不同覆盖施肥措施对黄土塬区冬小麦生长及土壤肥力的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
干旱缺水已成为影响我国粮食安全的一个重大问题。在黄土高原旱作农业区,水分供应不足和肥力低下严重影响了当地农业生产的发展。如何找出各种有效途径和措施来有效利用有限的降水资源,提高作物水分利用效率,并对土壤进行培肥,已成为提高当地农田生产力水平的关键。本研究针对以上两个问题设计出不同处理,目的在于最大限度地聚集天然降水,并尽可能降低无效蒸发,使有限降水用在作物的生产上;同时培肥地力,通过培肥旱地土壤,改善土壤结构,增加土壤蓄水能力,对农作物培育壮苗,使之形成强大根系,扩大吸水深度而达到调水之目的,最终提高土壤的保水保肥性为作物生长创造良好的生长条件。于2007年9月至2008年7月在位于黄土高原渭北旱塬的王东沟试验区进行了田间试验,对冬小麦采取了7种不同覆盖施肥措施,包括不施肥、农民习惯施肥、推荐施肥、推荐施肥+有机肥、推荐施肥+垄上覆膜、推荐施肥+垄上覆膜+沟内覆草、推荐施肥+全区覆草7个处理,并采用水分中子仪定期观测土壤含水量,研究了黄土高原旱塬区不同栽培措施下土壤水分的变化特征,以及研究区土壤的供钾状况和不同钾素形态在土壤剖面中的空间变异性,为下一步的土壤培肥提供参考依据。研究得到了以下结论:
     (1)在干旱季节(春季),推荐施肥+垄上覆膜+沟内覆草措施有利于贮存更多的土壤水分,约比最低值(推荐施肥+有机肥)高48.2 mm,并可将土壤水分保持到冬小麦需水的关键期,而且推荐施肥+垄上覆膜措施仅次于推荐施肥+垄上覆膜+沟内覆草,表明这两种措施能够在田间蓄积较多天然降水,有利于黄土高原旱区雨养农业的发展。
     (2)拔节期各个处理间叶面积无显著性差异,孕穗期、灌浆期推荐施肥+垄上覆膜+沟内覆草处理叶面积最大,成熟期推荐施肥+垄上覆膜处理叶面积最大;拔节期推荐施肥+有机肥处理生物量最高,其余时期的生物量是推荐施肥+垄上覆膜+沟内覆草处理最大;推荐施肥+垄上覆膜处理下穗长、穗重、穗粒数均最大;穗粒数和每穗粒重呈显著相关关系,其余因子之间相互关系不显著。
     (3)冬小麦播种之前(未进行任何覆盖施肥措施),土壤剖面100 cm处出现了较高氮素累积;经过一个生长季之后,不同覆盖施肥措施间相比较,推荐施肥+垄上覆膜+沟内覆草处理下土壤硝态氮在0-60 cm各土层含量最低,其原因可能是该措施能够蓄集较多天然降水从而使氮肥利用率更高;推荐施肥+垄上覆膜+沟内覆草处理下小麦籽粒产量、氮肥利用率、氮肥农学效率均为最高。
     (4)在冬小麦播种前采集了试验地土壤样品,测定了不同形态钾素,以期在田块尺度上揭示当地土壤钾素的空间变异规律及土壤供钾状况。结果表明,可供作物吸收利用的钾源较丰富;全钾、矿物钾的垂直变异较小,速效钾、缓效钾、有效钾垂直变异较大;缓效钾和有效钾相关性极显著;土壤表层0-20 cm供钾强度最大。
     综上所述,“推荐施肥+垄上覆膜+沟内覆草”及“推荐施肥+垄上覆膜”两种栽培措施有利于蓄积较多天然降水,通过提高水分和养分利用率实现作物增产之目的;其中“推荐施肥+垄上覆膜+沟内覆草”是一种集集雨保墒、培肥地力、增产增质为一体的栽培措施,对黄土旱塬区小麦生产具有极高推广价值。
Drought and water shortage has become an important issue which influences the food security in China. In dryland farming region of the Loess Plateau, the drought and low soil fertility has limited the development of local agricultural production seriously. How to utilize limited water resource effectively, to improve water use efficiency of crop, and to improvement of soil fertility, which is becoming the key of improving the productivity level of drought farmland. In this paper, aiming at these problems, 7 treatments had been designed, aimed at gathering farthest natural rainwater, decreasing ineffective evaporation. Limited precipitation could be used to production of crop. The purposes lied in raising soil fertility, improving the soil structure, increasing soil water storage, making the crop seedlings more vigorously, and creating a better growth environment for crops. A field experiment was conducted from September 2007 to July 2008 to investigate the effect of mulching and fertilization on soil moisture in winter wheat field of Wangdonggou Experimental area in Weibei Dryland region of the Loess Plateau. There were seven mulch and fertilizer treatments: 1) no fertilizer, 2) conventional farmer fertilization, 3) recommended fertilization, 4) recommended fertilization + manure, 5) recommended fertilization + plastic mulch on soil ridges, 6) recommended fertilization + plastic mulch on soil ridges and straw mulch in furrows, and 7) recommended fertilization + straw mulch applied to the entire plot. Soil moisture content was determined regularly with a neutron probe. The variation characteristics of soil moisture under different cultivation measures, potassium supplying status in soil, spatial variability of different forms potassium in soil profile, which was studied on dryland on Loess Plateau region.
