磁性纳米粒子跨膜转运机制及生物学效应和碳纳米管对钾通道影响的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
纳米生物学作为一门多学科交叉科学开启了生物学研究的新篇章。然而,纳米粒子与生物细胞具体的相互作用机制尚未明了。由于纳米粒子的大小与DNA、蛋白质等生物大分子以及病毒的尺寸相当,某些纳米粒子的生物效应可能涉及到当前尚未充分了解的生物与环境相互作用的机理,深入系统地研究纳米粒子与生物体系的相互作用,一方面不仅可以大大推动纳米科学在生物科学领域的交织发展,同时也可以为全面了解纳米粒子对人类生存环境和健康的影响提供理论依据。本研究选用了磁性纳米粒子及多壁碳纳米管两种纳米粒子,探讨了它们与细胞的相互作用及其生物学效应和机制。
     磁性纳米粒子已经在纳米医学等诸多领域有应用。本研究报道了吞噬细胞RAW264.7细胞摄入磁性纳米粒子有时间及剂量依赖性,摄入的磁性纳米粒子主要出现在细胞浆内,而内质网、线粒体及细胞核等细胞器内未见。而且,RAW264.7细胞摄入磁性纳米粒子的过程是能量依赖的,提示是经由内吞途径进入细胞的。通过特异性内吞抑制剂分别干扰各途径,结果发现clathrin-、caveolae介导的内吞途径,巨胞饮及清道夫受体介导的吞噬等途径均有可能参与磁性纳米粒子的入胞过程,而非某单一途径参与。同时,我们比较了三种不同吞噬能力的细胞摄入磁性纳米粒子的差异。结果发现,红细胞不能摄入磁性纳米粒子,吞噬能力强的RAW264.7细胞摄入磁性纳米粒子比弱吞噬能力的3T3L1细胞快且多,提示在不同类型细胞纳米粒子入胞途径的选择有差异。
     本研究还进一步探索了进入细胞内的磁性纳米粒子的生物学效应。结果表明,本研究所用的磁性纳米粒子有良好的生物相容性,对RAW264.7细胞的细胞活力、ROS生成及线粒体膜电位等无显著影响。另外,关于入胞的磁性纳米粒子的归宿提出3种可能:1)摄入的磁性纳米粒子随细胞分裂被分至子代细胞;2)摄入的磁性纳米粒子被降解并释放游离铁离子;3)磁性纳米粒子经胞吐释放至细胞外。而且,摄入的磁性纳米粒子对细胞内铁代谢相关蛋白质有影响,能使铁贮存蛋白质ferritin-L在蛋白质及mRNA水平表达均有升高,铁输出蛋白ferroportin1 mRNA水平表达有明显升高但蛋白质水平未见明显改变,而上述两种蛋白质的变化不是通过降解铁调节蛋白2来实现的。这些研究结果为磁性纳米粒子作为造影剂及药物载体等的应用研究提供了理论依据。
     作为最有应用前景的纳米材料之一,碳纳米管已经成为了纳米生物技术研究领域里的热点。但是,碳纳米管与生物体细胞相互作用的性质及其作用机制尚不明了,尤其对于细胞膜上离子通道的影响。离子通道负责机体可兴奋细胞的信号传导,对正常生理活动起至关重要的作用。以钾通道为例,它参与可兴奋细胞动作电位的复极化。钾通道功能异常会导致动作电位复极化失调、静息电位不能正确复位,最终导致机体功能障碍。在前期工作中我们发现末端羧基化的多壁碳纳米管(长300-800nm,内径10-20nm,外径40-50nm)可抑制未分化的嗜铬细胞瘤(PC12)细胞上3种钾通道(Ito、IK、IKl)电流。在此实验结果的基础上,我们对多壁碳纳米管抑制钾通道的可能机制进行了探讨。多数内外源性有害物质都是经由氧化应激的信号通路引起细胞毒性,因此,我们推测多壁碳纳米管可能通过诱导PC12细胞的氧化应激,进而抑制了3种钾电流。然而,结果表明,多壁碳纳米管未能引起PC12细胞内ROS生成增多、线粒体膜电位降低及细胞内钙水平升高。此结果提示我们多壁碳纳米管不是通过氧化应激的信号通路抑制钾通道的。尽管如此,将多壁碳纳米管用于纳米医学领域时,应该考虑其可能会抑制可兴奋细胞上的钾通道。
Nanobiology as a newly emerging multidisciplinary fused science has introduced a new dimension to research endeavor and a range of technologies in biology. However, the mechanisms underlying cell uptake of nanoparticles remain obscure. The characteristic size in the nanoscale, which is equivalent to the size of some biological macromolecules (such as DNA, proteins, etc.), nanoparticles would possess some unknown biological effects on the biological systems. Extensive studies need to be carried out to detect the interaction between nanoparticles and biological systems, providing robust evidence for the application of nanoparticles in life science. In our study, superparamagnetic iron oxide nanoparticles (SPION) and multi-walled carbon nanotubes had been chosen to study, the cellular influences and the potential molecular mechanisms were investigated.
