北京地区野生大豆(G.soja)遗传多样性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
野生大豆(Glycine soja)是栽培大豆(G.max)的野生祖先种,为栽培大豆的遗传育种和种质改良提供了重要的基因资源。北京地区是我国野生大豆分布区中部。近些年,北京地区经济迅速发展,人口急剧增加,一些因素破坏了野生大豆的生存环境,使宝贵的资源在逐渐流失。因此本文对北京地区的野生大豆进行考察和遗传多样性的研究,为考察、设立原位点保护、制定合理的取样保存方案、研究和利用提供理论依据。
     本文通过实地考察,收集北京地区野生大豆10个居群,每个居群30个单株(居群2为28个单株),共298个单株。分别从形态水平和分子水平上对北京野生大豆群体进行了遗传多样性分析。采集的种子进行田间种植,共调查了11个形态性状(7个数量性状和4个质量性状);实验室内分析共采用了40对SSR引物,平均每个连锁群上2对引物。分析结果表明:
     1、质量性状多态相对单一;居群内个体间的数量性状值相差很大,居群间数量性状的平均差异大小有一定的地理分布性,但各性状差异表现不尽相同。性状变异系数大小顺序依次为:叶片长×宽>单株产量>地上部茎叶干重>生长速率>株高>百粒重>播种至开花天数。数量性状的多样性指数高于质量性状的多样性指数。Shannon指数计算表明北部山区指数最高,为1.42,其次是中-西部平原与山区,最低是东部山区,为1.19。1号居群的Shannon指数最高,9号居群多样性最低。通过聚类分析,把北京地区10个居群分为4组。
     2、利用40对SSR引物研究了北京地区天然野生大豆居群的遗传结构与遗传多样性。10个居群共检测到526个等位变异,平均等位基因数(A)为12.75个,平均有效等位基因数(A_e)为6.98,居群平均shannon指数(I)为0.658,平均期望杂合度(H_e)为0.369。平均基因分化程度(G_(ST))为0.544,居群内遗传多样度(H_s为0.362,居群间遗传多样度(D_(ST))为0.446。北京天然群体平均多基因位点杂合度(H_o)为1.3‰。本研究显示中-西部生态区居群比北部和东部山区居群有较高的遗传多样性。在地理上,环绕北京地区的太行山和燕山两大余脉区域野生大豆居群遗传分化表现出地理差异。我们看到一个可能是经过自然选择而形成的有抗旱潜力的居群在遗传上表现单一化。期待该居群提供耐旱基因利用。
Wild soybean (Glycine soja) is commonly accepted as the ancestral species of the cultivated soybean (G. max). As valuable genetic resources, wild soybean is an extraordinarily important gene pool for soybean breeding. In recent years, with the development of economy and the enhancement of population, some factors destroyed the survival environment of wild soybean. Now many valuable resources have been disappearing. Therefore, in order to provide scientific basis in making rational collecting, in-situ conservation, academic study and effective use of wild soybean resources, we collected natural populations of wild soybean growing in Beijing and analysed the genetic diversity.
     Ten natural populations of wild soybean in Beijing were collected. Each population had 30 individuals except population No.2 (28 individuals) and the total samples contained 298 individuals. We planted these individuals in the exprimental field and then investigated 11 morphologic characters including 4 qualitative and 7 quantitative traits. A set of 40 pairs of SSR primers with 2 pairs of primers per linkage group were used to analyse the genetic diversity. The results were as follows:
     1. The polymorphisms of the qualitative traits were simple; the variations (differences) in the quantitative traits were bigger within the populations and somewhat presented a region-dependent distribution geographically although some traits were different in distribution patterns. The CV of traits were showed as the follows: Leaf lengthxwidth>yield per plant>aboveground biomass>Growth rate >Plant height> 100-seed weight>Days from sowing to flowering. The Shannon-Weaver indexes of the quantitative traits were higher than those of the qualitative traits. The highest Shannon-Weaver index was 1.42 for the Northern mountainous area, while the lowest value of 1.19 for the Eastern mountainous one. The Shannon-Weaver index of population No.1 was the highest, while that of population No.9 was the lowest. Based on the morphological data, the 10 natural populations were clustered into 4 groups.
