高寒半干旱区垄作小南瓜根水共济效应研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
冀西北高原砂质栗钙土农田占全区耕地面积65%以上,土壤砂性、粗骨、干旱、瘠薄。年内和年际间降水分布不均,使得区域内农业生产低而不稳,效益低下。稀植经济作物小南瓜具有“占天不占地”的资源利用特性。因此,本研究以砂质栗钙土为供试土壤,以小南瓜为供试材料,通过盆栽试验和根袋控制试验,研究垄作沟膜种植模式下,不同土壤含水量和不同根土空间对小南瓜产量的响应及根系对水分的高效利用。主要研究结果如下:
     1.盆栽试验条件下,模拟不同降水年型,设5个水分处理:贫水年型(W158,对照)、平水年型(W258)、丰水年型(W358)、贫补年型(W178,在小南瓜开花伸蔓期和果实膨大期补水,10mm/次)、平补年型(W278,在小南瓜开花伸蔓期和果实膨大期补水,10mm/次)。结果表明:与对照相比,各供水处理的产量、干物质量及果实品质均有不同程度的提高。小南瓜的经济产量以W178和W278处理增加最高,分别为18 226.1kg·mm-1·hm-2和19 604.5kg·mm-1·hm-2,比W158处理增加了102.13%和117.41%。丰水年型(W358)虽供水较多,但产量低于W258、W178和W278处理。各供水处理小南瓜的果肉厚和单果重与对照相比增加的幅度分别为26.29%~42.25%和54.17%~116.67%。W278处理小南瓜的Vc和淀粉含量分别比对照显著提高31.25%和10.48%,蛋白质含量增加29.26%,果胶含量增加21.85%。小南瓜水分利用效率(WUE)以W178和W278处理最高,分别达89.57kg·mm-1·hm-2和64.76kg·mm-1·hm-2,分别比对照提高了91.55%和38.49%。W358处理的WUE低于对照。W258、W358和W278处理小南瓜的整根特征参数与对照相比均呈上升趋势,以W278处理根系的总根长、直径小于1mm的根长、总根表面积、总根体积最大,分别为对照的2.96倍、2.96倍、3.70倍、3.31倍,且根系干重最大,比对照增加50.05%。收获后小南瓜植株体内养分元素含量的变化为:全氮>全钾>全磷,叶片中全氮含量最高,叶柄中全钾含量最高。收获后土壤中速效P、K、有机质的含量与对照相比均降低。
     2.根袋试验采用不同规格封底的尼龙袋(200目,允许水分和养分自由通过)装土,栽植小南瓜,限制根系生长的空间,以不套根袋(R0)为对照。结果表明:限根处理影响了小南瓜的生长,不同程度地降低了小南瓜的经济产量、干物质量、外观品质和水分利用效率。限根后,以R2处理(根袋口面积0.4m×0.4m,深0.3m)的产量最高,达11 902.9kg·hm-2;干物质量最大,达3 182.24kg·hm-2;外观品质最好,果肉厚度达2.80cm,单果重达1.42kg;水分利用效率最高,达56.56kg·mm-1·hm-2。限根后,不同处理小南瓜的营养品质以R3处理(根袋口面积0.5m×0.5m,深0.3m)效果最好,总糖含量达2.10%,淀粉含量达47.56%,果胶含量达9.14%。限根后,上层土体各处理的总根长和根系表面积均高于对照,增幅分别为19.60%~97.73%和26.41%~96.33 %,根体积和直径小于1mm的根长均低于对照,降低的幅度分别为38.12%~54.34%和81.21%~86.29%;下层土体各处理小南瓜的总根长、直径小于1mm的根长、根表面积、根体积远远高于对照,分别为对照的9.04倍~23.48倍,5.96倍~7.83倍,11.07倍~24.53倍,9.76倍~15.67倍。限根后,除R1处理外,小南瓜根系的干重均高于对照,增幅为17.01%~77.13%;冠重降低的幅度为37.04%~64.77%。收获后小南瓜植株体内养分含量的变化为:全氮>全钾>全磷,叶片中全氮含量最高,叶柄中全钾含量最高。
Sandy chestnut soil with drought, roughness and thin soil layer of field accounted for more than 65% of whole cultivated area in north-west of Hebei plateau. Uneven distribution of the rainfall in annual and internet-annual, which maked intra-regional agricultural production low and untable. Aparse planting pumpkin had the special resource utilization property. In the research, using sandy chestnut soil as the experimental soil and using pumpkin as the tested materials, potted experiment and root-bag control experiment were conducted, to study the response of different soil moisture and soil root-growing space to pumpkin and water efficient utilization of root under planting patterns with ridge culture and film mulching on furrow. The main results were as follows:
     1. Simulating different precipitation years through five water treatments: dry style(W158, CK), normal style (W258), wet style (W358), dry and make-up water style (W178, suppling water at flowering and vine elongation and fruit expanding process of pumpkins, 10mm/once), normal and make-up water style (W278, supplying water at flowering and vine elongation and fruit expanding process of pumpkins, 10mm/once) under the pot experiment condition.The results showed that: Comparing with control, the pumpkin’s yield, dry matter quantity and fruit quality increased at different degree. The yield of W178 and W278 treatments reached 18 226.1kg·hm-2and 19 604.5kg·hm-2 respectively, which increased by 102.13% and 117.41%. The water supply quantity of wet style (W358) was more, but its yield was lower