     (1) recommended fertilization + plastic mulch on the soil ridges and straw mulch in the furrows resulted in the greatest increase in soil water storage in dry season (spring), which was 48.2 mm higher than the lowest in the treatment of recommended fertilization + manure, and maintained the soil water to the critical stage crops needed. It was suggested that these two mulch treatments could store more natural rainfall in field and would benefit the development of rainfed agriculture in dryland region of the Loess Plateau.
     (2) Leaf area of winter wheat in all treatments was no significant differences at jointing stage, it was the largest under the measure of plastic mulching on the soil ridge and straw mulching in furrow in booting stage and filling stage, but the measure of plastic mulching on the soil ridge was the largest in mature period. The wheat biomass was the highest under chemical fertilizers combined with manure in jointing stage, it was the highest under the measure of plastic mulching on the soil ridge and straw mulching in furrow in other growth period. Spike length、grain weight per spike and grains per spike were greater under the measure of plastic mulching on the soil ridge, and the measure of plastic mulching on the soil ridge and straw mulching in furrow was only next to it. There were significant correlation between grains per spike and grain weight per spike, and the correlation was not significant among other factors.
     (3) Before sowing, there was higher nitrogen accumulation in 100 cm soil profiles. After the growing season, comparison of different mulching and fertilization measures, the lowest soil nitrate-N content appeared in soil profiles at depth of 0-60 cm under the measure of recommended fertilization + plastic mulching on the soil ridge and straw mulching in furrow, that because the measure were beneficial to accumulate more natural rainfall, which can increase nitrogen fertilizer use efficiency. Grain yield, nitrogen fertilizer use efficiency and nitrogen fertilizer agronomy efficiency of the measure of recommended fertilization + plastic mulching on the soil ridge and straw mulching in furrow were the highest .
     (4) Soil sample was collected from dry farmland at experimental area before sowing, and various forms of K were determined. Studied on present situation of soil potassium, and revealed its spatial variation law and soil potassium supplying status in field scale. The results showed that potassium resource of absorbed and used crop was better abundant. The spatial variability of total potassium and mineral K were relative small, Readily available K、slowly available K and available K showed a contrary tendency. Significant correlation was found between slowly available K and available K. K supply intensity of soil surface (0-20 cm) was highest.
     In a word, the measure of recommended fertilization + plastic mulching on the soil ridge and straw mulching in furrow and recommended fertilization and plastic mulching on the soil ridge were beneficial to accumulate more natural rainfall, which can increasing crop yield by increasing water and nutrient use efficiency. the measure of recommended fertilization + plastic mulching on the soil ridge and straw mulching in furrow was a cultivation measure that can collect rainfall and moisture conservation, culture fertility, increase yield and quality, which has prodigious popularization value for wheat production in loess yuan region.
引文
[1]贾大林.节水农业是缓解我国21世纪水危机途径[A].陈万金. 21世纪中国农业[C].南昌:江西科技出版社, 1998.