     As one of the prospective nanoparticles candidates, SPION have been focused on in several nanomedical fields. Here, we reported that the internalization of SPION into a macrophage-like cell line RAW264.7 was in a time-and concentration-dependent manner to some degree. The internalized SPION were mainly found in the cytoplasmic vesicles, with no localization in the endoplasmic reticulum, mitochondria and nucleus. Moreover, the RAW264.7 cellular uptake was via an energy-dependent process that was suggestive of endocytosis. By blocking various endocytic pathways, we demonstrated that multiple endocytic processes were involved including clathrin-and caveolae-mediated endocytosis, macropinocytosis and scavenger receptor-mediated phagocytosis. Our data showed that nanoparticle endocytosis is therefore not mediated by a unique signaling pathway in a giving cell type.
     Meanwhile, the present study investigated the internalization of SPION in three cell models with different phagocytic capacity using transmission electron microscopy and energy dispersive spectrometer analysis. The results showed that the iron element was the nanoparticles composition in the cytoplasm of RAW264.7 cells but not in the red blood cells. SPION could be uptaken by RAW264.7 (with strong phagocytic capacity) and the 3T3-L1 cell (with weak phagocytic capacity), but not by red blood cells (with no phagocytic capacity), suggesting that different internalization pathways could be chosen for the nanoparticles cellular uptake in different cell types. The internalization occurred much more quickly in RAW264.7 cells than 3T3-L1 cells.
     The potential applications of SPION in several nanomedical fields have attracted intense interests, but the intracellular trail, the final fate and the biological effect of the internalized iron oxide nanoparticles have not been clearly elucidated. Here we showed that the internalized SPION had no effect on the cell viability, ROS induction and mitochondrial membrane potential dysfunction, possessing well biocompatible characteristics in RAW264.7 cells. Moreover, three kinds of possible metabolic fate for the internalized SPION in RAW264.7 cells were speculated:first, the internalized SPION are distributed to daughter cells; second, the internalized SPION are degraded in the lysosome and free iron was released into the intracellular iron metabolic pool; third, the intact iron oxide nanoparticles could be exocytosed out of cells. In addition, the internalized SPION indeed affected the intracellular iron metabolism in RAW264.7 cell, inducing an up-regulation of ferritin light chain at both protein and mRNA level, and ferroportinl at the mRNA level. The central player in the intracellular iron metabolism iron regulatory protein 2 has no degradation opposite to the hypothesis. The results in the present study provided evidences for the consideration of biological safety of SPION administered as contrast agents or drug delivery tools.
     Intense interest in the applications of nanomaterials for drug delivery, diagnostic or imaging tests and regenerative medicine has been generated because of the nanoscale size of such materials. Among the nanomaterials, carbon nanotube has been the focus of extensive researches as a potential player in nanobiotechnology. However, the nature or mechanism by which carbon nanotubes interact with cells or specifically ion channels is largely unknown. Ion channels transduce electrical signals in excitable cells and they therefore play critical roles in many physiological systems. A notable example of ion channels that plays an essential role in physiology is potassium channels that are involved in the repolarization of action potentials in excitable cells. Functional abnormality of these K+channels contribute to disturbance of action potential repolarization and inability to reset the resting potential properly and thus leading to dysfunction of an organ.