than W258, W178 and W278 treatments. The flesh thickness and average fruit weight increased by 26.29%~42.25% and 54.17%~116.67% compared with control. In comparison with control, Vc and starch content increased by 31.25% and 10.48% significantly, protein content increased by 29.26%, pectin content increased by 21.85% with the treatment of W278. In the treatment of W178 and W278, the water use efficiency (WUE) reached 89.57kg·mm-1·hm-2 and 64.76kg·mm-1·hm-2 respectively, which increased by 91.55% and 38.49%.The WUE of W358 treatment was lower than control. Characteristic parameters for the whole roots of W258, W358 and W278 treatments showed increasing trend compared with control. In W278 treatment, the total root length, root length less than 1mm, the total surface area and the total volume were the largest, which were 2.96times, 2.96times, 3.70times and 3.31times than that of control, respectively. The root dry weight increased by 50.05% compared with control. The change of nutrient content of plant for post-harvest showed that: total nitrogen>total potassium >total phosphorus, the content of total nitrogen was the highest in leaves and the content of total potassium was the highest in petiole.The content of available N, P, K and organic matter for post-harvest were lower than d control.
     2.Comparing with non-bagged (R0), soil culture was conducted with the pumpkin planted in bottom sealing nylon bags of different specifications to confine the space of root growth but allow the pass-through of water and nutrients, the confinement of root growth space decreased the yield, dry matter quantity, fruit quality and water use efficiency. After root restriction culturing, the yield was largest which attained 11 902.9kg·hm-2; dry matter quantity reached 3 182.24kg·hm-2; flesh thickness was 2.80cm, average fruit weight reached 1.42kg; water use efficiency was the highest which reached 56.56kg·mm-1·hm-2 with the treatment of R2 (the port area of root-bag is 0.4m×0.4m, depth is 0.3m). The content of total sugar reached 2.10%, the content of starch reached 47.56%, the content of pectin reached 9.14%, with the treatment of R3 (port area of root-bag is 0.5m×0.5m, depth is 0.3m) which flesh quality was the best effect. The total root length and surface area were higher than control, which increased by 19.60%~97.73%, and 26.41%~96.33%; the total root volume and root length less than 1 mm were lower than control, which increased by 38.12%~54.34% and 81.21%~86.29% in upper soil layer; the total root length, root length less than 1mm, the total surface area and the total volume increased than the control; which were9.04times~23.48times,5.96times~7.83times,11.07times~24.53times,9.76times~15.67 times compared with control, respectively, in lower soil layer after the confinement of root growth space. Root dry weight increased than the control, which increased by 17.01%~77.13%; above-ground dry weight decreased by 37.04%~64.77%; root-shoot ratio decreased by 37.04%~64.77% except treatment R1. The change of nutrient content of plant for post-harvest showed that: total nitrogen>total potassium >total phosphorus, the content of total nitrogen was the highest in leaves and the content of total potassium was the highest in petiole.