     2. In 10 natural populations, 526 alleles (bands) were detected in total. The average number of alleles per locus (A) and the effective number per locus (A_e) were 12.75 and 6.98, respectively. The mean values of expected heterozygosity and Shannon-Weaver index were 0.369 and 0.658, respectively. The natural populations showed a value of 0.446 for between-population genetic diversity (H_s) and 0.362 for within-population genetic diversity (D_(ST)). The coefficient of gene differentiation for the loci among the populations were estimated to be 0.544. The mean observed heterozygosity (H_o) of mulilocus was 1.29%. This study showed that the centre and western ecotopes had higher genetic diversity than the northern and eastern ecotopes and there were geographic genetic differentiation between the Taihang and the Yanshan mountains in natural populations of wild soybean in Beijing region. A drought-tolerance population presented extremely low genetic diversity, which seemed to have undergone and survived aridity and is expected in exploitation of tolerance gene(s) for crop breeding and applied ecology.
引文
1.常汝镇.关于栽培大豆起源的研究.中国油料,1989,39:1-6
    2.常汝镇,孙建英,邱丽娟.大豆品种的分化、发展与资源研究规划.大豆通报,1993,2:35-37
    3.董玉琛.生物多样性及作物遗传多样性检测.作物品种资源,1995,3:1—5
    4.府宇雷,钱吉,马玉虹,李军,郑师章.不同尺度下野大豆种群的遗传分化.生态学报,2002,22(02):176-184
    5.傅沛云,陈佑安.辽宁省大豆属植物野生种的分类研究.植物研究,1986,6:117-123
    6.付永彩,张贤泽.野生、半野生及栽培大豆的几个主要光合特性的研究.大豆科学,1993,12(3):255-258
    7.盖钧镒,许东河,高忠,岛本义也,阿部纯,福士泰史,北岛俊二.中国栽培大豆和野生大豆不同生态类型群体间遗传演化关系的研究.作物学报,2000,26(05):513-520
    8.高新华,李宏元,郑师章,周纪纶.不同纬度来源的野生大豆拟种群动态参数及其生活适应意义.应用生态学报,1996,7(3):225-261
    9.海林,王克晶,杨凯.半野生大豆种质资源SSR位点遗传多样性分析.西北植物学报,2002,22(4):751-757
    10.何志鸿,姚振纯,林红.黑龙江省大豆化学品质生态地理分布——Ⅰ.野生大豆化学品质生态地理分布.东北农业大学学报,1988,19(3):237-245
    11.洪德元.植物细胞分类学.北京:科学出版社,1990
    12.胡志昂,王洪新.北京地区野生大豆天然群体遗传结构.植物学报,1985,27(6):599-604
    13.黄瑞复(译).生态遗传学.北京:科学出版社,1991
    14.纪锋,郑惠玉,杨光宇,韩春风.吉林省野生大豆(Gsoja)蛋白质含量的初步分析.吉林农业科学,1990,(3):93-96
    15.雷勃钧,尹光初,刘红军,林忠平.大豆属贮存蛋白的研究——Ⅰ.大豆及某些野生类型大豆球蛋白构成的比较.大豆科学,1984,3(1):36-40
    16.李福山.大豆起源及其演化研究.大豆科学,1994,13(1):61-66
    17.李福山,常汝镇,舒世珍,常碧影,陈志萍,左江湾.栽培、野生、半野生大豆蛋白质含量及氨基酸组成的初步分析.大豆科学,1986,5(1):65-72