     In our previous study, we observed that carboxyl-terminated multi-walled carbon nanotubes (MWCNTs, length 300-800nm, inner diameter 10-20nm and outer diameter 40-50nm) act as antagonists of three types of potassium channels as assessed by whole-cell patch clamp electrophysiology on undifferentiated pheochromocytoma (PC 12) cells. Moreover, the possible signal pathway through which the MWCNTs have impact on the K+ channels was further explored. Oxidative stress could develop as a cellular response to hazardous materials or endogenous adverse metabolite and could also be a potential downstream effect pathway by which nanotubes affect ion channels. The physiological effects of oxidative stress include the production of reactive oxygen species (ROS), increasing of [Ca2+]i and decreasing of the mitochondrial membrane potential (⊿Ψm). However, MWCNTs did not significantly change the expression levels of ROS and did not alter the⊿Ψm in PC 12 cells. MWCNTs also did not significantly change the level of intracellular free calcium. These results suggest that oxidative stress was not involved in MWCNTs suppression of Ito, IK and IK1 current densities. Nonetheless, the suppression of potassium currents by MWCNTs will impact on electrical signaling of excitable cells such as neurons and muscles. As such, the potential side effects of nanotubes on potassium channels should be examined before they are used as a delivery tool in vivo.
引文
1. Meldrum FC, Heywood BR, Mann S. Magnetoferritin:in vitro synthesis of a novel magnetic protein. Science 1992;257(5069):522-3.
    2. Ros PR, Freeny PC, Harms SE, Seltzer SE, Davis PL, Chan TW, Stillman AE, Muroff LR, Runge VM, Nissenbaum MA, et al. Hepatic MR imaging with ferumoxides:a multicenter clinical trial of the safety and efficacy in the detection of focal hepatic lesions. Radiology 1995;196(2):481-8.
    3. Rose SE, Janke AL, Strudwick MW, McMahon KL, Chalk JB, Snyder P, De zubicaray GI. Assessment of dynamic susceptibility contrast cerebral blood flow response to amphetamine challenge:a human pharmacological magnetic resonance imaging study at 1.5 and 4 T. Magn Reson Med 2006;55(1):9-15.
    4. Varallyay P, Nesbit G, Muldoon LL, Nixon RR, Delashaw J, Cohen JI, Petrillo A, Rink D, Neuwelt EA. Comparison of two superparamagnetic viral-sized iron oxide particles ferumoxides and ferumoxtran-10 with a gadolinium chelate in imaging intracranial tumors. AJNR Am J Neuroradiol 2002;23(4):510-9.
    5. Wiart M, Davoust N, Pialat JB, Desestret V, Moucharrafie S, Cho TH, Mutin M, Langlois JB, Beuf O, Honnorat J, Nighoghossian N, Berthezene Y. MRI monitoring of neuroinflammation in mouse focal ischemia. Stroke 2007;38(1):131-7.
    6. Vellinga MM, Oude Engberink RD, Seewann A, Pouwels PJ, Wattjes MP, van der Pol SM, Pering C, Polman CH, deVries HE, Geurts JJ, Barkhof F. Pluriformity of inflammation in multiple sclerosis shown by ultra-small iron oxide particle enhancement. Brain 2008; 131:800-7.
    7. Saleh A, Schroeter M, Ringelstein A, Hartung HP, Siebler M, Modder U, Jander S. Iron oxide particleenhanced MRI suggests variability of brain inflammation at early stages after ischemic stroke. Stroke 2007;38:2733-7.
    8. Anderson SA, Glod J, Arbab AS, Noel M, Ashari P, Fine HA, Frank JA.Noninvasive MR imaging of magnetically labeled stem cells to directly identify neovasculature in a glioma model. Blood 2005;105(1):420-5.