引文
[1]赵成义,王玉朝.荒漠绿洲边缘区土壤水分时空动态研究[J].水土保持学报, 2005,(19):124-127.
    [2]Nish M S,Wietnga PJ.Time series analysis of soil moisture and rain a- long a line transect in arid range land[J].Soil Science,1991,152:189-198.
    [3]Berndtsson R,Chen H.Variability of soil water content along a transect in a desert area[J].Journal of Arid Environment,1994,27:127-139.
    [4]Southgate R I Master P.Precipitation and biomass changes in the Namib desert dune ecosystem [J].Journal of Arid Environment,1996,33:267-280.
    [5]赵文智,程国栋.干旱区生态水文过程研究若干问题评述[J].科学通报,2001,46(22):1851-1857.
    [6]王安志,裴铁.森林蒸散测算方法研究进展与展望[J].应用生态学报,2001,12(6):933-937.
    [7]李凤民,徐进章.黄土高原半干旱地区集水型生态农业分析[J].中国生态农业学报,2002,10(1):101-103.
    [8]李玉霖,崔建垣,张铜会.奈曼地区灌溉麦田蒸散量及作物系数的确定[J].应用生态学报,2003,14(6):930-934.
    [9]Jaime GP,James SW,David E,et al.Measurement and modeling evaporation for irrigated crops in Northwest Mexico[J].Hydrol.Process,1998,12:1397-1418.
    [10]李小雁,张瑞玲.旱作农田沟垄微型集雨结合覆盖玉米种植试验研究[J].水土保持学报,2005,(2):45-52.
    [11]Li F M,Wang J,Zhao S L.The development of water supply and high efficiency agriculture in the semiarid Loess Plateau[J].Journal of Applied Ecology,1999,19(2):152-157.
    [12]Boers T M,Zondervan K,Ben-Asher J.Micro-catchments water harvesting (MCWH) for arid zone development[J].Arid.Water Manage,1986,12:21-39.
    [13]Li X Y.Experimental study on rainfall and runoff observation of manual water-collection ridges[J].Journal of Soil and Water Conservation,2001,15(1):1-4.
    [14]Li FG,Cook S,Gordon T,et al.Rainfall harvesting agriculture:An integrated system for water management on rainfed land in China’s semiarid areas[J].Ambio,2000,29:477-483.
    [15]Xiao YL,Jia DG.Effect of different ridge:Furrow rations and supplemental irrigation on crop production in ridge and furrow rainfall harvesting system with mulches[J].Agric.Water Manage,2002,54:243-254.
    [16]Boers T M,Ben-Asher J.A review of rainwater harvesting[J].Arid.Water Manage,1982,5:145-158.
    [17]Li J,Wang L C,Song X W.The study of effects for moisture content improving and yield improving in water micro-collection in semiarid areas of Ninglan[J].Agricultural Research in the Arid Areas,1997,15(1):8-13.
    [18]Liu X Z,Kang S Z.Discussion of strategies for precipitation infiltration and runoff[J].Journal of Northwest Agricultural University,2000,28(4):16-20.
    [19]Wang J P,Han Q F,Wang L C,et al.The technique of cultivation of farmland water micro-collectionin semiarid areas of Ninglan[J].Agricultural Research in the Arid Areas,1997,15(1):8-13.
    [20]Li Fengmin,Guo Anhong,Wei Hong.Effects of clear plasticfilm mulch on yield of spring wheat[J].Field Crops Res,1999,63:79-86.
    [21]Niu JY,Gan YT,Zhang JW,et al.Postanthesis drymatteraccumulation and redistribution in spring wheatmulched with plastic film[J].Crop Sci,1998,38:1562-1568.
    [22]Li Shengxiu,Xiao Ling.The distribution and management of drylands in the People’s Republic of China[J].Adv Soil Sci,1992,18:147-302.
    [23]黄义德,张自立,魏凤珍,等.水稻覆膜旱作的生态生理效应[J].应用生态学报,1999,10(3): 305-308.
    [24]Ravi V,Lourduraj AC.Comparative performance of plastic mulching on soil moisture content,soil temperature and yield of rainfed cotton[J].Madras Agric,1996,83:709-711.