    [2]赵松岭.集水农业引论[M].西安:陕西科学技术出版社, 1996, 15-16.
    [3]山仑,陈国良.黄土高原旱地农业的理论与实践[M].北京:科学出版社, 1993: 1-5.
    [4]王俊鹏,蒋俊,韩清芳.宁南半干旱地区春小麦农田微集水种植技术研究[J].干旱地区农业研究, 1999, 17(2): 9-13.
    [5]曹玉琴,刘彦明,王梅春,等.旱作农田沟垄覆盖集水栽培技术的试验研究[J].干旱地区农业研究, 1994, 12(1): 75-77.
    [6] Kang S Z, Shi W J, Zhang J H. An improved water use efficiency for maize grown under regulated deficit irrigation [J]. Field Crop Research, 2000, 67: 207-214.
    [7]李庆逵,朱兆良,于天仁,中国农业持续发展中的肥料问题[M].南昌:江西科学技术出版社, 1998: 112-119.
    [8]马毅杰,马立珊,化肥与生态环境[A].中国植物营养与肥料学会.现代农业中的植物营养与施肥[C].北京:中国农业科技出版社. 1995: 1-7.
    [9]朱建国,硝态氮污染危害与研究展望[J].土壤学报, 1995,32(增刊): 62-69.
    [10]朱兆良,文启孝,中国土壤氮素[M].南京:江苏科学技术出版社. 1992.
    [11] Xu XC, Li DP, Wang HB. Fertilizers for the future[J]. Fertilizer international, 1999, 369: 31-32.
    [12]张桂兰,宝德俊,王英,李贵宝,等.长期施用化肥对作物产量和土壤性质的影响[J]土壤通报, 1999, 32(2): 64-67.
    [13]赖庆旺,黄庆海,黄茶菊,等.无机肥连施红壤水稻土有机质消长的影响[J].土壤肥料, 1991(1): 4-7.
    [14]金继远,土壤钾素研究进展[J].土壤学报, 1992, 30(1): 94-101.
    [15]刘会玲,陈亚恒,段毅力,等.土壤钾素研究进展.河北农业大学学报, 2002, 25(增刊): 66-68.
    [16]中国农业科学院土壤肥科研究所加拿大钾磷研究所北京办事处,北方土壤钾素和钾肥效益[M].北京:中国农业科技出版社, 1994: l~5.
    [17]刘荣乐,金继运,吴荣贵,等.我国北方土壤作物系统内钾素循环特征及秸秆还田与施钾肥的影响[J].植物营养与肥料学报, 2000, 6(2): 123-132.
    [18]李秋梅,陈新平,张福锁,等.冬小麦一夏玉米轮作体系中磷钾平衡的研究[J].植物营养与肥料学报, 2002, 8(2): 152-156.
    [19]劳秀荣,吴子一,高燕春,长期秸秆还田改土培肥效应的研究[J].农业工程学报, 2002, 18(2): 49-52.
    [20]刘世平,张洪程,戴其根,等.免耕套种与秸秆还田对农田生态环境及小麦生长的影响[J].应用生态学报, 2005, 16(2): 393-396.
    [21]王英,孙克刚,焦有.河南主要土类施用钾肥配合秸秆还田定位试验初报[J].河南农业科学, 1996(1): 20-24.
    [22]史吉平,张夫道,林葆.长期施肥对土壤有机质及生物学特性的影响[J].土壤肥料, 1998(3): 7-11.
    [23]金继远,土壤钾素研究进展[J].土壤学报, 1993, 30(1): 94-101.
    [24]崔德杰,刘永辉,隋方功,等.长期定位施肥对土壤钾素形态的影响[J].莱阳农学院学报, 2005, 22(3): 165-167.
    [25]张会民,吕家珑,李菊梅,等.长期定位施肥条件下土壤钾素化学研究进展[J].西北农林科技大学学报(自然科学版), 2007, 35(1): 155-160.
    [26]黄绍文,金继远,王泽良等,北方主要土壤钾形态及其植物有效性的研究[J].植物营养与肥料学报, 1998, 4(2): 156-164.