    9. Manninger SP, Muldoon LL, Nesbit G, Murillo T, Jacobs PM, Neuwelt EA. An exploratory study of ferumoxtran-10 nanoparticles as a blood-brain barrier imaging agent targeting phagocytic cells in CNS inflammatory lesions. AJNR Am J Neuroradiol 2005; 26:2290-300.
    10. Chapon C, Franconi F, Lemaire L, Marescaux L, Legras P, Saint-Andre JP, Denizot B, Le Jeune JJ. High field magnetic resonance imaging evaluation of superparamagnetic iron oxide nanoparticles in a permanent rat myocardial infarction. Invest Radiol 2003;38(3):141-6.
    11. von Zur Muhlen C, von Elverfeldt D, Bassler N, Neudorfer I, Steitz B, Petri-Fink A, Hofmann H, Bode C, Peter K. Superparamagnetic iron oxide binding and uptake as imaged by magnetic resonance is mediated by the integrin receptor Mac-1 (CD11b/CD18):implications on imaging of atherosclerotic plaques. Atherosclerosis 2007;193(1):102-11.
    12. Korosoglou G, Weiss RG, Kedziorek DA, Walczak P, Gilson WD, Schar M, Sosnovik DE, Kraitchman DL, Boston RC, Bulte JW, Weissleder R, Stuber M. Noninvasive detection of macrophage-rich atherosclerotic plaque in hyperlipidemic rabbits using "positive contrast" magnetic resonance imaging. J Am Coll Cardiol 20085;52(6):483-91.
    13. Sigovan M, Boussel L, Sulaiman A, Sappey-Marinier D, Alsaid H, Desbleds-Mansard C, Ibarrola D, Gamondes D, Corot C, Lancelot E, Raynaud JS, Vives V, Lacledere C, Violas X, Douek PC, Canet-Soulas E. Rapid-clearance iron nanoparticles for inflammation imaging of atherosclerotic plaque:initial experience in animal model. Radiology 2009;252(2):401-9.
    14. Jordan A, Scholz R, Maier-Hauff K, van Landeghem FK, Waldoefner N,Teichgraeber U, Pinkernelle J, Bruhn H, Neumann F, Thiesen B, von Deimling A,Felix R. The effect of thermotherapy using magnetic nanoparticles on rat malignant glioma. J Neurooncol 2006;78(1):7-14.
    15. Johannsen M, Gneveckow U, Thiesen B, Taymoorian K, Cho CH, Waldofner N, Scholz R, Jordan A, Loening SA, Wust P. Thermotherapy of prostate cancer using magnetic nanoparticles:feasibility, imaging, and three-dimensional temperature distribution. Eur Urol 2007;52(6):1653-61.
    16. Le Renard PE, Buchegger F, Petri-Fink A, Bosman F, Rufenacht D, Hofmann H,Doelker E, Jordan O. Local moderate magnetically induced hyperthermia using an implant formed in situ in a mouse tumor model. Int J Hyperthermia 2009;25(3):229-39.
    17. Le Renard PE, Jordan O, Faes A, Petri-Fink A, Hofmann H, Rufenacht D, Bosman F, Buchegger F, Doelker E. The in vivo performance of magnetic particle-loaded injectable, in situ gelling, carriers for the delivery of local hyperthermia. Biomaterials 2010;31(4):691-705.
    18. Reddy AM, Kwak BK, Shim HJ, Ahn C, Lee HS, Suh YJ, Park ES. In vivo tracking of mesenchymal stem cells labeled with a novel chitosan-coated superparamagnetic iron oxide nanoparticles using 3.0T MRI. J Korean Med Sci 2010;25(2):211-9.
    19. Loebinger MR, Kyrtatos PG, Turmaine M, Price AN, Pankhurst Q, Lythgoe MF, Janes SM. Magnetic resonance imaging of mesenchymal stem cells homing to pulmonary metastases using biocompatible magnetic nanoparticles. Cancer Res 2009;69(23):8862-7.
    20. Rosner MH, Bolton WK. Ferumoxytol for the treatment of anemia in chronic kidney disease. Drugs Today (Barc) 2009;45(11):779-86.