    18.李福山,常汝镇,舒世珍.中国的大豆属(Glycine L.)植物.大豆科学,1983,2:109-115
    19.李福山.中国野生大豆资源的地理分布及生态分化研究.中国农业科学,1993,26(2):47-55
    20.李福山,王衍桐.野生大豆分布与环境条件.大豆科学,1989,8(3):245-251
    21.李福山.庄炳昌主编:中国野生大豆生物学研究.北京:科学出版社,1999
    22.李福山,徐豹.中国野生大豆资源研究进展.中国农业出版社,1995,21-26
    23.李军,陶芸,郑师章,周纪纶.同工酶水平上野生大豆种群内分化的研究.植物学报,1995,37(9):669-676
    24.李军.庄炳昌主编:中国野生大豆生物学研究.北京:科学出版社,1999
    25.李向华,田子罡,李福山.新考察收集野生大豆与已保存野生大豆的遗传多样性比较.植物 遗传资源学报,2003,4(4):345-349
    26.李莹,罗建军.对三种不同类型的大豆开花习性的观察.李莹等著:大豆遗传资源研究论文集,山西科学技术出版社,1991,128-137
    27.李严,宗晖,黄小莺,曹凯鸣,顾其敏.中国野生大豆胰蛋白酶抑制剂的初步研究.复旦学报(自然科学版),1999,38(5):529-532
    28.梁慕勤,潘世元,梁镇林.野生大豆的栽培技术及短日照处理.贵州农业科学,1986,4:4-5
    29.刘德金,徐树传.福建野生大豆生态分布及其分类.福建省农科院学报,1991,6(2):18-24
    30.刘润堂,贾炜珑,温琪汾,王石宝.栽培大豆、野生大豆和半野生大豆酯酶同工酶的研究.山西农业大学学报,1995,15(3):235-237
    31.刘忠堂,黄桂潮.抗灰斑病大豆新品种选育.中国农业科学,1986,(3):26-31
    32.苗以农,唐树廷,杨文杰,徐克章,殷爱武,张绍纲.大豆叶绿素含量研究简报.吉林农业科学,1982,(4):27-29
    33.裴颜龙,王岚,葛颂,王连铮.野生大豆遗传多样性研究Ⅰ4个天然居群等位酶水平的分析.大豆科学,1996,15(04):302-308
    34.钱吉,陈庠,郑师章,陈燃.不同纬度野生大豆种群间的遗传变异.复旦学报(自然科学版),1998,37(2):208-212
    35.钱迎倩,马克平.生物多样性研究的原理与方法.北京:中国科学技术出版社,1994
    36.邵启全,林章棋,周端敏.中国野生大豆光周期生态类型分析.作物学报,1980,6(1):45-50
    37.孙寰,赵丽梅,黄梅.大豆质_核互作不育系研究.科学通报,1993,16:1535-1536
    38.田佩占,袁全,孙永纯.1975.1995年吉林省大豆主要推广品种及其遗传关系.吉林农业科学.1998,(2):1-5
    39.田清震,盖钧镒.大豆起源与进化研究进展.大豆科学,2001,20(1):54-59
    40.童川拉,黄建成.人工短日照诱导野生大豆开花的研究.福建农业科技,1989,2:19-20
    41.王颢,王海,马志军,郭风霞.甘肃省野生大豆资源蛋白质含量分析.甘肃农业科技,1991,(5):12—13
    42.王洪新,胡志昂,姚振纯.中国栽培大豆代表品种和野生大豆部分群体脲酶等位酶的分析.大豆科学,1994,13(01):67-71
    43.王金陵,孟庆喜,祝其昌.中国南北地区野生大豆光照生态类型的分析.遗传学通讯,1973,(3):1-8
    44.王克晶,余建章,李福山.我国大豆种皮过氧化物酶活性和根部荧光性基因表型频率分布.作物学报,1990,16(3):276-283
    45.王克晶,李福山,曹永生,周涛.河北省野生大豆种群若干数量性状结构特征.植物生态学报,2001,25(3):351—358
    46.王克晶,李福山,海妻矩彦,高烟义人.中国河北省和日本东北部天然野生大豆群体性状调查比较.中国油料作物学报,2000,22(4),17-22
    47.王克晶,李富山.我国野生大豆(Gsoja)种质资源及其种质创新利用.中国农业科技报,2000,2(6)69-72
    48.王克晶,李向华,张志卫,李福山,曹永生.野生大豆天然群体百粒重类型组成与地理分布 调查.大豆科学,2005,24(4):243-248
    49.王克晶,王英典,海林,戴昕,李福山.河北省野生大豆天然群体中胰蛋白酶抑制剂蛋白的多态性.中国农业科学,2002,35(2):132-136
    50.王连铮.大豆的起源演化和传播.大豆科学,1985,4(1):2-7
    51.王连铮,吴和礼,姚振纯,林红.黑龙江省野生大豆的考察和研究.植物研究,1983,3(3):116-130
    52.徐豹,路琴华.大豆生态研究Ⅲ野生大豆(G.soja)与栽培大豆(G.max)光周期效应的比较研究.大豆科学,1988,7(4):270-275
    53.徐豹,路琴华.大豆生态研究——Ⅰ.中国不同纬度野生大豆的光温生态分析.大豆科学,1983,2(3):155-168