    [27]包耀贤,吴发启,刘莉.渭北旱塬梯田土壤钾素状况及影响因素分析.水土保持学报, 2008, 22(1): 78-82.
    [28]中国地膜覆盖栽培研究会,地膜覆盖栽培技术大全[M].北京:农业出版社. 1988.
    [29]王丽学,李宝筏,刘洪禄.农田覆盖技术及相关理论的发展现状与展望[J].中国农村水利水电, 2002, 1: 33-35.
    [30]高焕文,可持续机械化旱作农业研究[J].干旱地区农业研究, 1999(1): 57-62.
    [31]贾延明,尚长青.保护性耕作适应性试验及关键技术研究[J].农业工程学报, 2002, 18(1): 78-81.
    [32] B.B. Mehdi. etal, Yield and Nitrogen Content of Corn under Different Tillage Practices[J]. Agronomy Joumal, 1999, 91(4): 631-636.
    [33]张继澍,植物生理学[M].陕西:西北农林科技大学出版社. 1999.
    [34]徐世昌,戴俊英,沈秀瑛,等.水分胁迫对玉米光合性能及产量的影响[J].作物学报, 1996, 23(3): 356-363.
    [35]高云超,朱文珊,陈文新.秸秆覆盖免耕土壤微生物量与养分转化的研究[J].中国农业科学, 1994, 27(6): 41-49.
    [36]刘晓冰,宋春雨, Stephen J. Herbert,等.覆盖作物的生态效应[J].应用生态学报, 2002, 13(3): 365-368.
    [37]陈锡时,郭树凡,汪景宽,等.地膜覆盖栽培对土壤微生物种群和生物活性的影响[J].应用生态学报, 1998, 9(4): 435-439.
    [38]高云超,朱文珊,陈文新.秸秆覆盖免耕土壤细菌和真菌生物量与活性的研究[J].生态学杂志, 2001, 20(2): 30-36.
    [39]王爱玲,高旺盛,洪春梅.华北灌溉区秸秆焚烧与直接还田生态效应研究[J].中国生态农业报, 2003, 11(1): 142-144.
    [40]陈奇恩,中国塑料薄膜覆盖农业[J].中国工程学报, 2002, 4(4): 12-15.
    [41]李默隐,地膜覆盖栽培对土壤温度、容重、水分及烟叶产量的效应[J].土壤通报, 1983, 14(1): 27-29.
    [42]中国科学院微生物研究所细菌分类组编著,一般细菌常用鉴定方法[M].北京:科学出版社. 1978.
    [43]王一鸣,保水剂在我国农业中的试验研究与运用[J].中国农业气象, 2000, 21(1): 49-51.
    [44]赵松岭,集水农业引论[M].西安:陕西科学技术出版社. 1996: 15-16.
    [45] Qureshi, S, Regional perspective on dry farming [M]. Jaipur: Rawat Published. 1989: 91-96.
    [46]全国农业技术推广服务中心,前进中的中国农技推广事业[M].北京:中国农业出版社. 2001: 192-193.
    [47]梁银丽,张成娥.,郭东伟.黄土高原区农田覆盖效应与前景分析[J].中国生态农业研究, 2001, 9(1): 55-57.
    [48]山仑,陈国良.黄土高原旱地农业的理论与实践[M].北京:科学出版社. 1993: 1-5.
    [49]陈万金.中国北方旱地农业综合发展与对策[M].中国农业科技出版社. 1994: 152-156.
    [50]李凤民,赵松岭.黄土高原半干旱区作物水分利用研究新途径[J].应用生态学报, 1997, 8(1): 104-109.
    [51]曹靖,胡恒觉.不同肥料组合对冬小麦水分供需状况的研究[J].应用生态报, 2000, 11(5): 713-717.
    [52]张仁陟,李小刚,胡恒觉.施肥对提高旱地农田水分利用效率的机理[A].李生秀.土壤-植物营养研究文集[C]. 1999,西安:陕西科学技术出版社. 574-578.
    [53] Garabet S, Wood M., Ryan J. Nitrogen and water effects on wheat yield in a Mediterranean-type climate. I. Growth, water-use and nitrogen accumulation [J]. Field Crops Research, 1998, 57: 309-318.