    [25]陈锡时,郭树凡,汪景宽,等.地膜覆盖栽培对土壤微生物种群和生物活性的影响[J].应用生态学报,1998,9(4):435-439.
    [26]Liu X-H,Chen X-X,Xu X-C.The effect of organic manure applied with chemical fertilizer on the offering and state of soil nitrogen under plastic sheet fround cover[J].Shenyang Agric Univ,1992,23:68~73.
    [27]Liu J-C,Yang J-Q,Bai C-Y.The decomposition and accumulation of soil organic matter under film mulching[J].Acta Agric Boreali-Sin,1991,6(1):99~104.
    [28]Quezada M,Maria R,Munguia L.Plastic mulching and availability of soil nutrients in cumuber crop[J].TERRA(Mexico),1995,13:136-14710.
    [29]Song F-B.Soil ecological basis for plastic-sheet-covered corn increasing yield[J].Jilin Agric Univ,1991,13(2):4-7.
    [30]Fisher PD.An alternative plastic mulching system for improved water management in dryland maize production[J].Agric Water Man,1995,27:155-166.
    [31]Mohapatra BK,Lenka D,Naik D.Effect of plastic mulching on yield and water use efficiency in maize[J].Ann Agric Res,1998,19:210-211.
    [32]孙多苏.南丘陵天然次生栋林根系分布特征和生物量结构的研究[M].哈尔滨:东北林业大学出版社,1994.
    [33]文宏达.冀西北高原聚水土种植模式及水肥高效利用机制研究[D].北京:中国农业大学.2006.
    [34]解淑贞,郑光华译.蔬菜和瓜类生理[M].北京:农业出版社,1982.135-146.
    [35]刘玉华,张立峰.冀西北高原植被生产力与退耕对策[J].应用生态学报,2004,15(11):2113-2116.
    [36]王志强,王晓性,刘保元.宁南山区不同放牧强度对天然草地土壤水分的影响[J].干旱区资源与环境,2005,19(2):52-55.
    [37]邵明安.植物根系轴向水流阻力的研究[C].中国科学院水保所集刊,13.
    [38]斯特拉勒AN,斯特拉勒AH.现代自然地理学[M].科学出版社,1983.
    [39]沈振荣.用好土壤水[M].中国农业水危机对策研究[M].北京:中国农业科技出版社,1998.
    [40]LalR1 Ridge tillage Soil & Tillage Research,1990,18:107-111.
    [41]王旭清,王法宏,任德昌,等.作物垄作栽培增产机理及技术研究进展[J].山东农业科学,2001,(3):41-45.
    [42]Burrows WC.Characterization of soil temperature distribution from various till age induced microbe life[J].Soil Sci.Soc.Am.Proc,1963,27:350-353.
    [43]Randall CR.Extension program sand farmer experiences with ridge tillage[J].Soil &Tillage Research,1990,18:283-293.
    [44]卢宗凡主编.中国黄土高原生态农业.西安:陕西科学技术出版社,1997.31-34.
    [45]吕殿青,邵明安,王全九,等.垄沟耕作条件下的土壤水分分布试验研究[J].土壤学报,2003,40(1):147-150.
    [46]陈奇恩,池宝亮,马步洲,等.旱地农业实用技术[M].北京:金盾出版社,2002.
    [47]刘贵锋,曹昌林,高德进,等.旱地玉米为空漠覆盖栽培技术试验研究[J].中国农业气象.2002,23(1):38-41.
    [48]张国村.地膜覆盖栽培技术[M].天津:天津科学技术出版社,1984.
    [49]全国农业技术推广服务中心.小麦全生育期地膜覆盖栽培技术[M].北京:中国农业出版社,1998.
    [50]陕西省农业厅.地膜小麦高产栽培技术[M].西安:陕西人民教育出版社,1999.
    [51]廖允成,付增光,韩思明.黄土高原旱作农田降水资源高效利用[M].西安:陕西科学技术出版社,2003.
    [52]谷茂.中国半干旱区降水的农业高效利用[M].北京:中国农业科技出版社,2001.
    [53]姚建民.渗水地膜与旱地农业[J].自然资源学报,1998,13(4):368-370.
    [54]李凤民,鄢王旬,王俊,等.地膜覆盖导致春小麦产量下降的机理[J].中国农业科学,2001,34(3):330-333.