    54.徐豹,庄炳昌,路琴华,吕景良.不同进化类型大豆种子超氧物歧化酶的比较.植物学报,1989,31(7):517-522
    55.徐豹,庄炳昌,徐航,路琴华,王玉民,李福山.中国野生大豆(G.soja)脂肪含量的多样性及地理分布.大豆科学,1993,12(4):269-274
    56.徐豹,徐航,庄炳昌,路琴华,王玉民,李福山.中国野生大豆(G.soja)籽粒性状的遗传多样性及其地理分布.作物学报,1995,(6):95-101
    57.徐豹,郑惠玉,路琴华,赵述文,邹淑华,胡志昂.大豆起源地的三个新论据.大豆科学,1986,5(2):123—130
    58.徐豹,邹淑华,庄炳昌,林忠平,赵玉锦.野生大豆(Gsoja)种子贮藏蛋白组份11S/7S的研究.作物学报,1990,16(3):235-241
    59.刘后利.作物育种研究与进展(第一集).北京:农业出版社,1993,122-137
    60.徐豹,路琴华.大豆生态研究——Ⅰ.中国不同纬度野生大豆的光温生态分析.大豆科学,1983,2(03):155-168
    61.徐豹,郑惠玉,吕景良,周肃纯,邵荣春.中国大豆的蛋白资源.大豆科学,1984,3(4):329-331
    62.徐豹,邹淑华,庄炳昌,林忠平,赵玉锦.野生大豆(G.soja)种子贮藏蛋白组份11S/7S的研究.作物学报,1990,16(3):235-241
    63.许东河,高忠,盖钧镒,张志永,陈受宜,北岛俊二,福士泰史,阿部纯,岛本义也.中国野生大豆与栽培大豆等位酶、RFLP和RAPD标记的遗传多样性与演化趋势分析.中国农业科学,1999,32(6):16-22
    64.许东河,高忠,田清震,盖钧镒,北岛俊二,福士泰史,阿部纯,岛本义也.中国一年生野生大豆群体的遗传多样性研究.应用与环境生物学报,1999,5(5):439-443
    65.薛中天,徐美琳,庄乃亮,沈善炯.大豆贮藏蛋白信使核糖核酸的分离与转译.科学通报,1984,3(1):36-40
    66.杨光宇,纪锋.中国野生大豆资源的研究与利用综述.地理分布、化学品质性状及在育种中的利用.吉林农业科学,1999,24(1):12-17
    67.杨光宇,尹爱平.野生大豆(G.soja)氨基酸组成的初步分析研究.大豆科学,1986,5(2):175-180
    68.杨文杰,苗以农.大豆光合生理生态的研究——第2报野生大豆和栽培大豆光合作用特性的比较研究.大豆科学,1983,2(2):83-92
    69.张德水,董伟,惠东威,陈受宜,庄炳昌.用栽培大豆与半野生大豆间的杂种F-2群体构建基因组分子标记连锁框架图.科学通报,1997,42(12):1326—1329
    70.张礼凤,李伟,王彩洁,徐冉,戴海英.山东大豆种质资源形态多样性分析.植物遗传资源学报,2006,7(4):450-454
    71.张美云,钱吉,钟扬,郑师章.野生大豆若干耐盐生理指标的研究.复旦学报(自然科学版),2002,41(6):669-673
    72.赵洪锟,王玉民,李启云,张明,庄炳昌.中国不同纬度野生大豆和栽培大豆SSR分析.大豆科学,2001,20(3):18-22
    73.赵洪锟,庄炳昌,王玉民,李启云.中国不同纬度野生大豆和栽培大豆AFLP分析.高技术通讯,2000,(7):34-37
    74.中国科学院生物多样性委员会.生物多样性研究的原理与方法.北京:中国科学技术出版社,1994:141—165
    75.周晓馥,庄炳昌,王玉民,赵洪琨.利用RAPD与SSR技术进行野生大豆种群内分化的研究.中国生态农业学报,2002,10(4):6-9
    76.周新安,彭玉华,王国勋,常汝镇.中国栽培大豆遗传多样性和起源中心初探.中国农业科学,1998,31(3):37-43
    77.庄炳昌,惠东威,王玉民,顾京,徐豹.中国不同纬度不同进化类型大豆RAPD分析.科学通报,1994,39(23):2178-2180
    78.庄炳昌,王玉民,徐豹,惠东威,顾京,陈受宜.中国不同纬度不同进化类型大豆的RAPD分析.科学通报,1994,(23):68-70
    79.庄炳昌,徐航,王玉民,路琴华,徐豹,李福山.中国野生大豆(Glycine soja)茎叶性状的多态性及其地理分布.作物学报,1996,22(5):583-586
    80.庄炳昌,李启云.庄炳昌主编:中国野生大豆生物学研究.北京:科学出版社,1999
    81.庄炳昌,徐航,王玉民,路琴华,徐豹,李福山.中国野生大豆(Glycine soja)茎叶性状的多态性及其地理分布.作物学报,1996,22(5):583-586
    82.庄炳昌.中国野生大豆研究二十年.吉林农业科学,1999,24(5):3-10
    83. Choi I.Y., Kang J. H., Song H. S., Kim N. S. Genes genet Syst, 1999, 74: 169-177.
