的调查及传病试验[J].植物病理学报, 1964, 7(2): 151-157
    高桥幸吉,蒯元章.树病原病毒、菌原体和细菌的最近研究[J].中国蚕业, 1984, (04): 1-6
    郭春林,朱志斌.春季杂交桑园桑萎缩病的防治[J].蚕桑茶叶通讯, 2007, (129): 18-19
    郭子武,李宪利,高东升等.植物低温胁迫响应的生化与分子生物学机制研究进[J].中国生态农业学报, 2004, 12(2): 54-57
    韩广业,李淑芹,唐崇钦等.光合放氧复合物结构及其放氧机理的研究[J].化学进展, 2004, 16(2): 184-194
    韩鹰,陈刚,王忠. Rubisco活化酶的研究进展[J].植物学通报, 2000, 17(4): 306-310
    何彩云.四种针叶树与欧美盯杨响应干旱与高温胁迫的蛋白质组研究[D].中国林业科学研究院博士学位论文, 2007
    何大澄,肖雪媛.差异蛋白质组学及其应用[J].北京师范大学学报(自然科学版), 2002, 38(4): 558-562
    何彩云.四种针叶树种与欧美107杨响应干旱与高温胁迫的蛋白质组研究[D].中国林业科学研究院学位论文, 2007
    洪健,王卫兵.蒋德安等.大麦和玉米叶片叶绿体中Rubisco及其活化酶的免疫金标记定位[J].植物生理与分子生物学学报, 2004, 30(5): 561-568
    胡志毅,刘红,沈文静.桑树黄化型萎缩病特征及不同桑树品种的抗性简述[J].北方蚕业, 2002, 23 (1): 22-23
    黄琳玲.蛋白质组学研究脉冲电场诱导对中国红豆杉细胞蛋白表达的影响[J].华东师范大学硕士学位论文, 2005
    黄文晋,崔晓江,林木兰等.类菌原体研究现状与发展趋势[J].微生物学通报, 1994, 21(1): 37-40
    黄青云.水稻细菌性条斑病侵染水稻明恢63诱导差异蛋白质组学研究[D].厦门大学硕士学位论文, 2006
    蒋德安,陆庆,翁晓燕,等.水稻光合关键酶类在光合日变化中的作用(英文)[J].作物学报, 2001, 27: 301-071
    金松恒,翁晓燕,王妮妍等. Rubisco活化酶基因反义表达载体的构建与水稻的遗传转化[J].遗传, 2004, 26(6): 881-886
    久保村安卫.桑树萎缩病病原在拟菱纹叶蝉和桑树体内的潜伏期[J].蚕丝研究, 1976, 98: 68-72
    Jiang D.A., and Xu Y.F.. Diurnal changes of photosynthetic rate, stomatal conductance and Rubisco in rice leaf [J].植物生理学报, 1996, 22(1): 94-100
    蒯元章,夏志松,陈培根.四环素类抗菌素治疗萎缩病树过程中药物在树体内分布和运转的分析[J].蚕业科学, 1980, 6(3): 155-158
    蒯元璋,刘文安,崔元仁.从鲁桑种质资源选拔抗病品种的研究[J].蚕业科学, 1996, 22(3): 140-145
    李昆朋.不同基因型玉米对磷胁迫的反应及根系蛋白质组学研究[D].山东大学博士学位论文, 2007
    李慧玉,董京祥,姜静.樟子松突变丛生枝蛋白质的双向电泳分析[J].生物技术, 2004, 14(1): 35-37
    李凌,蔡素雯,钱凯先.磁处理对番茄幼苗MDH合成的影响[J].浙江大学学报(工学版), 2001, 35(4): 374-379
    李妮亚,高俊凤.干旱对小麦幼芽蛋白质组分及等电点的影响[J].西北农业大学学报, 1997, 25(3): 6-11
    李卫芳,王忠,韩鹰等.小麦Rubisco活化酶的纯化及其活性特性[J].中国农业科学, 2002, 35(8): 929-933
    李鑫.比较蛋白质组学研究与应用进展[J].国际免疫学杂志, 2006, 29 (3): 156-160
    李跃建,彭云良,高荣,等.条锈菌侵染后小麦体内蛋白质的变化[J].西南农业学报, 2003, 16(4): 1-3
    李章宝.我国桑树萎缩病的研究概况[J].湖南农业科学, 1992, (06): 41-43
    廖晓兰,朱水芳,罗宽.植原体的分类及分子生物学研究进展[J].植物检疫, 2002, 16(3): 167-172
    梁宇,荆玉祥,沈世华.植物蛋白质组学研究进展[J].植物生态学报, 2004, 28 (1): 114-125
    雷国新,靳永年,李章宝等.桑树品种对黄化型萎缩病抗病性与过氧化物酶关系的研究[J].蚕业科学, 1995, 21(4): 219-222
    刘秉胜,戴群.桑树植原体含量的周年变化及其对寄主激素水平的影响[J].山东大学学报(自然科学版), 1999, 34(1): 98-102
    刘刚,任作瑛,黄盖群,魏玲.植物基因工程在桑树转基因研究上的应用[J].中国蚕业, 2007, 28(3): 3-10
    刘清神,许东林,林盘芳等.广州桑树植原体分子检测及多样性初探[J].蚕业科学, 2006, 32 (1): 1-5
    刘卫群,李浩.差异蛋白质组学在植物研究中的应用[J].安徽农业科学, 2006, 34(17): 4201-4203
    刘洋,何心尧,马红波等.用CTAB-PVP法提取棉花各组织总RNA的研究[J].中国农业大学学报, 2006, 11(1): 53-56
    刘振宇,李茂贞,李士竹等.桑黄化型萎缩病抗病性鉴定技术研究进展[J].蚕桑通报, 2000, 31(1): 10-13
    林木兰,杨继红.泡桐丛枝病毒菌原体单克隆重抗体的研制及初步应用[J].植物学报, 1993, 35 (9): 710-715
    马为民,施定基,王全喜.用基因工程提高光合同化CO2效率的一个关键酶—果糖-1,6-二磷酸酶[J].生物化学与生物物理进展, 2003, 30(3): 446
    秘彩莉,刘旭,张学勇. F-box蛋白质在植物生长发育中的功能[J].遗传, 2006, 28(10): 1337-1342
    牛吉山,于玲,陈佩度等.小麦3个被白粉菌诱导基因表达的分析[J].植物生理与分子生物学学报, 2002, 28(1): 65-68
    潘一乐.桑种质资源和桑树育种的研究现状与展望[J].蚕业科学, 2000, 26(增刊):1-5
    秦国夫,赵俊,刘小勇.植原体分子分类的现状与问题[J].林业科学, 2002, 38(6): 125-136
    乔建军,赵红,牛晋阳等.过氧化氢作用下东北红豆杉悬浮培养细胞中蛋白表达差异的研究[J].植物病理学报, 2003, 33(5): 429-433
    乔建军,赵红,葛志强等.水杨酸作用下东北红豆杉细胞的二维凝胶电泳分析[J].生物工程学报, 2003, 19(1): 92-96
    司丽珍,储成才.植物蔗糖合成的分子机制[J].中国生物工程杂志, 2003, 23(1): 11-17
    沈伟其.测定水稻叶片叶绿素含量的混合液提取法[J].植物生理学通讯, 1988, (3): 62-64
    沈波,李云荫.渗透胁迫和脱落酸对冬小麦叶片蛋白质的影响[J].作物学报, 1996, 22(3): 288-293
    沈永康.桑树品种对桑黄化型萎缩病的抗病性调查[J].蚕桑通报, 1994, 25(1): 51-52
    宋晓斌,郑文锋,张学武等.罹丛枝病泡桐组织结构的解剖观察[J].林业科学研究, 1997, 10(4): 429-434
    苏智广,文富强,冯玉麟. SELDI蛋白质芯片技术及其应用[J].生命的化学, 2004, 24(4): 356-358
    
    舒烈波,梅捍卫,罗利军.水稻抗旱耐盐蛋白质组学研究进展[J].生物技术通报, 2007, (4): 31-37
    孙国荣,彭永臻,阎秀峰.干旱胁迫对白桦实生幼苗叶片蛋白质的影响(J).林业科学, 2003, 3(94): 151-154
    孙日彦,王照红,杜建勋等.桑黄化型萎缩病及其防治技术[J].北方蚕业, 2003, 24(3): 49-50
    孙言伟,姜颖,贺福初.差异蛋白质组学的研究进展[J].生命科学, 2005, 17(2): 137-140
    孙彤,李伟,刘祥林等.缺铁胁迫诱导的水稻根转录本组和蛋白质组分析[C].全国第四届植物基因组学大会会议论文集,陕西杨凌, 2003.