    21. Ferumoxytol:a new intravenous iron preparation for the treatment of iron deficiency anemia in patients with chronic kidney disease. Schwenk MH. Pharmacotherapy 2010;30(1):70-9.
    22. Lubbe AS, Bergemann C, Huhnt W, Fricke T, Riess H, Brock JW, Huhn D. Preclinical experiences with magnetic drug targeting:tolerance and efficacy. Cancer Res 1996;56(20):4694-701.
    23. Lubbe AS, Bergemann C, Riess H, Schriever F, Reichardt P, Possinger K, Matthias M, Dorken B, Herrmann F, Gurtler R, Hohenberger P, Haas N, Sohr R, Sander B, Lemke AJ, Ohlendorf D, Huhnt W, Huhn D. Clinical experiences with magnetic drug targeting:a phase I study with 4'-epidoxorubicin in 14 patients with advanced solid tumors. Cancer Res 1996;56(20):4686-93.
    24. Koda J, Venook A, Walser E, Goodwin S. A multicenter, phase Ⅰ/Ⅱ trial of hepatic intra-arterial delivery of doxorubicin hydrochloride adsorbed to magnetic targeted carriers in patients with hepatocellular carcinoma. Eur J Cancer 2002; 38 (Suppl 7): S18
    25. Veiseh O, Sun C, Fang C, Bhattarai N, Gunn J, Kievit F, Du K, Pullar B, Lee D, Ellenbogen RG, Olson J, Zhang M. Specific targeting of brain tumors with an optical/magnetic resonance imaging nanoprobe across the blood-brain barrier. Cancer Res 2009;69(15):6200-7.
    26. Krotz F, Sohn HY, Gloe T, Plank C, Pohl U. Magnetofection potentiates gene delivery to cultured endothelial cells. J Vasc Res 2003;40(5):425-34.
    27. Krotz F, de Wit C, Sohn HY, Zahler S, Gloe T, Pohl U, Plank C. Magnetofection-a highly efficient tool for antisense oligonucleotide delivery in vitro and in vivo. Mol Ther 2003;7(5 Pt 1):700-10.
    28. Namgung R, Singha K, Yu MK, Jon S, Kim YS, Ahn Y, Park IK, Kim WJ. Hybrid superparamagnetic iron oxide nanoparticle-branched polyethylenimine magnetoplexes for gene transfection of vascular endothelial cells. Biomaterials 2010;31(14):4204-13.
    29. Schluep T, Cooney CL. Purification of plasmids by triplexaffinity interaction. Nucleic Acids Res 1998;26:4524.
    30. Oster J, Parker J, Brassard L. Polyvinyl alcohol-based magnetic beads for rapid and efficient separation of specific or unspecific nucleic acid sequences. Journal of magnetism and magnetic materials 2001;225:145.
    31. Maxwell DJ, Bonde J, Hess DA, Hohm SA, Lahey R, Zhou P, Creer MH. Piwnica-Worms D, Nolta JA. Fluorophore-conjugated iron oxide nanoparticle labeling and analysis of engrafting human hematopoietic stem cells. Stem Cells 2008;26(2):517-24.
    32. Tucker BA, Rahimtula M, Mearow KM. A procedure for selecting and culturing subpopulations of neurons from rat dorsal root ganglia using magnetic beads. Brain Res Brain Res Protoc 2005;16(1-3):50-7.
    33. Kuhara M, Yoshino T, Shiokawa M, Okabe T, Mizoguchi S, Yabuhara A, Takeyama H, Matsunaga T. Magnetic separation of human podocalyxin-like protein 1 (hPCLPl)-positive cells from peripheral blood and umbilical cord blood using anti-hPCLP1 monoclonal antibody and protein A expressed on bacterial magnetic particles. Cell Struct Funct 2009;34(1):23-30.
    34. Lopez CF, Nielsen SO, Moore PB, Klein ML.Understanding nature's design for a nanosyringe. Proc Natl Acad Sci USA 2004;101(13):4431-4.
    35. Kostarelos K, Lacerda L, Pastorin G, Wu W, Wieckowski S, Luangsivilay J, Godefroy S, Pantarotto D, Briand JP, Muller S, Prato M, Bianco A. Cellular uptake of functionalized carbon nanotubes is independent of functional group and cell type. NatNanotechnol 2007;2(2):108-13.