    [54]邹邦基,陈利军,朱玺.变量N、P肥配合下春小麦根系活力与水分利用的关系[A].汪德水.旱地农田肥水关系原理与调控技术[M].北京:中国农业科技出版社. 1995: 91-100.
    [55]谷洁,刘存寿,方日尧.半湿润偏旱区施肥对冬小麦水分利用效率和产量的影响[J].西北农业学报, 1997, 6(1): 22-25.
    [56]尹光华,刘作新,李桂芳,等.水肥耦合对春小麦水分利用效率的影响[J].水土保持学报, 2004, 18(6): 156-162.
    [57]史奕,邹邦基,陈利军,等.从施肥促进小麦根系活力看以肥调水的效果[A].汪德水.旱地农田肥水关系原理与调控技术[C].北京:中国农业科技出版社. 1995: 111-115.
    [58]杜建军,李生秀,高亚军,等.氮肥对冬小麦抗旱适应性及水分利用的影响[J].西北农业大学学报, 1999, 27(5): 1-5.
    [59]东先旺,刘树堂,陶世荣.不同肥水组合对夏玉米水分利用效率及经济效益的影响[J].华北农学报, 2000, 15(1): 81-85.
    [60]翟丙年,李生秀.不同水分状况下施氮对夏玉米水分利用效率的影响[J].植物营养与肥料学报, 2005, 11(4): 473-480.
    [61]李生秀.解决我国西北水资源匮缺发展旱地农业的思考[J].中国科学基金, 1999, 1: 6-8.
    [62]王耀林,新编地膜覆盖栽培技术大全[M].中国农用塑料应用技术学会主编.北京:中国农业出版社. 1998: 35-75.
    [63]苏彩虹,郭创业,黄土旱塬农田全程全覆盖的“土壤水库作用”[J].水土保持学报, 2001, 15(4): 87-91.
    [64]赵聚宝,梅旭荣,薛军红,等.秸秆覆盖对旱地作物水分利用效率的影响[J].中国农业科学, 1996, 29(2): 59-66.
    [65]朱自玺,赵国强,邓天宏,等.秸秆覆盖麦田水分动态及水分利用效率研究[J].生态农业研究, 2000, 8(1): 34-37.
    [66] Laflen JM, Baker JL, Hartwig R O, etal. Soil and water loss from conservation tillage systems [J]. Trans. ASAE, 1978, 21(5): 881-885.
    [67] Hamlett JM, Baker JL, Horton R. Water and anion movement under ridge tillage: Afield study [J]. Trans. ASAE, 1990, 33(6): 1859-1866.
    [68]赵允格,邵明安,张兴昌.成垄压实施肥对氮素运移及氮肥利用率的影响[J].应用生态学报, 2004, 15(1): 68-72.
    [69]黄明斌,李玉山.黄土塬区旱作冬小麦增产潜力研究[J].自然资源学报, 2000, 15(2): 143-148.
    [70]巨晓棠,张福锁.关于氮肥利用率的思考[J].生态环境, 2003, 12(2): 192-197.
    [71]张鸣,张仁陟,蔡立群.不同耕作措施下春小麦和豌豆叶水势变化及其与环境因子的关系[J].应用生态学报, 2008, 19(7): 1467-1474.
    [72]山仑,黄占斌,张岁歧.节水农业.北京:清华出版社. 2000: 45-46.
    [73]于舜章,陈雨海,周勋波,等.冬小麦期覆盖秸秆对夏玉米土壤水分动态变化及产量的影响[J].水土保持学报, 2004, 18(6): 175-178.
    [74]王彩绒,田霄鸿,李生秀.垄沟覆膜集雨栽培对冬小麦水分利用效率及产量的影响[J].中国农业科学, 2004, 37(2): 208-214.
    [75]王宗明,梁银丽.黄土塬区主要粮食作物增产潜力分析.干旱区资源与环境, 2002, 16(3): 33-37.
    [76]刘贤赵,谭春英,宋孝玉,等.黄土高原沟壑区典型小流域土地利用变化对产量的影响.中国生态农业学报, 2005, 13(4): 99-102.