    邵继荣.水稻冷激应答特异蛋白的电泳分析[J].乐山师专学报(自然科学版), 1998, (1): 35-37
    谭书生,吕昌富,汤传根. 83增抗剂对桑萎缩病的防治及增产效果[J].蚕桑茶叶通讯, 1999, (1): 27-28
    汤传根,陈国安.桑树夏伐留条留叶法与桑萎缩病发病率的关系[J].蚕桑通报, 1987, 18(4): 10-12
    田国忠,黄钦才,袁巧平等.感染MLO泡桐组培苗代谢变化与致病机理的关系[J].中国科学(B辑), 1994, 24(5): 484-490
    田国忠.北京地区木本植物植原体病害发生及防治对策[J].北京农业科学, 1999, 17(6): 25-28
    田立道.关于桑树萎缩病病型区分的商榷[J].江苏蚕业, 1988, (2): 6-10
    唐功利,杨春松,鲍建绍等.丙糖磷酸异构酶、果糖-1,6-二磷酸醛缩酶及果糖-1,6-二磷酸酶的共表达[J].生物化学与生物物理学报, 2001, 33(1): 131-136
    唐如航,李立人. Rubisco活化酶的研究进展[J].生命科学, 1998, 10(4): 159-163
    唐如航,贾军伟,李立人.烟草Rubisco活化酶的纯化及其特性[J].植物生理学报, 1997, 23(1): 89-94
    唐如航,贾军伟,李立人.光和糖对水稻Rubisco活化酶基因表达的影响[J].植物生理学报, 1997, 23(4): 337-341
    王慧.拟南芥响应改变重力的蛋白质组研究[D].中国科学院研究生院博士学位论文, 2007
    王希.玉米二氧化硫(SO2)胁迫相关蛋白分析[D].南昌大学硕士学位论文, 2006
    王照红,于振博,杜建勋.桑树保护研究的现状及展望[J].山东农业科学, 2005, (1): 49-51
    魏琳.卷柏干旱生理基础及差异蛋白质组学研究[D].福建师范大学硕士学位论文, 2006
    翁晓燕,陆庆,蒋德安.水稻Rubisco活化酶在调节Rubisco活性和光合日变化中的作用[J].中国水稻科学, 2001, 15(1): 35-40
    翁晓燕,路庆,蒋德安.水稻转绿型白化体突变W25转录过程中Rubisco和Rubisco活化酶活性与光合速率的变化[J].植物生理学报, 2000, 26(3): 213-218
    翁晓燕,毛伟华.水稻叶片生育过程中Rubisco活化酶及其与Rubisco和光合速率的关系[J].浙江农业学报, 2000, 12(3): 121-125
    吴健胜,王金生.水稻与白叶枯病菌互作中叶片可溶性蛋白质的变化[J].西南农业大学学报, 1998, 20(4): 322-328
    吴朝吉,陈培根,夏明炯.桑种质资源对黄化型萎缩病抗性鉴定试验[J].蚕业科学, 1992, 18(1): 6-11
    武影,束蓉.差异蛋白质组学常用技术及其在牙周炎研究中的应用[J].国际口腔医学杂志, 2006, 33 (4): 256-258
    武霞.野大麦盐胁迫的差异蛋白质组学研究[D].吉林大学硕士学位论文, 2005
    西北农业大学.基础生物化学实验指导[M].西安:陕西科学技术出版社. 1986. 84-85
    夏志松,蒯元璋,陈培根.诊断桑树黄化型萎缩病的新方法[J].蚕业科学, 1991, 17(2): 70-74
    夏志松.桑黄化型萎缩病病原单克隆抗体的制备[J].蚕业科学, 1993, 19(1): 6-8
    夏志松,山下修一,土居养二.桑萎缩病病原类菌原体的提纯、致病性及抗血清制备研究[J].蚕业科学, 1998, 24(2): 67-71
    夏志松,卢全有.桑黄化型萎缩病防治技术体系及其应用效果[J].中国蚕业, 2004, 25(1): 74-75
    夏志松,难波成任.桑黄化型萎缩病病原体16SrRNA基因的序列分析[J].蚕业科学. 2004, 30(2): 204-206
    夏志松.苏、浙、鲁三省桑黄化型萎缩病防治现状[J].中国蚕业, 2004, 25(4): 68
    夏志松,难波成任.桑黄化型萎缩病病原体16S rRNA基因的序列分析[J].蚕业科学, 2004, 30(2): 204-206
    席甲英,马文禄,张本俊等.利用剪病条法防治桑黄化型萎缩病研究[J].蚕桑通报, 1994, 25(3): 8-11
    席景文.低温胁迫下拟南芥差异蛋白质组学研究[D].吉林大学博士学位论文, 2007
    邢凤琴,郑芳,于永春等.高效毛细管电泳法对糖尿病患者尿液的分析研究[J].同济大学学报(医学版). 2001, 20(1): 21-24
    徐均焕,冯明光,朱家新等.桑萎缩病的类菌原体病原物及其超微病变特征[J].微生物学报, 1998, 38(5): 386-389
    许晓风.土霉素对桑树黄化型萎缩病治疗机理的探讨[J].植物保护学报, 1989, 16(2): 87-92
    徐亚明,顾云龙,武济民.桑树植物防卫素研究:抗桑黄化型萎缩病品种育2号枝皮的分析[J].蚕业科学, 1994, 20(2): 77-79
    徐恒平,汪沛洪.土壤干旱对小麦根系蛋白组分变化的影响[J].西北农业学报, 1992, 1(1): 33-36
    严顺平.水稻响应盐胁迫和低温胁迫的蛋白质组研究[D].中国科学院研究生院博士学位论文, 2006
    杨春.反义技术的研究进展及其应用[J].第四军医大学吉林军医学院学报, 1994, 16(2): 71-74
    杨梅.邻轻基苯甲酸胁迫对不同杉木无性系化感效应及差异蛋白质组分析[D].福建农林大学博士学位论文, 2007
    杨传平,王玉成,刘桂丰等. NaHCO3胁迫下紫杆怪柳一些基因的表达[J].植物生理与分子生物学学报, 2004, 30(2): 229-233
    尹文兵,黄勤妮,印莉萍.模式植物蛋白质组研究进展[J].生物信息学, 2004, 2(2): 47-50
    喻方圆,徐锡增.植物逆境生理研究进展[J].世界林业研究, 2003, 16(5): 6-11
    余初浪.用蛋白质组学技术筛选水稻抗白叶枯病相关蛋白[D].浙江师范大学硕士学位论文, 2007
    袁雪宇,吴国亭,韩玉麒.差异蛋白质组学技术和应用前景[J].同济大学学报(医学版), 2004, 25 (4): 349-355
    袁媛,杨文钰.不同栽植时期对野生大百合开花期性状及成花过程碳氮代谢的影响[J]. 长江蔬菜, 2007, (6): 40-43
    张国,李滨,邹琦.小麦Rubisco活化酶基因的克隆和表达特性[J].植物学通报, 2005, 22(3): 313-319
    张国,王玮,邹琦. Rubisco活化酶的分子生物学[J].植物生理学通讯, 2004, 40(5): 633-637
    张建秋,陆海,王智等.双向电泳技术分析白刺盐胁迫蛋白的表达[J].吉林农业大学学报, 2004, 26(5): 511-51
    张林,吴朝吉,夏明炯等.桑种质资源对黄化型萎缩病抗性鉴定续[J].蚕业科学, 1998, 24(2): 114-115
    张田.蛋白质与蛋白质组学的研究进展[J].云南师范大学学报, 2003, 23(1): 5l-53
    张学武,郑文锋,宋晓斌等.泡桐病健植株过氧化物同工酶的分析[J].陕西林业科学, 1993, (4): 41-43
    张永红,张力群,杨之为等.黄河蜜甜瓜1-氨基环丙烷1-羧酸合成酶基因片段的克隆和反义载体的构建[J].西北农林科技大学学报(自然科学版), 2004, 32 (2): 44-48
    赵宏伟,田秀珠,王波.差异蛋白质组学研究与应用进展[J].医学与哲学(临床决策论坛版), 2006, 27( 4): 45-47l
    赵利辉.交链胞菌激活蛋白激发水稻的应答基因与抗性分析[D].中国农业科学院博士论文, 2006
    赵军,赵玉田,梁博文.寒胁迫过程中冬小麦叶片组织可溶性蛋白质含量的变化和功能[J].中国农业科学, 1994, 27(2): 57-61
    赵丽英,邓西平,山仑.不同水分处理下冬小麦旗叶叶绿素荧光参数的变化研究[J].中国生态农业学报, 2007, 15 (1): 63-66
    赵培宝,任爱芝.桑树萎缩病的发生为害规律与综合控制措施[J].植保技术与推广, 2003, 23 (9): 16-17
    郑炳松,程晓建,蒋德安等.钾元素对植物光合速率、Rubisco和RCA的影响[J].浙江林学院学报, 2002, 19(1): 104-108
    郑彦,邵淑娟.比较蛋白质组研究方法学进展[J].生命科学仪器, 2006,4: 19-22
    郑用琏, Ballancez G.M..小麦与褐斑病菌之间的分子互作-受病原菌诱导的寄主抗性蛋白的研究[J].华中农业大学学报, 1994, 13(4): 332-338
    周涵,韬林鹏.盐胁迫下红树植物蛋白质的比较分析[J].海洋科学, 2002, 26(4): 4-6
    周玲玲,吴尔福. TS制剂对桑树萎缩病的防治机理[J].山东大学学报, 1998, 33(3): 340-344
    朱本明,徐伟军,陈作义等.桑树黄化型萎缩病类菌原体抽提及抗血清制备[J].蚕业科学, 1982, 8(1): 6-10
    朱本明,陈作义,沈菊英等.桑树黄化型萎缩病类菌原体抽提方法的改进及形态观察[J]. 蚕业科学, 1984, 10(1): 13-15
    朱本明.我国植物类菌原体病害研究现况[J].上海农业学报, 1985, 1(1): 88-93
    朱友林,吴健胜,王金生.水稻对白叶枯病菌抗性相关蛋白的双向电泳分析[J].中国农业科学, 2000, 33(4): 91-93
    朱永生.水稻离体叶鞘受稻瘟病菌侵染后的蛋白质组分析[D].福建农林大学硕士学位论文. 2007
    Abbasi F.M., and Komastu S.. A proteomic approach to analyze salt-responsive proteins in rice leaf sheath[J]. Proteomics, 2004, 4: 2072-2081
    Adkins J.N., Varnum S.M., Auberry K.J., et al.. Toward a Human Blood Serum Proteome: Analysis by multidimensional separation coupled with mass spectrometry [J]. Mol. Cell Proteomics, 2002, 1: 947-955.