    36. Porter AE, Gass M, Muller K, Skepper JN, Midgley PA, Welland M. Direct imaging of single-walled carbon nanotubes in cells. Nat Nanotechnol 2007;2(11):713-7.
    37. Raynal I, Prigent P, Peyramaure S, Najid A, Rebuzzi C, Corot C. Macrophage endocytosis of superparamagnetic iron oxide nanoparticles:mechanisms and comparison of ferumoxides and ferumoxtran-10. Invest Radiol 2004;39(1):56-63.
    38. Palecanda A, Kobzik L. Receptors for unopsonized particles:the role of alveolar macrophage scavenger receptors.Curr Mol Med 2001;1(5):589-95.
    39. Thakur SA, Hamilton RF Jr, Pikkarainen T, Holian A. Differential binding of inorganic particles to MARCO. Toxicol Sci 2009; 107(1):238-46.
    40. Oh JM, Choi SJ, Kim ST, Choy JH. Cellular uptake mechanism of an inorganic nanovehicle and its drug conjugates:Enhanced efficacy due to clathrin-mediated endocytosis. Bioconjug Chem 2006; 17(6):1411-7.
    41. Lai SK, Hida K, Man ST, Chen C, Machamer C, Schroer TA, Hanes J.Privileged delivery of polymer nanoparticles to the perinuclear region of live cells via a non-clathrin, non-degradative pathway. Biomaterials 2007;28(18):2876-84.
    42. Luhmann T, Rimann M, Bittermann AG, Hall H. Cellular uptake and intracellular pathways of PLL-g-PEG-DNA nanoparticles. Bioconjug Chem 2008; 19(9):1907-16.
    43. Deniger DC, Kolokoltsov AA, Moore AC, Albrecht TB, Davey RA. Targeting and penetration of virus receptor bearing cells by nanoparticles coated with envelope proteins of Moloney murine leukemia virus. Nano Lett 2006;6(11):2414-21.
    44. Walsh M, Tangney M, O'Neill MJ, Larkin JO, Soden DM, McKenna SL, Darcy R, O'Sullivan GC, O'Driscoll CM.Evaluation of cellular uptake and gene transfer efficiency of pegylated poly-L-lysine compacted DNA:implications for cancer gene therapy. Mol Pharm 2006;3(6):644-53.
    45. Chung TH, Wu SH, Yao M, Lu CW, Lin YS, Hung Y, Mou CY, Chen YC, Huang DM. The effect of surface charge on the uptake and biological function of mesoporous silica nanoparticles in 3T3-L1 cells and human mesenchymal stem cells. Biomaterials 2007;28(19):2959-66.
    46. Geiser M, Rothen-Rutishauser B, Kapp N, Schiirch S, Kreyling W, Schulz H, Semmler M, Im Hof V, Heyder J, Gehr P. Ultrafine particles cross cellular membranes by nonphagocytic mechanisms in lungs and in cultured cells. Environ Health Perspect 2005;113(11):1555-60.
    47. Shvedova AA, Castranova V, Kisin ER, et al. Exposure to carbon nanotube material: assessment of nanotube cytotoxicity using human keratinocyte cells. J Toxicol Environ Health A 2003;66 (20):1909-26.
    48. Jia G, Wang H, Yan L, et al. Cytotoxicity of carbon nanomaterials:single wall nanotube, multiwall nanotube, and fullerene. Environ Sci Technol 2005;39(5): 1378-83.
    49. Oberdorster E. Manufactured nanomaterials (fullerenes, C60) induce oxidative stress in the brain of juvenile largemouth bass. Environ Health Perspect 2004; 112(10): 1058-62.
    50. Dick CA, Brown DM, Donaldson K, et al. The role of free radicals in the toxic and inflammatory effects of four different ultrafine particle types. Inhal Toxicol 2003; 15 (1):39-52.
    51. Sayes CM, Gobin AM, Ausman KD, et al. NanoC60 cytotoxicity is due to lipid peroxidation. Biomaterials 2005;26 (36):7587-95.