    [77]孟猛,倪健,张治国.地理生态学的干燥度指数及其应用评述[J].植物生态学报, 2004, 28(6): 853-861.
    [78] I.Rodriguez-Iturbe, Ecohydrology: A hydrologic perspective of climate-soil-vegetation dynamics[J]. Water Resources Research, 2000, 36(1): 3-9.
    [79] Hui Shi, Mingan Shao. Soil and water loss from the Loess plateau in China[J]. Journal of Arid Environments, 2000, 45: 9-20.
    [80]张仁陟,李小刚,胡华,等.甘肃黄土地区农田土壤水分变异规律研究[J].土壤侵蚀与水土保持学报, 1998, 4(4): 53-59.
    [81]陈洪松,邵明安.黄土区坡地土壤水分运动与转化机理研究进展[J].水科学进展, 2003, 14(4): 513-520.
    [82]贾志清,宋桂萍,李昌哲,等.宁南山区典型流域土壤水分动态变化规律研究[J].北京林业大学学报, 1997, 19(3): 15-20.
    [83]王军,傅伯杰.黄土丘陵小流域土地利用结构对土壤水分时空分布的影响[J].地理学报, 2000, 55(1): 84-91.
    [84]邱扬,傅伯杰.,王军,等.黄土丘陵小流域土壤水分时空分异与环境关系的数量分析[J].生态学报, 2000, 20(5): 741-747.
    [85]王虎全,韩思明,唐拴虎,等.渭北旱原冬小麦全程地膜覆盖超高产栽培技术研究[J].干旱地区农业研究, 1998, 16(1): 24-30.
    [86]单长卷.土壤干旱对冬小麦水分生理和生物量分配的影响[J].麦类作物学报, 2006, 26(2): 127-129.
    [87]李絮花,杨守祥,于振文,等.有机肥对小麦根系生长及根系衰老进程的影响[J].植物营养与肥料学报, 2005, 11(4): 467-472.
    [88]张正斌,山.仑.作物水分利用效率和蒸发蒸腾估算模型的研究进展[J].干旱地区农业研究, 1997, 15(1): 73-78.
    [89]王会肖,刘昌明.作物水分利用效率内涵及研究进展[J].水科学进展, 2000, 11(1): 99-104.
    [90]戴万宏,吕殿青,刘胜利.关于鱼养麦田施肥的节水增产效应研究.水土保持研究, 1996, 3(3): 96-99.
    [91]李玉山,张孝中,郭民航.黄土高原南部作物水肥产量效应的田间研究[J].土壤学报, 1990, 27(1): 1-7.
    [92]高亚军,李生秀.北方旱区农田水肥效应分析.中国工程科学, 2002, 4(7): 74-79.
    [93] Li Fengmin , Guo AnHong, Wei Hong. Effects of plastic film mulch on yield of spring wheat [J]. Field Crops Research, 1999, 63: 79-86.
    [94]李志军,赵爱萍,丁晖兵,等.旱地玉米垄沟周年覆膜栽培增产效应研究[J].干旱地区农业研究, 2006, 24(2): 12-17.
    [95] Yilong Huang , Liding Chen, Bojie Fu , etal. The wheat yields and water-use efficiency in the Loess Plateau: straw mulch and irrigation effects [J]. Agricultural Water Management, 2005, 72: 209-222.
    [96]高亚军,李生秀.旱地秸秆覆盖条件下作物减产的原因及作用机制分析[J].农业工程学报, 2005, 21(7): 15-19.
    [97]张志田,高绪科,蔡典雄,等.旱地麦田保护性耕作对土壤水分状况影响研究[J].土壤通报, 1995, 26(5): 200-203.
    [98]李凤民,赵松岭.黄土高原半干旱区作物水分利用研究新途径[J].应用生态学报, 1997, 8(1): 104-109.
    [99]陈晓远,罗远培.开花期复水对受旱冬小麦的补偿效应研究.作物学报, 2001, 27(4): 512-516.
    [100]李凤民,郭安红,雒梅.土壤深层供水对冬小麦干物质生产的影响[J].应用生态学报, 1997, 8(6): 575-579.