    [55]李鲁华,秦莉.不同土壤水分条件下春小麦品种根系功能效应的研究[J].中国农业科学,2002,35(7):867-871.
    [56]Corn forth.I.S.Relationship Between soil volume used by root sand nutrient accessibility [J].Soil Sci,1968,19:191 - 301.
    [57]Veen,B.W The uptake of potassium,nitrate,water and oxygen by a maize root system in relation to its size [J].Exp.Bot,1997,28:1389-1398.
    [58]鲁如坤.土壤农业化学分析方法[M].中国土壤学会主编,中国农业科技出版社.[J]土壤学报,1997,34(4):360-366.2000,37(2):263-270.
    [59]Pearson,CJ,B.C Jacobs.Root distribution in space and time in trifolium subterrancum[J]. August J Agric.Res,1985,36:601-614.
    [60]张一平,张福锁,樊小林,等.二十一年长期土壤培肥定位试验的启示[R].陕西杨凌,1998.
    [61]W.伯姆.根系研究法[M].北京:中国科学出版社,1985.
    [62]贺德先,王晨阳,杨青华,等.小麦根系生理研究现状及进展[J].河南农业大学学报,2000,34(4):329-333.
    [63]刘晓冰,王光华,森田茂纪.根系研究的现状与展望(上)[J].世界农业,2001,268(8):33-36.
    [64]蔡昆争,沈宏.根:植物与土壤的动态界面[J].生态学报,2002,22(1):139-140.
    [65]Weaver,J.E.Root development of field crops[M].McGraw-Hill,New York,1926.
    [66]马元喜主编.小麦的根[M].北京:中国农业出版社,1999.
    [67]刘晓冰,王光华,森田茂纪.根系研究的现状与展望(下)[J].世界农业,2001,269(9):42-45.
    [68]王学臣,任海云,娄成后.干旱胁迫下植物根与地上部间的信号传递[J].植物生理学报,1992,28(6):397-402.
    [69]P.J.克雷默著,许旭旦译.植物的水分关系[M].科学出版社,1989.
    [70]王华田,孙明高,崔明刚,等.土壤水分状况对苗期银杏生长及生理特性影响的研究[J].山东农业大学学报(自然科学版),2000,31(1):74-78.
    [71]王克勤,王立.不同土壤水分下金矮生苹果叶片蒸腾速率研究[J].西南林学院学报,1999,19(l):8-13.
    [72]王志琴,杨建昌,朱庆森.土壤水分对水稻光合速率与物质运转的影响[J].中国水稻科学,1996,10(4):235-240.
    [73]王政权,张彦东,王庆成.水曲柳幼苗根系对土壤养分和水分空间异质性的反应[J].植物研究,1999,19(3):329-334.
    [74]王政权,张彦东.水曲落叶松根系之间的相互作用研究[J].植物生态学报,2000,24(3):346-350.
    [75]王志芬,陈学留,余美炎,等.大田冬小麦根系吸收活力的空间分布及其变化动态研究[J].作物学报,1998,24(3):354-360.
    [76]程建峰,潘晓云,刘宜柏,等.作物根系研究法最新进展[J].江西农业学报,1999,11(4):55-59.
    [77]Sharma B R,Chaudhary T N.Wheat root growth,grain yield and water uptakeas influenced by water regime and depth of nitrogen placement in a sand soil[J].Agriculture water management,1983,6:365-373.
    [78]Blum A,Johnson J W.Wheat cultivars respond differently to drying top soil and a possible nonhydraulic root signal[J].J Exp Bot,1993,44:1149-1153.
    [79]张爱良,苗果园,王建平,等.作物根系与水分的关系[J].作物研究,1997,(2):4-6.
    [80]王法宏,王旭清,刘素英,等.根系分布与作物产量的关系研究进展[J].山东农业科学1997,(4):48-51.
    [81]汤章城.植物对水分胁迫的反应和适应性.Ⅱ.植物对干旱的反应和适应性[J].植物生理学通讯,1983,(4):1-7.
    [82]苗果园,张云亭,尹钧,等.黄土高原旱地冬小麦根系生长规律的研究[J].作物学报,1989,15(2):104-115.