    Anderson L.E., Gibbons J.T., Wang X.W.. Distribution of ten enzymes of carbon metabolism in pea (Pisum sativum) chloroplast [J]. Int. J. Plant Sci., 1996, 157: 525-538
    Anja S., Marco B., and Rüdiger H.. Overexpression of the potential herbicide target sedoheptulose-1,7-bisphosphatase from Spinacia oleracea in transgenic tobacco [J]. Molecular Breeding, 2002, 9: 53-61
    Ali G.M., and Komastu S.. Proteomic analysis of rice leaf sheath during drought stress [J]. J. Proteome Res., 2006, 5: 396-403
    Anderson N.L., and Anderson N.G.. Proteome and proteomics: new technologies, new concepts, and new words [J]. Electrophoresis, 1998, l9: l853-l861
    Agarwal G.K., Rakwal R., Yonekura M., et al.. Proteome analysis of differentially displayed proteins as a tool for investigating ozone stress in rice (Oryza sativa L.) seedlings [J]. Proteomics, 2002, 2: 947-959
    Anja S., Marco B., and Rüdiger H.. Overexpression of the potential herbicide target sedoheptulose-1,7-bisphosphatase from Spinacia oleracea in transgenic tobacco[J]. Molecular Breeding, 2002, 9(1): 53-61
    Alison J.M., Susan C.P., Nicola M.W., et al.. A light- and developmentally-regulated DNA-binding interaction is common to the upstream sequences of the wheat Calvin cycle bisphosphatase genes [J]. Plant Molecular Biology, 1993, 22(3): 507-516
    Archie R., and Portis J.. Rubisco activase-Rubisco’s catalytic chaperone [J]. Photosynthesis Research, 2003, 75: 11-27
    Bai X., Zhang J., Ewing A., et al.. Living with genome instability: the adaptation of phytoplasmas to diverse environments of their insect and plant hosts [J]. J. Bacteriol, 2006, 188: 3682-3696
    Berg M., Melcher U., and Fletcher J.. Characterization of Spiroplasma citri adhesion related protein SARP1, which contains a domain of a novel family designated sarpin [J]. Gene, 2001, 275: 57-64
    van Berkel J., Salamini F. and Gebhardt C.. Transcripts accumulating during cold storage of potato (Solanum tuberosum L.) tubers are sequence related to stress-responsive gene [J]. Plant Physiol., 1994, 104: 445-452
    Berry J.A., Lorimer G.H., Pierce J., et al.. Isolation, identification and synthesis of 2-carboxyarabinitol 1-phosphate, a diurnal regulator of ribulose-bisphosphate carboxylase activity [J]. Proc. Natl. Sci. USA, 1987, 84: 734-738
    Bertamini M., Grando M.S., and Nedunchezhian, N.. Effects of phytoplasma infection on pigments, chlorophyll–protein complex and photosynthetic activities in field grown apple leaves [J]. Biol. Plant, 2003, 47: 237-242
    Bestel-Corre G., Dumas-Gaudot E., Poinsot V., et al.. Proteome analysis and identification of symbiosis-related proteins from Medicago truncatula Gaertn. by two-dimensional electrophoresis and mass spectrometry [J]. Electrophoresis, 2002, 23: 122-137
    Bray E.A.. Plant responses to water deficit [J]. Trends in Plant Science, 1997, 2: 48-54 Buchanan B.B., Schurmann P., and Wolosiuk R.A.. Appearance of sedoheptulose-1,7- diphosphatase activity on conversion of chloroplast fructose-1,6-diphosphatase from the dimmer form to monomer form [J]. Biochemistry and Biophysics Research Communication, 1976, 69: 970-978
    Buchanan B.B.. Role of light in the regulation of chloroplast enzymes [J]. Annual Review of Plant Physiology., 1980, 31: 341-374
    Cabane M., Calvet P., Vincens P. and Boudet A.M.. Characterization of chilling-acclimation-related proteins in soybean and identification of one as a member of the heat shock protein (HSP) family [J]. Planta, 1993, 190: 246-353
    Cadet F., and Meunier J.C.. Spinach (Spinacia oleracea) chloroplast sedoheptulose-1,7-bisphosphatase. Activation and deactivation, and immunological relationship to fructose- 1,6-bisphosphatase [J]. Biochemical Journal, 1988, 253(1): 243-248
    Cadet F., Meunier J.C., Ferte N.. Isolation and purification of chloroplastic spinach (Spinacia oleracea) sedoheptulose-1,7-bisphosphatase [J]. Biochemical Journal, 1987, 241: 71-74
    Cadet F., and Meunier J.C.. pH and kinetic studies of chloroplast sedoheptulose-1,7- bisphosphatase from Spinach (Spinacia oleracea) [J]. Biochemical Journal, 1988, 253(1): 249-254
    Carginale V., Maria G.., Capasso C., et al.. Identification of genes expressed in response to phytoplasma infection in leaves of Prunus armeniaca by messenger RNA differential display [J]. Gene, 2004, 332: 29–34
    Chang W.W., Huang L., Shen M.. Patterns of protein synthesis and tolerance of anoxia in root tips of maiza seedlings acclimated to a low-oxygen environment, and identification of proteins by mass spectrometry [J]. Plant Physiology., 2000, 122: 295-318
    Chang F.L., Chen C.C. and Lin C.P.. Monoclonal antibody for the detection and identification of a phytoplasma associated with rice yellow dwarf [J]. European Journal of Plant Pathology, 1995, 101: 511-518
    Chen Z.Y., Brown R.L., Lax A.R., et al.. Resistance to A. flavus in corn kernels is associated with a 14 kDa protein [J]. Phytopathology, 1998, 88: 276-281
    Chen Z.Y., Brown R.L., Damann K.E., et al.. Identification of unique or elevated levels of kernel proteins in aflatoxin-resistant maize genotypes through proteome analysis [J]. Phytopathology, 2002, 92: 1084-1094
    Choi Y.H., Tapias E.C., Kim H. K., et al.. Metabolic discrimination of Catharanthus roseus leaves infected by phytoplasma using H-1-NMR spectroscopy and multivariate data analysis [J]. Plant Physiology., 2004, 135, 2398-2410
    Christine A.R., Julie C.L., and Tristan A.D.. New insights into the structure and function of sedoheptulose-1,7-bisphophatase; an important but neglected Calvin cycle enzyme [J]. J. Exp. Bot., 1999, 50(330): 1-8