    [101]李法云,宋丽,官春云.辽西半干旱区农田水肥耦合作用对春小麦产量的影响[J].应用生态学报, 2000, 11(4): 535-539.
    [102]王殿武,刘树庆.高寒半干旱区春小麦田施肥及水肥耦合效应研究[J].文宏达中国农业科学, 1999, 32(5): 62-68.
    [103]李世清,李生秀.半干旱地区农田生态系统中硝态氮的淋失[J].应用生态学报, 2000, 11(2): 240-242.
    [104]巨晓棠,刘学军,张福锁.冬小麦/夏玉米轮作中NO3ˉ–N在土壤剖面的累积及移动[J].土壤学报, 2003, 40(4): 538-546.
    [105]李韵珠,黄元仿,冬小麦的氮素利用率和供水关系[A].李韵珠,土壤水和养分的有效利用[C].北京:北京农业大学出版社. 1994: 139-148.
    [106] Bock B R, Efficient use of nitrogen in cropping systems[A]. Hauck R D. Nitrogen in crop production[C]. Madison, Wis, USA: Am Soc of Agron. 1984:273-294.
    [107]陈磊,郝明德,张少民.黄土高原旱地长期施肥对小麦养分吸收和土壤肥力的影响.植物营养与肥料学报, 2007, 13(2): 230-235.
    [108]朱新开,郭文善,周权正.氮肥对中筋小麦扬麦10号氮素吸收、产量和品质的凋节效应[J].中国农业科学, 2004, 37(12): 1831-1837.
    [109]孙传范,戴廷波,曹卫星.不同施氮水平下增铵营养对小麦生长发育和氮素利用率的影响[J].植物营养与肥料学报, 2003, 9(1): 33-38.
    [110]马兴华,于振文,梁晓芳.施氮量和底追比例对小麦氮素吸收利用及籽粒产量和蛋白质含量的影响[J].植物营养与肥料学报, 2006, 12(2): 150-155.
    [111]赵满兴,周建斌,杨绒.不同施氮量对旱地不同品种小麦氮素累积、运输和分配的影响[J].植物营养与肥料学报, 2006, 12(2): 143-149.
    [112]吕殿青,周延安.氮肥施用对环境污染影响的研究[J].植物营养与肥料学报, 1998, 4(1): 8-15.
    [113]张学军,罗代雄,桂林国,等.宁夏扬黄新灌区春小麦氮营养诊断及追肥推荐量[J].西北农业学报, 2001, 10(1): 72-74.
    [114]宇万太,张璐,马强,等.施肥对土壤潜在养分(磷和钾)和作物产量的影响[J].生态学杂志, 2004, 23(5): 71-76.
    [115]谢建昌,周健民.我国土壤钾素研究和钾肥使用的进展[J].土壤, 1999, 5: 244-254.
    [116]彭浩,邵明安,张兴昌.黄土区土壤钾素径流流失机理研究进展[J].土壤与环境, 2002, 11(2): 172-177.
    [117]刘红霞,韩晓日,付时丰,等.长期定位施肥对棕壤钾素垂直分布状况的影响[J].土壤通报, 2006, 37(5): 950-953.
    [118]鲍士旦,土壤农化分析(第三版)[M].北京:中国农业出版社. 1999: 31-34, 99-109, 202-205.
    [119]姜远茂,红富士苹果矿质营养特性及营养诊断与施肥研究[D]. 2001
    [120]张连佳,潘金林,等.红壤稻田土壤钾素消长与调控技术研究[J].浙江农业科学, 1996(3): 101-105.
    [121]谭德水,金继远,黄绍文,等.不同种植制度下长期施钾与秸秆还田对作物产量和土壤钾素的影响[J].中国农业科学, 2007, 40(1): 133-139.
    [122]曹凑贵,张光远,王运华.农业生态系统养分循环研究概况.生态学杂志, 1998, 17(4): 26-32.
    [123]史吉平,张夫道,林葆.长期施用氮磷钾化肥和有机肥对土壤氮磷钾养分的影响[J].土壤肥力, 1998, (1): 7-10.
    [124]索东让,侯格平.定位连施土粪对土壤钾的影响[J].土壤肥料, 2002, (2): 36-38.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700