    [83]冯广龙,罗远培,杨培岭,等.土壤水分对冬小麦初生根和次生根生长发育的影响[J].华北农学报,1998,13(2):11-17.
    [84]白文明,左强,黄元仿,等.乌兰布和沙区紫花苜蓿根系生长及吸水规律的研究[J].植物生态学报,2001,25(1):35-41.
    [85]石岩,于振文,位东斌,等.土壤水分胁迫对小麦根系与旗叶衰老的影响[J].西北植物学报,1998,18(2):196-201.
    [86]伍贤进.土壤水分对烤烟生长和光合作用的影响[J].绵阳农专学报,1995,12(2):20-25.
    [87]刘昌明,王会肖著.土壤-作物-大气界面水分过程与节水调控[M],科学出版社,1999.
    [88]刘贤赵,康绍忠,邵明安,等.土壤水分与遮荫水平对棉花叶片光合特性的影响研究[J].应用生态学报,2000,11(3):377-381.
    [89]孙向阳,杨跃军,乔杰,等.黄泛区泡桐人工林土壤-植物系统水分特征及关系[M],见:森林土壤质量演化与调控,中国科学技术出版社,2002.
    [90]朱云集,马元喜,王晨阳,等.土壤水分逆境对冬小麦根系某些形态解剖及超微结构的影响[J].河南农业大学学报,1994,28(3):224-229.
    [91]刘殿英,石立岩,董庆裕.不同时期施肥水对冬小麦根系活性和植株性状的影响[J].作物学报,1993,19(2):149-155.
    [92]Motzo RK.Genotypic variation in durum Wheat root Systems at different stages of development in a Mediterranean environment[J].Euphytica,1993,66:197-206.
    [93]梁银丽,扬翠玲.不同类型小麦品种对渗透胁迫的反应[J].西北农学报,1995,(4):21-25.
    [94]马元喜.不同土壤中小麦根系生长动态的研究[J].作物学报,1987,13(1):37-44.
    [95]梁银丽,陈培元.水分胁迫和氮营养对小麦根苗生长及水分利用效率的效应[J].西北植物学报,1994,15(1):21-25.
    [96]梁银丽.土壤水分和氮磷营养对冬小麦根系生长及水分利用的调节[J].生态学报,1996,16(3):258-264.
    [97]王晨阳.不同土壤水分条件下小麦根系生态生理效应的研究[J].华北农学报,1992,7(4):1-8.
    [98]Boland AM,Jerie PH,Mitchell PD.The effect of a saline and non-saline water table on peach tree water use,growth,productivity and ion uptake[J].Australian Journal of Agricultural Research,1996.
    [99]汤章城.植物对水分胁迫的反应和适应性[J].Ⅱ.植物对干旱的反应和适应性,植物生理学通讯,1983,(4):1-7.47(1):121-139.
    [100]阎降飞,王学臣主编.生命科学进展(第一集)[M],北京:中国农业大学出版社,1996,227-234.
    [101]李鲁华,李世清,翟军海,等.小麦根系与土壤水分胁迫关系的研究进展[J].西北植物学报,2001,21(1):1-7.
    [102]Sheng Q,Hunt LA.Shoot and root dry weight and soil water in wheat Triticale and Rye[J].Can JPlant Sci,1991,71:41-49.
    [103]Smucker A J M,Aiken R m.Dynamic root responses to water deficits.Soil Science,1992, 154(4):281-289.
    [104]张大勇.半干旱区作物根系生长冗余的生态分析[J].西北植物学报,1995,15(5):110-114.
    [105]Passioura.J.B.Root and Drought resistance.Agri.Water manag.,1983,7:265-280.
    [106]冯广龙,罗远培.土壤水分与冬小麦根、冠功能均衡关系的模拟研究[J].生态学报,1999,19(1):96-103.
    [107]Brower R.Function alequilium:senceor nonsence,Netherland Journal of Agricultural Science,1983,31:335-348.
    [108]沈力匀责任编辑.食品分析[M].北京:中国轻工业出版社.1994.
    [109]鲍士旦主编.土壤农化分析[M].北京:中国农业出版社.2000.