    84. Close P. S., Shoemarker R. C., Keim P. Distribution of restriction site polymorphism within the chloroplast genome of the genus Glycine, subgenus Sojia. Theor Appl Genet, 1989, 77:768-776.
    85. Cregan P. B., Jarvik T., Bush A. L., Shoemaker R. C., Lark K. G., Kahler A. L., Kaya N., VanToai T. T., Lohnes D. G., Chung J., Specht J. E. An integrated genetic linkage map of the soybean genome. Crop Sci, 1999, 39: 1464-1490.
    86. Crow J. F., Kimura M. An introduction to population genetics theory. New York: Harper & Row, 1970.
    87. Dong Y. S., Zhuang B. C., Zhao L. M., Sun H., He M. Y. The genetic diversity of annual wild soybeans grown in China. Theor Appl Genet, 2001, 103:98-103.
    88. Dong Y. S., Sun H., Zhuang B. C. The genetic diversity in annual wild soybean. World Soybean Research Conference VI, 1999, 147-155. Aug, 4 - 7. Chicago, U SA.
    89. Doyle J. J., Beachy R. N. Ribosomal gene variation in soybean (Glycine) and its relatives. Theor Appl Genet, 1985, 369-376.
    90. Doyle J. J. 5S ribosomal gene variation in the soybean and its progenitor. Theor Appl Genet, 1988, 621-624.
    91. Doyle J. J., Doyle J. L. Isolation of plant DNA from fresh tissue. Focus, 1990,2: 13-15.
    92. Falk D. A., Holsieger K. E. Genetics and Conservation of Rare Plants. New York: Oxford University Press, 1991,149-170.
    93. Fujita R., Ohara M., Okazaki K., Shimamoto Y. The extent of natural cross-pollination in wild soybean (Glycine. soja). J. Heredity, 1997, 88: 124-128.
    94. Gottlieb L. D. Electrophoretic evidence and plant populations. Progress in Phytochemistry, 1981, 7: 1-46.
    95. Harper J. L. Population biology of plants. London: Academic Press, 1997, 33-35.
    96. Hartl D. L., Clark A. G Principles of population genetics (3rd edn). Sinauer Associates Inc, Sundeland, MA, 1997.
    97. Hastings J. M. Thermoregulation in the dog-day cicada Tibicen duryi (Homoptera, Cicadidae). Trans Ky Acad Sci, 1989, 50: 145-149.
    98. Hui D. W, Zhuang B.C., Gu J., Wang Y. M., Zhang G Y, Xu B., Chen S. Y. Study on Systematics in Glycine With RAPD Fingerprinting. Chinese Science Bulletin, 1994, 39(9): 766-771.