    Christensen N.M., Nicolaisen M., Hansen M., et al.. Distribution of phytoplasmas in infected plants as revealed by real-time PCR and bioimaging [J]. Mol. Plant–Microbe Interact, 2004, 17: 1175-1184
    Christensen N.M., Axelsen K.B., Nicolaisen M., et al.. Phytoplasmas and their interactions with hosts [J]. Trends in Plant Science, 2005, 10: 526-535
    Clough S.J., and Bent A.F.. Floral dip: a simplified method for Agrobacterium mediated transformation of Arabidopsis thaliana [J]. Plant J., 1998, 16: 735-743
    Cordova I., Jones P., Harrison N.A., et al.. In situ PCR detection of phytoplasma DNA in embryos from coconut palms with lethal yellowing disease [J]. Mol. Plant Pathol., 2003, 4: 99-108
    Costa P., Bahrman N., Frigerio J.M., et al.. Water-deficit responsive proteins in maritime pine [J]. Plant Mol. Biol., 1998, 39: 587-596
    Crafts-Brandner S.J., and Salvucci M.E.. Rubisco activase constrains the photosynthetic of leaves at high temperature and CO2 [J]. Proc. Natl. Acad. Sci. USA, 2000, 97(24): 13430-13435
    Danyluk J., Rassart E., and Sarhan F.. Gene expression during cold and heaat shock in wheat [J]. Biochem Cell Biol., 1991, 69: 383-391
    Davis R.E., Dally E.L., Gundersen D.E., et al..“Candidatus Phytoplasma australiense”, a new phytoplasma taxon associated with Ausralian grapevine yellows [J]. Int. J. Syst. Bacteriol, 1997, 47: 262-269
    Demirevska-Kepova K., Simova-Stoilova L., Kjurkchiev S., et al.. Barley leaf Rubisco, Rubisco binding protein and Rubisco activase and their protein/ protein interactions [J], Bulg J. Plant Physiol., 1999, 25(34): 31-441
    Demirevska-Kepova K., H?lzer R., Simova-Stoilova L., et al.. Heat stress effects on ribulose-1,5-bis-phosphate carboxylase/oxygenase,Rubisco binding protein and Rubisco activase in wheat leaves [J]. Biologia Plantarum, 2005, 49 (4): 521-525
    Devos K.M., Atkinson M.D., Chinoy C.M., et al.. The coding sequence for sedoheptulose -1,7-bisphospha-tase detects multiple homologues in wheat genomic DNA [J]. Theoretical and Applied Genetics, 1992, 85(2): 133-135
    Doi Y., Teranaka M., Yora K., et al.. Mycoplasma or PLT group-like microorganisms found in the phloem elements of plants infected with mulberry dwarf and potato witches broom [J]. Ann. Phytopathol. Soc. Jpn., 1967, 33: 259-266.
    Dunford R. P., Catley M.A., Raines C.A., et al.. Expression of wheat sedoheptulose-1,7-bisphosphatase in E.coli and affinity purification of functional protein [J]. Protein Expression and Purification, 1998, 14(1): 139-145
    Esau B.D., Snyder G.W., and Portis A.R. Differential effects of N- and C-terminal deletions on two activities of Rubisco activase [J]. Arch Biochem. Biophys., 1996, 326 (1): 100-105
    Estelle G., Maria S., Thomas K., et al.. The chloroplast lumen and stromal proteomes of Arabidopsis thaliana show differential sensitivity to short- and long-term exposure to low tempera ture [J]. Plant Journal, 2006, 47: 720-734
    Fejes A.P., Yi E.C., Goodlett D.R., et al.. Shotgun proteomic analysis of a chromatophore -enriched preparation from the purple phototrophic bacterium Rhodopseudomonas palustris [J]. Photosynth Res., 2003, 78(3): 195-203
    Feller U., Craft-Brandner S.J., and Salvucci M.E.. Moderately temperatures inhibit ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) activase mediated activation of rubisco [J]. Plant Physiology, 1998, 116: 539-546
    Fox B.S., and Walsh C.T.. Mercuric reductase: homology to glutathione reductase and lipoamide dehydrogenase. Iodoacetamide alkylation and sequence of the active site peptide [J]. Biochemistry, 1983, 22: 4082-4088
    Fujimori K.S., Tada S.K., and Ohta D.. Molecular cloning and characterization of the gene encoding N′-[(5′-phosphoribosyl)-formimino]-5-aminoimidazole-4-carboxamide ribbonnucleotide (BBM II) isomerase from Arabidopsis thaliana [J]. Mol. Gen. Gent., 1998, 259: 216-223
    Garnier M., Foissac X., Gaurivaud P., et al.. Mycoplasmas, plants, insect vectors: a matrimonial triangle [J]. C. R. Acad. Sci., 2001, 324: 923-928
    Geiger D.R., and Servaites J.C.. Diurnal regulation of photosynthetic carbon metabolism in C3 plant [J]. Annual Review of Plant Physiology and Plant Moleclar Biology, 1995, 45: 253-256
    Gilmartin P.M., Sarokin L., Memelink J., et al.. Molecular light switches for plant genes [J]. Plant Cell, 1990, 2: 369-378
    Gong Q.Q., Li P.H., Ma S.S., et al.. Salinity stress adaptation competence in the extremophile thellungiella halophila in comparison with its relative Arabidopsis thaliana [J]. Plant Journal, 2005, 44: 826-839
    Goodchild A., Raftery M., Saunders N.F., et a1.. Cold adaptation of the Antarcticarehaeon, Methanococcoides burtonii assessed by pmmomlcs using ICAT [J]. Proteome Res., 2005, 4(2): 473-480
    Goshe M.B., Courads T.P., Panisko E.A., et a1.. Phosphoprotein isotope-coded affinity tag approach for isolating and quanfitating phosphopeptides in proteome-wide analyses [J]. Anal. Chem., 2001, 73(11): 2578-2586
    Grant R., Cramer A. E., Jerome G., et al.. Water and salinity stress in grapevines: early and late changes in transcript and metabolite profiles [J]. Funct Integr Genomics, 2006, 7(2): 111-134
    Guy C.L., and Haskell D.. Detection of polypeptides associated with the cold acclimation process in spinach [J]. Electrophoresis, 1988, 9: 787-796
    Gygi S.P., Corthals G.L., Zhang Y., et al.. Evaluation of two-dimensional gel electrophoresis based proteome analysis technology [J]. Proc. Natl. Acad. Sci. USA, 2000, 97: 9390-9395.