    [110]苗果园,高志强,张云亭,等.水肥对小麦根系整体影响及其与地上部相关的研究[J].作物学报,2002,28 (4):445-450.
    [111]邹桂花,梅捍卫,余新桥,等.不同灌水量对水、旱稻营养生长和光合特性及其产量的影响[J].作物学报,2006,32(8):1179-1183.
    [112]张菡.南瓜的营养成分、药用价值及产品的开发利用[J].福建热作科技,1990 ,3:24-25.
    [113]周汉奎.南瓜综合加工技术[J].食品科学,1991,9:59-62.
    [114]刘祖贵,陈金平,段爱旺,等.不同土壤水分处理对夏玉米叶片光合等生理特性的影响[J].干旱地区农业研究,2006,24(1):90-95.
    [115]马富裕,李蒙春,杨建荣.花铃期不同时段水分亏缺对棉花群体光合速率及水分利用效率影响的研究[J].中国农业科学,2002,35(12):1467-1472.
    [116]陆景陵.植物营养学(上册)[M] .第2版.北京:中国农业大学出版社,2003.23.
    [117]杨兆生,闫素红,王俊娟,等.不同类型小麦根系生长发育及分布规律的研究[J].麦类作物学报,2000,20(1):47-50.
    [118]闫素红,杨兆生,王俊娟,等.不同类型小麦品种根系生长特性研究[J].中国农业科学,2002,35(8):906-910.
    [119]李波,任树梅,杨培岭,等.供水条件对温室番茄根系分布及产量影响[J].农业工程学报,2007,23(9):39-44.
    [120]Thornley J H M.Modelling Shoot:Root Relations:the Only Way Forword [J].Annal of Botany,1998,81:165-171.
    [121]王殿武,文宏达,褚达华.栗钙土水肥耦合效应的田间研究[J].植物营养与肥料学报,1999,5(3):227-234.
    [122]郑丕尧.作物生理学导论[M].北京:北京农业大学出版社,1992.15-18.
    [123]JORANW R,RICHIE JT.Influence of soilwater stress evaporation,root absorption and internalwater status of cotton [J].PlantPhysiology,1971,48:783-788.
    [124]TURNER N C.Plantwater relation and water vapor exchange in response to drought in the atmosphere and in the soil [J].Plant Physiology,1986,37:247 -254.
    [125]王月福,陈建华,曲健磊,等.土壤水分对小麦籽粒品质和产量的影响[J].莱阳农学院学报,2002,19(1):7-9.
    [126]刘桂茹,张荣生,卢建祥.冬小麦抗旱性鉴定指标的研究[J].华北农学报,1996,11(4):84-88.
    [127]赵广才,何中虎,刘利华,等.肥水调控对强筋小麦中优9507品质与产量协同提高的研究[J].中国农业科学,2004,37(3):351-356.
    [128]马福生,康绍忠,王密侠,等.调亏灌溉对温室梨枣树水分利用效率与枣品质的影响[J].农业工程学报,2006,22(1):37-43.
    [129]Lilley J M.,Fukai S.Effect of timing and severity of water deficient on four diverse rice cultivars:I.Rooting pattern and soil water extraction[J].Field Crop Research,1994,集37(3):205-213.
    [130]李话,张大勇.半干旱地区春小麦根系形态特征与生长冗余的研究[J].应用生态学报,1999,10(1):26-30.
    [131]张大勇,姜新华.关于作物生产的生态学思考[J].植物生态学报,2000,24(3):383-384.
    [132]张荣,张大勇,原保忠.半干旱区春小麦品种产量表现与竞争能力关系的研究[J].植物生态学报,1999,23(3):205-210.
    [133]张荣,张大勇.半干旱区不同年代春小麦品种根系生长冗余的比较实验研究[J].植物生态学报,2000,24(3):298-303.
    [134]Graham E,Bobel P S.Root water uptake,leaf water storage and gas exchange of a desert ucculent:implications for root system redundancy[J].Annals of Botany,1999,84:213-223.
    [135]Passioura J B.Roots and drought resistance[J].Agricultural Water Management,1983, 7:265-2780.
    [136]冯广龙,刘昌明.土壤水分对作物根系生长及分布的调控作用[J].生态农业研究,1996,(9):5-9.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700