    99. Hymowitz T. On the domestication of the soybean. Econ bot, 1970, 23: 408-421.
    100. Hymowitz T, Newell C. A. Taxonomy of genus Glycine, domestication and uses of soybeans. Economic Botany, 1981, 35(3): 272-288.
    101. Kiang Y. T, Chiang Y. C, Kaizuma N. Genetic diversity in natural populations of wild soybean in Iwate Prefecture. Japan J. Heredity, 1992, 83: 325-329.
    102. Lewin R. Limits to DNA fingerprinting. Science, 1989, 243: 1549-1551.
    103. Li Y. B., Hu Z., Zhang Q., Deng X., Wang H. X. Genetic variation in wild soybean (Glycine soja Sieb. & Zucc.) populations revealed with simple sequence repeat markers. Soybean genetics newsletter, 2000, 27:017.
    104. Loveless M. D., Hamrick J. L. Ecological determinants of genetic structure in plant populations. Annual Review of Ecology and systematics, 1984,15: 65-95.
    105. Maughan P. J., Saghai Maroof M. A., Buss G R. Microsatellite and amplified sequence length polymorphisms in cultivated and wild soybean. Genome, 1995, 38 (4): 715- 723.
    106. Mullis K., Falcona F. A., Schart S. Specific amplification of DNA in vitro: the polymerase chain reaction. Cold Spring Harbor Symp Quant Biol, 1986,51: 263-273.
    107. Nei M. Genetic distance between populations. Am Nat, 1972,106: 283-292.
    108. Nei M. Analysis of gene diversity in subdivide populations. Proc Natl Acad Sci USA, 1973, 70, 3321-3323.
    109. Nei M. Estimation of average heterozygosity and genetic distance from a small number of individuals. Genetics, 1978, 89: 583-590.
    110. Nei M. Molecular evolutionary genetics. New York: Columbia univ.press, 1987.
    111. Rohlf F. J. NTYSYS-pc: numerical taxonomy and multiwariate analysis system, version 2.1 Exeter Publications, New York, N. Y, 2000.
    112. Rongwen J., Akkaya M. S., Bhagwat A. A., Lavi U., Cregan P. B. The use microsatellite DNA markers for soybean genotype identification. Theor Appl Gene, 1995, 90: 43- 48.
    113. Schaal B. A., Rogstad S. H. Comparison of methods for assessing genetic variation in plant conservation biology. New York :Oxford University Press , 1991,123-134.
    114. Shannon C. E., Weaver W. The Mathematical Theory of Communication. Ubana: University of Dlinois Press, 1963.
    115. Singh R. J., Ishna K., Kolliparipara P., Hymowitz T. Intergenomie relationships among wild perennial Glycinie species.World soybean research conference V, 1994,40-43.
    116. Slatkin M. A measure of population subdivision based on microsatellite allele frequencies. Genetics, 1995,139: 457-462.
    117. Slatkin M. Rane alleles as indicators of gene flow. Evolution, 1989, 39: 53-65.
    118. Soltis P. S., Soltis D. E. Genetic variation in endemic and wide spread plant species: examples from Saxifragaceae and Polystichum (Dryopteridaceae). Aliso, 1991,13:215-223.
    119. Steven L. Broich, Reid G Palmer. Evolutionary studies of the soybean: the frequency and distribution of alleles among collections of Glycine max and G soja of various origin. Euphytica, 1981, 30: 55-64.
    120. Vavilov N. I. Theorigin, variation, immunity and breeding of cultivated plants. New York: Academic Press, 1973.
    121. Williams J. G, Kublik A .R., Livak K. J., Rafalski J. A., Tingey S.V. DNA polymorphisms amplified by arbitrary primers are useful as markers. Nucleic Acid Res, 1990, 18: 6531-6535.
    122. Wright S. Evolution in Mendelian populations. Genetics, 1931, 16: 157-159.
    123. Wright S. Surface of selective values revisited. Amer Nat, 1978, 131: 115-123.
    124. Yu H. Y., Kiang T. Genetic variation in South Korean natural populations of wild soybean (Glycine soja). Euphytica, 1993,68: 213-221.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700