    Hahn D., Kaltenbach C., and Kuck U.. The Calvin cycle enzyme sedoheptulose-1,7- bisphosphatase is encoded by a light-regulated gene in Chlamydomonas reinhardtii [J]. Plant Molecular Biology, 1998, 36(6): 929-934
    Hajduch M., Rakwal R., Agrawal G.K., et al.. High-resolution two-dimensional electrophoresis separation of proteins from metal-stressed rice (Oryza sativa L.) leaves: Drastic reductions/fragmentation of ribulose-1,5-bisphosphate carboxylase/ oxygenase and induction of stress-related proteins [J]. Electrophoresis, 2001, 22: 2824-2831
    Hall J.L.. Cellular mechanisms for heavy metal detoxification and tolerance [J]. J. Exp. Bot., 2002, 53: 1-11
    Hannaert V., Saavedra E., Duffieux F., et al.. Plant-like traits associated with metabolism of Trypanosoma parasites [J]. Proc. Natl. Acad. Sci. USA, 2003, 100: 1067-1071
    Harold N., and Bruce C. K.. Isolation and characterization of full-length chromosomes from non-culturable plant-pathogenic Mycoplasma-like organisms [J]. Molecular Microbiology, 1993, 7 (1): 21-28
    Harrison E.P., Willingham N.M., and Lloyd J.C.. Reduced sedoheptulose-1,7- bisphosphatase levels in transgenic tobacco lead to decreased photosynthetic capacity and altered carbohydrate accumulation [J]. Planta, 1998, 204: 27-36
    Hartman F. C., and Harpel M. R.. Structure,function,regulation,and assembly of ribulose -1,5-bisphosphate carboxylase/oxygenase[J]. Annu. Rev. Biochem., 1994, 63: 197-234
    He X.J., Chen J.Q., Zang Z.G., et al.. Identification of salt-stress responsive genes in rice (Oryza sativa L.) by cDNA array [J]. Science in China (Series C), 2002, 45(5): 476-483
    He P., He H.Z., Dai J., et al.. The human plasma proteome: Analysis of Chinese serum using shotgun strategy [J]. Proteomics, 2005, 5: 3442-3453
    von Heijne G., Steppuhn J., and Herrmann R.G.. Domain structure of mitochondrial and chloroplast targeting peptides [J]. Eur. J. Biochem., 1989, 180: 535-545
    Hiroshi F., Naotsugu U., Tetsushi A., et al.. Light dependent activation of CO2 assimilation and the ratio of Rubisco activase to Rubisco during leaf aging of rice (Oryza sativa) [J]. Physiologia Plantarum, 1998, 104: 541-548
    Hua J., Wei W., Saiki T., et al.. Distribution patterns of mulberry dwarf phytoplasma in reproductive organs, winter buds and roots of mulberry tress [J]. J. Gen. Plant Pathol., 2004, 70: 168-173
    Huang X.L., Xu S.F., Chen J., et al.. Proteomics related to the interaction between maize and Curvularia lunata [A]. Proceeding of CNHUP 4 th A nnual Conference (in Chinese ) [C]. Xian: Committee of Proteomics Association of Biochemistry and Molecular Biology of China. 2006, 136-137
    Houterman P.M., Speijer D., Dekker H.L., et al.. The mixed xylem sap proteome of Fusarium oxysporum-infected tomato plants [J]. Mol. Plant Pathol., 2007, 8: 215-221
    Hudson G.S., Evans J.R., Caemmerer S., et al.. Reduction of ribulose-1,5-bisphosphate carboxylase /oxy-genase content by antisense RNA reduces photosynthesis in transgenic tobacco plants [J]. Plant Physiology, 1992, 98: 294-302
    Hulya O., Lloyd J.C., and Raines C.A.. Photosynthetic capacity is differentially affected by reductions in sedoheptulose-1,7-bisphosphatase activity during leaf development in transgenic tobacco plant [J]. Plant Physiology, 2001, 125: 982-989
    Huo C.M., Zhao B.C., Ge R.C., et al. Proteomic analysis of the salt toleranc mutant of wheat under salt stress [J]. Acta Genetica Sinica, 2004, 31(12): 1408-1414
    Jacquot J.P., Lancelin J.M., and Meyer Y.. Thioredoxins: structure and function in plant cells [J]. New Phytologist, 1997, 136(4): 543-570
    Jacquot J.P., Lopez-Jaramillo J., Chueca A., et al.. Cysteine-153 is required for redox regulation of pea chloroplast fructose-1,6-bisphosphatase [J]. FEBS Letters, 1997, 401(1): 143-147
    Jain A.K., Vincent R.M., and Nessler C.L.. Molecular characterization of a hydroxymethyl- glutaryl-CoA reductase gene from mulberry (Morus alba L.) [J]. Plant Molecular Biology, 2000, 42: 559-569
    Jagoueix-Eveillard S., Tarendeau F., Guolter K., et al.. Catharanthus roseus genes regulated differentially by mollicute infections [J]. Mol. Plant–Microbe Interact, 2001, 14: 225-233
    Jaramillo J.L., Chueca A., Jacquot J.P., et al.. High-yield expression of pea thioredoxin m and assessment of its efficiency in chloroplast fructose-1,6-bisphosphatase activation [J]. Plant Physiology, 1997, 114: 1169-1175
    Jensen R.G.. Activation of Rubisco regulation photosynthesis at high temperature and CO2 [J]. Proc. Natl. Acad. Sci. USA, 2000, 97(24): 12937-12938
    Ji C., Norton R.A., Wicklow D.T., et al.. Isoform patterns of chitinase andβ-1,3-glucanase in maturing corn kernels (Zea mays L.) associated with Aspergillus flavus milks tage infection [J]. J. Agric. Food Chem., 2000, 48: 507-511
    Jiang C.Z., Quick W. P., Aired R., et al.. Antisense RNA inhibition of Rubisco activase expression [J]. Plant Journal, 1994, 5(6): 787-798
    Jiang Y.P., and Chen T.A., Purification of mycoplasma-like organisms from lettuce with aster yellows disease [J]. Phytopathology, 1987, 77: 949-953
    Jiang H., Wei W., Saiki T., et al.. Distribution patterns of mulberry dwarf phytoplasma in reproductive organs, winter buds, and roots of mulberry trees [J]. J. Gen. Plant Pathol., 2004, 70: 168-173
    Jin S.H., Jian H., Li X.Q., et al.. Antisense inhibition of rubisco activase increases rubisco contentand alters the proportion of rubisco activase in stroma and thylakoids in chloroplasts of rice leaves [J]. Annals of Botany, 2006, 97: 739-744
    Jones P.G., Lloyd J.C., and Raines C.A.. Glucose feeding of intact wheat plants represses the expression of a number of Calvin cycle genes [J]. Plant Cell and Environment, 1996, 19(2): 231-236
    Joohyun L., Terry M.B., Michael L., et al.. Proteomic and genetic approaches to identifying defence-related proteins in rice challenged with the fungal pathogen Rhizoctonia solani [J]. Molecular Plant Pathology, 2006, 7(5): 405-416
    Junqueira A., Bedendo I., and Pascholati S.. Biochemical changes in corn plants infected by the maize bushy stunt phytoplasma [J]. Physiol. Mol. Plant Pathol., 2004, 65: 181-185
    Kaiser L.. From genome to functional genomics [J]. Science, 2000, 288: 1715
    Katagiri F., and Chua N.H.. Plant transcription factors-present knowledge and future challenges [J]. Trends in Genetics, 1992, 8(1): 22-27
    Kakizawa S., Oshima K., Nishigawa H., et al.. Secretion of immunodominant membrane protein from onion yellows phytoplasma through the Sec proteintranslocation system in Escherichia coli. [J]. Microbiology, 2004, 150: 135-142
    Kangmin K., Archie R., Portis J.. Temperature dependence of photosynthesis in Arabidopsis plant with modification in rubisco activase and membrane fluidity [J]. Plant Cell Physiol., 2005, 46(3): 522-530
    Katagiri F., and Chua N.H.. Plant transcription factors-present knowledge and future challenges [J]. Trends in Genetics, 1992, 8: 22-27
    Kiga C., Nakagawa T., Koizumi K., et a1.. Expression patterns of plasma proteins in spontaneously diabetic rats after oral administration of a Kampo medicine, Hachimi-jio-gan, using SELDI Protein Chip platform [J]. Biol Pharm Bull, 2005, 28(6): 1031-1037
    Killiny N., Castroviejo M., and Saillard C.. Spiroplasma citri spiralin acts in vitro as a lectin binding to glycoproteins from its insect vector Circulifer haematoceps [J]. Phytopathology, 2005, 95: 541-548
    Klose J., Nock C., Herrmann M., et a1.. Genetic analysis of the mouse brain proteome [J]. Nat. Genet., 2002, 30(4): 385-393
    Komatsu S., Muhammad A. and Rakwal R.. Seperation and characterization of proteins from green and etiolated shoots of rice (Oryza sativa L.): towards a rice proteome [J]. Electrophoresis. 1999, 20: 630-636
    Kong-ngern K., Daduang S., Wongkham C., et al.. Protein profiles in response to salt stress in leaf sheaths of rice seedlings [J]. Science Asia, 2005, 31: 403-408.
    Konishi H., Ishiguro K., and Komatsu S.. A proteomics approach towards understanding blast fungus infection of rice grown under different levels on nitrogen fertilization [J]. Proteomics, 2001, 1: 1162-1171
    Konishi H., Kitaon H., and Komatsu S.. Identification of rice root proteins regulated by gibberellin using proteome analysis [J]. Plant Cell and Environment, 2005, 28: 328-339
    Laing W.A., Stitt M., and Heldt H.W.. Control of CO2 fixation. Changes in the activity of phosphate kinase and fructose- and sedoheptulose-bisphosphatase in chloroplasts [J]. Biochimica et Biophysica Acta, 1981, 637: 348-359
    Lan Y., Mott K.A., and Woodrow I.E.. Light-dependent activation of Rubisco activase [J]. Plant Physiology (Suppl)., 1992, 99: 104
    Laurent B., Norihide K., Shigetoh M.. Rubisco activase transcript (rca) abundance increases when the marine unicellular green alga Chlorococcum littorale is grown under high-CO2 stress [J]. Plant Molecular Biology, 1999, 41: 627-635
    Law R.D., and Crafts-Brandner S.J.. High temperature stress increases the expression of wheat leaf ribulose bisphosphate carboxylase/oxygenase activase protein [J]. Arch Biochem. Biophys., 2001, 386(2): 261-267
    Law R.D., Crafts-Brandner S.J., and Salvucci. Heat stress induces the synthesis of a new form of ribulose-1,5-bisphosphate carboxylase/oxygenase activase in cotton leaves [J]. Planta, 2001, 214: 117-125
    Lawlor D.W., and Cornic G.. Photosynthetic carbon assimilation and associated metabolism in relation to water deficits in higher plants [J]. Plant Cell and Environment, 2002, 25: 275-294
    Lawson T., Bryant B., Lefebvre, et al.. Decreased SBPase activity alters growth and development in transgenic tobacco plants [J]. Plant, Cell and Environment, 2006, 29(1): 48-58
    Lee I.M., Hammond R.W., Davis R.E., et al.. Universal amplification and analysis of pathogen 16S rDNA for classification and identification of mycoplasmalike organisms [J]. Phytopathology, 1993, 83: 834-842
    Lee I.M., Davis R.E., and Gundersen-Rindal, D.E.. Phytoplasma: Phytopathogenic mollicutes [J]. Annu. Rev. Microbiol., 2000, 54: 221-255
    Lee I.M. and Davis R.E.. Phloem-limited prokaryotes in sieve elements isolated by enzyme treatment of diseased plant tissues [J]. Phytopathology, 1983, 73: 1540-1543
    Lee I.M., Gundersen D.E., Hammond R.W., et al.. Use of mycoplasmalike organism (MLO) group-specific oligonucleotide primers for nested-PCR assays to detect mixed-MLO infections in a single host plant [J]. Phytopathology, 1994, 84: 559-566
    Lee I.M., Davis R.E., and Gundersen D.E.. Phytoplasma: phytopathogenic mollicutes[J]. Annual Review of Microbiology, 2000, 54: 221-255
    Leone A., Costa A., Tucci M., et al.. Comaprative analysis of short-and-term changes in gene expression caused by low water potential in potato cell-suspension cultures [J]. Plant Physiology, 1994, 106: 703-712
    Lopez M.F., Kristal B.S., Chernokalskaya E., et al.. High-throughput profiling of the mitochondrial proteome using affinity fractionation and automation [J]. Electrophoresis, 2000, 21(16): 3427-3440
    Lepka P., Stitt M., Moll E., et al.. Effect of phytoplasmal infection on concentration and translocation of carbohydrates and amino acids in periwinkle and tobacco [J]. Physiol. Mol. Plant Physiology., 1999, 55: 59-68
    MacBeath G. and Schreiber S.L.. Printing Proteins as Microarrays for High-throughput function determination [J]. Science, 2000, 289(8): 1760-1763
    Magali R., Brigitte G., and Jacques R.. Thioredoxin activation of phosphoribulokinase in a chloroplast multi-enzyme complex [J]. Eur. J. Biochem., 1991, 197(3): 791-797
    Malembic-Maher S., Gall F.le, Danet J.L., et al.. Transformation of tobacco plants forsingle-chain antibody expression via apoplastic and symplasmic routes, and analysis of their susceptibility to stolbur phytoplasma infection [J]. Plant Sci., 2005, 168: 349-358
    Marcone C., Lee I.M., Davis R.E., et al.. Classification of aster yellows-group phytoplasmas based on combined analyses of rRNA and Tuf gene sequences [J]. Int. J. of Syst. and Evol. Mic., 2000, 50: 1703-1713
    Mark G.P., David A.F., Christine A.R.. Elementary modes analysis of photosynthate metabolism in the chloroplast stroma [J]. Eur. J. Biochem., 2003, 270(3): 430-439
    Martin W., and Schnarrenberger C.. The evolution of the Calvin cycle from the prokaryotic to eukaryotic chromosomes: a case study of functional redundancy in ancient pathways through endosymbiosis [J]. Current Genetics, 1997, 32(1): 1-18
    Martín V. S., Alfredo A. O., Jessica L. F., et al.. Rubisco activase chaperone activity is regulated by a post-translational mechanism in maize leaves [J]. Journal of Experimental Botany, 2004, 55(408): 2533-2539
    Martinea B.E., Molina G.J., and Sanchea J.E.. Regulation of Rubisco activity during grain-fill inmaize: posible of role Rubisco activase [J]. J.Agri. Sci., 1997, 128: 155-161
    Masahiro T., Miki N., Yoshiko M., et al.. Contribution of fructose-1,6-bisphosphatase and sedoheptulose-1,7-bisphosphatase to the photosynthetic rate and carbon flow in the Calvin cycle in transgenic plants [J]. Plant Cell Physiol., 2006, 47(3): 380-390
    Maust B.E., Espadas F., Talavera C., et al.. Changes in carbohydrate metabolism in coconut palms infected with the lethal yellowing phytoplasma [J]. Phytopathology, 2003, 93: 976-981
    Melamed S., Tanne E., and Ben-Haim R.. Identification and characterization of phytoplasmal genes, employing a novel method of isolating phytoplasmal genomic DNA [J]. Joural of bacteriology, 2003, 185: 6513-6521
    Meza-Basso, Alberdi L., Raynl M., et al.. Changes in protein synthesis in rapeseed seedlings during a low termperature treatment [J]. Plant Physiology. 1987, 82: 733-738
    Michael E.S., Katherine W.O., Steven J.C.B., et al.. Exceptional sensitivity of rubisco activase to thermal denaturation in vitro [J]. Plant Physiology, 2001, 127: 1053-1064
    Michael E., Salvucci F.J., and van de Loo D. S.. Two isoforms of Rubisco activase in cotton, the products of separate genes not alternative splicing [J]. Planta, 2003, 216: 736-744
    Michael E.S., Steven J., and Crafts B.. Relationship between the heat tolerance of photosynth-esis and the thermal stability of rubisco activase in plant from contrasting thermal environments [J]. Plant Physiology, 2004, 134(4): 1460-1470
    Miles A.J., Potts S.C., Willingham N.M., et al.. A light-and developmentally regulated DNA-binding interaction is common to the upstream sequences of the wheat Calvin cycle bisphosphatase genes [J]. Plant Molecular Biology, 1993, 22(4): 507-516
    Miyagawa Y., Tamoi M., and Shigeoka S.. Overexpression of a cyanobacterial fructose-1,6/- sedoheptulose-1,7-bisphosphatase in tobacco enhances photosynthesis and growth [J]. Nature Biotech., 2001, 19: 965-969
    Moller-Jensen J., and Lowe, J.. Increasing complexity of the bacterial cytoskeleton [J]. Curr. Opin. Cell Biol., 2005, 17: 75-81
    Moons A., Prinsen E., Bauw G., et al.. Antagonistic effects of abscisic acid and jasmonates on salt stress-inducible transcripts in rice roots [J]. Plant Cell, 1997, 9: 2243-2259
    Moore L.E., Pfeiffer R., Warner M., et a1.. Identification of biomarkers of arsenic exposure and metabolism in urine using SELDI technology [J]. Biochem. Mol. Toxicol., 2005, 19(3): 176
    Morton A., Davies D.L., Blomquist C.L., et al.. Characterization of homologues of the apple proliferation immunodominant membrane protein gene from three related phytoplasmas [J]. Mol. Plant Pathol., 2003, 4: 109-114
    Motohashi K., Kondoh A., Stumpp M.T. et al.. Comprehensive survey of proteins targeted by chloroplast thioredoxin [J]. Proc. Natl. Acad. Sci. USA, 2001, 98(20): 11224-11229
    Oparka K.J.. Getting the message across: how do plant cells exchange macromolecular complexes? [J]. Trends Plant Sci., 2004, 9: 33-41
    Musetti R., Toppi L.S., di Ermacora P., et al.. Recovery in apple trees infected with the apple proliferation phytoplasma: an ultrastructural and biochemical study [J]. Phytopathology, 2004, 94: 203-208
    Neuwald A.F., Aravind L., Spouge J.L., Koonin E.V.. AAA+: A class of chaperone-like ATPases associated with the assembly, operation, and disassembly of protein complexes [J]. Genome Res., 1999, 9: 27-43
    Nishizawa A.N., and Buchanan B.B.. Enzyme regulation in C4 photosynthesis. Purification and properties of thioredoxin-linked fructose bisphosphatase and sedoheptulose bisphosphatase from corn leaves [J]. J. Biol. Chem., 1981, 256: 6119-6126
    Oshima K., Miyata S., Sawayanagi T., et al.. Minimal set of metabolic pathways suggested from the genome of onion yellows phytoplasma [J]. J. Gen. Plant Pathol., 2002, 68: 225-236
    Oshima K., Kakizawa S., Nishigawa H., et al.. Reductive evolution suggested from the complete genome sequence of a plant-pathogenic phytoplasma [J]. Nat. Genet., 2004, 36: 27-29
    Ogura T., and Wilkinson A.J.. AAA+ superfamily ATPases: common structure–diverse function [J]. Genes Cells, 2001, 6: 575-597
    Pandey A., and Mann M.. Proteomics to study genes and genomes [J]. Nature, 2000, 405: 837-846
    Parker R., Flowers T.J., Moore A.L., et al.. An accurate and reproducible method for proteome profiling of the effects of salt stress in the rice leaf lamina [J]. Journal of Experimental Botany, 2006, 57: 1109-1118
    Pelloux J., Jolivet Y., Fontaine V., Banvoy J., et al.. Changes in Rubisco and Rubisco activase gene expression and polypeptide content in Pinus halepensis M. subjected to ozone and drought [J]. Plant Cell and Environment, 2001, 24: 123-131
    Pierre H., and Urs F.. Growth at moderately elevated temperature alters the physiological response of the photosynthetic apparatus to heat stress in pea (Pisum sativum L.) leaves [J]. Plant Cell and Environment, 2005, 28: 302-317
    Portis A.R.J.. Regulation of ribulose-1,5-bisphosphate carboxylase/oxygenase activity [J]. Annu. Rev. Plant Physiology, 1992, 43: 415-437
    Raines C.A., Lloyd J.C., and Dyer T.A.. Molecular biology of the C3 photosynthetiv carbon reduction cycle [J]. Photosynthesis Research, 1991, 27(1): 1-14
    Raines C.A., Lloyd J.C., Willingham N.M., et al.. cDNA and gene sequences of wheat chloroplast sedoheptulose-1,7-bisphosphatase reveal homology with fructose-1,6-bisphosphatases [J]. Eur. J. Biochem., 1992, 205(3): 1053-1059
    Raines C.A., Harrison E.P., ?l?er H., et al.. Investigating the role of the thiol-regulated enzyme sedoheptulose-1,7-bisphosphatase in the control of photosynthesis [J]. Physiologia plantarum, 2000, 110: 303-308
    Raines C.A., Lloyd J.C., and Dyer T.. New insights into the structure and function of sedoheptulose-1,7- bisphophatase: an important but neglected Calvin cycle enzyme [J]. Journal of Experimental Botany, 1999, 50: 1-8
    Rakwal R. and Komatsu S. Role of jasmonate in the rice (Oryza sativa L.) self-defense mechanism using proteome analysis [J]. Electrophoresis. 2000, 21: 2492-2500
    Rakwal R., and Agrawal G.K.. Rice proteomics: current status and future perspectives [J]. Electrophoresis, 2003, 24: 3378-3389
    Rakwal R., and Komatsu S.. Abscisic acid promoted changes in the protein profiles of rice seedling by proteome analysis [J]. Mol. Biol. Rep., 2004, 31: 217-230
    Ramani S., and Apte S.K.. Transient expression of multiple genes in salinity-stressed young seedlings of rice cv. bura rata [J]. Biochem Biophys Res. Commun, 1997, 233: 663-667
    Renaut J., Lutts S., Hoffmann L., et al.. Responses of poplar to chilling temperatures: proteomic and physiological aspects [J]. Plant Biology, 2004, 6: 81-90
    Riccardi F., Gazeau P., de Vienne D., et al.. Protein changes in response to progressive water deficit in maize.Quantitative variation and polypeptide identification [J]. Plant Physiology, 1998, 117: 1253-1263
    Robert R.W.. Chilling-enhanced photooxidation: The production, action and study of reactive oxygen species produced during chilling in the light [J]. Photosynthesis Research, 1995, 45(2): 79-97
    Rockville M.D.. Exceptional sensitivity of rubisco activase to thermal denaturation in vitro and vivo [J]. Plant Physiology., 2001, 127(3): 1053-1064
    Rokka A., Zhang L.X., and Aro E.M.. Rubisco activase: an enzyme with a temperature-dependent dual function? [J]. Plant J., 2001, 25: 463-471
    Rouhier N., Vieira Dos Santos C., Tarrago L., et al.. Plant methionine sulfoxide reductase A and B multigenic families [J]. Photosynthesis Research, 2006, 89(2-3): 247-262
    Rundle S.J., and Zielinski R.E.. Organization and expression of two tandemly eriented genes encoding ribulose bisphosephate carboxylase/oxygenase activase in barlgy [J]. J. Biol. Chem., 1991, 266: 4677-4685
    Saalbach G., Erik P., and Wienkoop S.. Characterisation by proteomics of peribacteroid space and peribacteroid membrane preparations from pea symbiosomes [J]. Proteomics, 2002, 2: 325-337
    Salekdeh G.H., Siopongco J., Wade L.J., et al.. Proteomic analysis of rice leaves during drought stress and recovery [J]. Proteomics, 2002, 2: 1131-145
    Salekdeh G.H.H., Siopongeo J., Wade L.J., et al.. A proteomic approach to analyzing drough and salt responsiveness in rice [J]. Field Crops Research, 2002, 76: 199-219
    Salvucci M.E., Portis A.R.J., Orgen W.L., et al.. A soluble chloroplast protein catalyzes ribulose bisphosphate carboxylase/oxygenase activation in vivo[J]. Photosynthesis Research., 1985, 7: 193-201
    Salvucci M.E.. Subunitinter actions of Rubisco activase: Polyethylene glycol promoles self-association, stimulates ATPase and activities and enhances interactions with Rubisco [J]. Arch Biochem Biophys., 1992, 298: 688-696
    Sato M., Mitsuhashi W., Watanabe K., et al.. PCR detection of mulberry dwarf disease-phytoplasmas in mulberry tissues, phloem sap collected by laser stylectomy and insect vector Hishimonus sellatus [J]. J. Seric. Sci. Jpn., 1996, 65: 352-358
    Schimkat D., Heineke D., and Heldt H.W.. Regulation of sedoheptulose-1,7- bisphosphatase by sedoheptulose-1,7-bisphosphatae and of fructose-1,6-bisphosphatase by glycerate in spinach chloroplasts [J]. Planta, 1990, 181(1): 97-103
    Sears B.B., Lim P.O. and Holland N.. Isolation and characterization of DNA from a mycoplasmalike organism [J]. Mol. Plant Microbe Interact, 1989, 2: 175-180
    Seddas A., Meignoz R., and Daire X.. Purification of grapevine flavescence dorée MLO (Mycoplasma-Like Organism) by immunoaffinity [J]. Current microbiology, 1993, 27: 229-236
    Somerville C.R., Portis A.R.J., and Ogren W.L.. Amutant of Arabidopsis thaliana which lacks activation of RuBP carboxylase in vivo [J]. Plant Physiology. 1982, 70: 381-387
    Seemüller E., Marcone C., Lauer U., et al.. Current status of molecular classification of the phytoplasmas [J]. J. Plant Pathol., 1998, 80(1): 3-26
    Shen J.B., and Ogren W.L.. Alteration of spinach ribulose-1,5-bisphosphate carboxylase/ oxygenase activase activity in response to changing partial pressure of O2 and light in phaseolus vulgaris [J]. Plant Physiology., 1992, 99: 1201-1207
    Shen S, Jing Y., and Kuang T.. Proteomics approach to identify wound-response related proteins from rice leaf sheath [J]. Proteomics, 2003, 3: 527-535
    Siddique A.B.M., Guthrie J.N., Walsh K.B., et al.. Histopathology and within-plant distribution of the phytoplasma associated with Australian papaya dieback [J]. Plant Dis., 1998, 82: 1112–1120
    Silva Z., Sampaio M.M., Henne A., et al.. The high-affinity maltose/trehalose ABC transporter in the extremely thermophilic bacterium Thermus thermophilus HB27 also recognizes sucrose and palatinose [J]. Bacteriol., 2005, 187, 1210-1218
    Sinha R.C.. Purification of mycoplasma-like organisms from China aster plants affected with clover phyllody [J]. Phytopathology, 1974, 64(8):1156-1158
    Skipp P., Robinson J., O’Connor C.D. et al.. Shotgun proteomic analysis of Chlamydia trachomatis [J]. Proteomics, 2005, 5: 1558-1573
    Staskawicz B.J., Mudgett M.B., Dangl J.L., et al.. Common and contrasting themes of plant and animal diseases [J]. Science, 2001, 292: 2285-2289
    Steen H., and Mann M.. The ABC’s (and XYZ’s) of peptide sequencing [J]. Nat. Rev. Mol. Cell Bio1., 2004, 5(9): 699-7l1
    Stitt M., and Sonnewald U.. Regulation of plant metabolism in transgenic plants[J]. Annual Review of Plant Physiology and Plant Molecular Biology, 1995, 46: 341-368
    Sun T.K., Kyu S.C., Seok Y., et al.. Proteomic analysis of differentially expressed proteins induced by rice blast fungus and elicitor in suspension-cultured rice cells [J]. Proteomics, 2003, 3: 2368-2378
    Sun T.K., Kang G.K., Du H.H., et al.. Proteomic analysis of pathogen-responsive proteins from rice leaves induced by rice blast fungus Magnaporthe grisea [J]. Proteomics, 2004, 4: 3569-3578
    Susanne von C., Hendrickson L., Quinn V., et al.. Reductions of rubisco activase by antisense RNA in the C4 plant Flaveria bidentis reduces rubisco carbamylation and leaf photosynthesis [J]. Plant Physiology, 2005, 137(2): 747-755
    Tamoi M., Nagaoka M., Miyagawa Y., et al.. Contribution of fructose-1,6-bisphosphatase and sedoheptulose-1,7-bisphosphatase to the photosynthetic rate and carbon flow in the calvin cycle in transgenic plants [J]. Plant Cell Physiol., 2006, 47: 380-390
    Tan P.Y., and Whitlow T.. Physiological responses of Catharanthus roseus (periwinkle) to ash yellows phytoplasmal infection[J]. New Phytol., 2001, 150: 757-769
    Thulasiraman V., Wang Z., Katrekar A., et al.. Simultaneous monitoring of multiple kinase activities by SELDI-TOF mass spectrometry [J]. Methods Mol. Biol., 2004, 278: 205-214
    Tyers M., and Mann M.. From genomics to proteomics [J]. Nature, 2003, 422: 193-197.
    Unlu M., Margan M.E. and Minden J.S.. Difference gel electrophoresis: asinglegel method for detecting changes in protein extracts [J]. Electrophoresis, 1997, 18: 2071-2077
    Unwin R.D., Gaskell S.J., Evans C.A., et a1.. The potential for proteomic definition of stem cell po pulations [J]. Experimental Hematology, 2003, 31(12): ll47-ll59
    Villeret V., Huang S.H., Zhang Y.P., et al.. Crystal-structure of spinach chloroplast fructose-1,6-bisphosph-atase at 2.8-A resolution [J]. Biochemistry, 1995, 34(13): 4299-4306
    Volker H., Rita Z., Uwe S., et al.. A morderate decrease of plastid aldolose activity inhabits photosynthesis, alter the levels of sugars and starch, and inhabits growth of potato plants [J]. Plant J., 1998, 14(2): 147-157
    Wang Z.Y., Ramage R.T., Portis A.R.J.. Mg2+ and ATP oradenosine 5'-[rthio]- triphosphate (ATPrs) enhances intrinsic fluorescence and induces aggregation which increases the activity of spinach Rubisco activase [J]. Biochim Biophys Acta, 1993, 1202: 47-55
    Wang N.Y., Jing D.A., Hong J., et al.. Diurnal changes of Rubisco and RCA activities and their cellular localization in rice [J]. Acta Bot. Sin., 2003, 45(9): 1076-1083
    Washburn M.P., Wolters D., and Yates J.R.. Large-scale analysis of the yeast proteome by multidimensional protein identification technology [J]. Nat. Biotechnol., 2001, 19 (3): 242-247
    Wei W., Kakizawa S., Suzuki S., et al.. In planta dynamic analysis of onion yellows phytoplasma using localized inoculation by insect transmission [J]. Phytopathology, 2004, 94: 244-250
    Van Wely K. H., Swaving J., Freudl R., et al.. Translocation of proteins across the cell envelope of Gram-positive bacteria [J]. FEMS Microbiol. Rev., 2001, 25: 437-454
    Wienkoop S., and Saalbach G.. Proteome analysis. Nove proteins identified at the peribacteroid membrane from Lotus japonicus root nodules [J]. Plant Physiology, 2003, 131: 1080-1090.
    Wilkins M.R.. Government backs proteome proposal [J]. Nature, 1995, 378(6558): 653
    Wilkins M.R., Sanchez J.C., Gooley A.A., et a1.. Progress with proteome projects: why all proteins expressed by a genome should be identified and how to do it [J]. Biotechnol Genet. Eng. Rev., 1996, 13: l9-50
    Willingham N.M., Lloyd J.C., and Raines C.A.. Molecular cloning of the Arabidopsis thaliana sedoheptulose-1,7-bisphosphatase gene and expression studies in wheat and Arabidopsis thaliana [J]. Plant Molecular Biology., 1994, 26(4): 1191-1200
    Wingler A., Quick W.P., Bungard R.A., et al.. The role of photorespiration during drought stress: an analysis utilizing barley mutants with reduced activities of photorespiratory enzymes [J]. Plant Cell and Environment, 1999, 22(4): 361-373
    Wingler A., Lea P.J., Quick W.P., and Leegood R.C.. Photorespiration: metabolic pathways and their role in stress protection [J]. Philos. Trans. R. Soc. Lond. B. Biol. Sci., 2000. 355, 1517-1529
    Woodrow L.E., Denis J.M. and David A.W.. Regulation of Photosynthetic Carbon Metabolism. The Effect of Inorganic Phosphate on Stromal Sedoheptulose-1,7–bisphosphatase [J]. Eur. J. Biochem., 1983, 132(1): 121-123
    Wu S.L., Choudhary G., Ramstrom M., et al.. Evaluation of shotgun sequencing for proteomic analysis of human p lasma using HPLC coupled with either ion trap or Fourier transform mass spectrometry [J]. J. Proteome. Res., 2003, 2: 383-393
    Wu K.L., and Zhang Y.L.. Clinical application of tear proteomics: Present and future prospects [J]. Proteomics–Clinical Applications, 2007, 1: 972-982
    Yan S., Tang Z., Su W., et al.. Proteomic analysis of salt stress-responsive proteins in rice roots [J]. Proteomics, 2005, 5: 235-244
    Yan S.P., Zhang Q.Y., Tang Z.C., et al.. Comparative proteomic analysis provides new insights into chilling stress responses in rice [J]. Molecular and Cellular Proteomics, 2006, 5(3): 484-496
    Yang G.X., and Komatsu S.. Microarray and proteomic analysis of bBrassinosteroid-and gibberellin-regulated gene and protein expression in Rice [J]. Geno. Prot. Bioinfo., 2004, 2 (2): 77-83
    Yu Y.L., Ye K.W., and Lin C.P.. An antigenic protein gene of a phytoplasma associated with sweet potato witches’broom [J]. Microbiology, 1998, 144: 1257-1262
    Zhang Y., Ling J.Y., Huang S., et al.. Toward a mechanism for the allosteric transition of pig kidney fructose-1,6-bisphosphatase [J]. Journal of Molecular Biology, 1994, 244(5): 609-624
    Zhang C.K., Lang P., Dane F., et al.. Cold acclimation induced genes of trifoliate orange (Poncirus trifoliata) [J]. Plant Cell Rep., 2005, 23(10-11): 764-769
    Zhang N. and Portis A.R. J.. Mechanism of light regulation of Rubisco: a specific role for the larger rubisco activase isoform involving reductive activation by thioredoxin-f [J]. Plant Biol., 1999, 96: 9438-9443
    Zhang N., Kallis R.P., Portis A.R., et al.. Light modulation of Rubisco in Arabidopsis requires a capacity for redox regulation of the larger Rubisco activase isoform [J]. Proc. Natl. Acad. Sci. USA, 2002, 99: 3330-3334
    Zhang N. and Portis A.R. J.. Mechanism of light regulation of Rubisco: a specific role for the larger rubisco activase isoform involving reductive activation by thioredoxin-f [J]. Plant Biol., 1999, 96: 9438-9443
    Zhao C.F., Wang J.Q., Cao M.L., et al.. Proteomic changes in rice leaves during development of field-grown rice plants [J]. Proteomics, 2005, 5: 961-972
    Zhong B.X. and Shen Y.W.. Accumulation of pathogenesis related type-5 like proteins in phytoplasma-infected garland chrysanthemum Chrysanthemum coronarium [J]. Acta Biochim. Biophys. Sin., 2004, 36: 773-779
    Zhou H., Pamish J.A., Watts J.D., et a1.. Quantitative proteome analysis by solid-phase isotope tagging and mass spectrometry [J]. Nat Biotechnal., 2002, 20(5): 512-515
    Zhu J.K.. Salt and drought stress signal transduction in plants [J]. Annu. Rev. Plant Biol., 2002, 53: 247-273

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700