    52. Cui D, Tian F, Ozkan CS, et al. Effect of single wall carbon nanotubes on human HEK293 cells. ToxicolLett 2005;155(1):73-85.
    53. Libby P. Inflammation in atherosclerosis. Nature 2002;420(6917):868-74.
    54. Boyle JJ.Macrophage activation in atherosclerosis:pathogenesis and pharmacology of plaque rupture. Curr Vasc Pharmacol 2005;3(1):63-8.
    55. Nardin A, Abastado JP. Macrophages and cancer. Front Biosci 2008;13:3494-505.
    56. Iijima S. Helical microtubules of graphitic carbon. Nature 1991;354:56-58.
    57. Iijima S, Ichlhashi T. Single-shell carbon nanotubes of 1-nm diameter. Nature 1993; 363:603-5.
    58. Bethune DS, Kiang CH, de Vries MS, Gorman G, Savoy R, Vazquez J, Beyers R. Cobalt-catalyzed growth of carbon nanotubes with single-atomic-layer walls. Nature 1993;363:605-7.
    59. Portney NG, Ozkan M. Nano-oncology:drug delivery, imaging, and sensing. Anal Bioanal Chem 2006;384(3):620-30.
    60. Venkatesan N, Yoshimitsu J, Ito Y, Shibata N, Takada K. Liquid filled nanoparticles as a drug delivery tool for protein therapeutics. Biomaterials 2005; 26(34):7154-63.
    61. Cui D, Tian F, Kong Y, Titushikin I, Gao H. Effects of single-walled carbon nanotubes on the polymerase chain reaction. Nanotechnology 2004; 15:154-7.
    62. Gao L, Nie L, Wang T, Qin Y, Guo Z, Yang D, Yan X. Carbon nanotube delivery of the GFP gene into mammalian cells. Chembiochem 2006;7(2):239-42.
    63. Malarkey EB, Parpura V.Applications of Carbon Nanotubes in Neurobiology. Neurodegenerative Dis 2007;4:292-9.
    64. Mattson MP, Haddon RC, Rao AM. Molecular functionalization of carbon nanotubes and use as substrates for neuronal growth. J Mol Neurosci 2000;14:175-82.
    65. Hu H, Ni YC, Montana V, Haddon RC, Parpura V. Chemically functionalized carbon nanotubes as substrates for neuronal growth. Nano Lett 2004;4:507-11.
    66. Hu H, Ni YC, Mandal SK, Montana V, Zhao N, Haddon RC, Parpura V. Polyethyleneimine functionalized single-walled carbon nanotubes as a substrate for neuronal growth. J Phys Chem B 2005;109:4285-9.
    67. Ni YC, Hu H, Malarkey EB, Zhao B, Montana V, Haddon RC, Parpura V. Chemically functionalized water soluble single-walled carbon nanotubes modulate neurite outgrowth. J Nanosci Nanotechnol 2005;5:1707-12
    68. Li N, Sioutas C, Cho A, Schmitz D, Misra C, Sempf J, Wang M, Oberley T, Froines J, Nel A. Ultrafine particulate pollutants induce oxidative stress and mitochondrial damage. Environ Health Perspect 2003;111(4):455-60.
    69. Brown DM, Donaldson K, Borm PJ, Schins RP, Dehnhardt M, Gilmour P, Jimenez LA, Stone V. Calcium and ROS-mediated activation of transcription factors and TNF-alpha cytokine gene expression in macrophages exposed to ultrafine particles. Am J Physiol Lung Cell Mol Physiol 2004;286(2):L344-53.
    70. Stone V, Johnston H, Clift MJ. Air pollution, ultrafine and nanoparticle toxicology: cellular and molecular interactions. IEEE Trans Nanobioscience 2007; 6(4):331-40.
    71. Shvedova AA, Kisin ER, Mercer R, Murray AR, Johnson VJ, Potapovich AI, Tyurina YY, Gorelik O, Arepalli S, Schwegler-Berry D, Hubbs AF, Antonini J, Evans DE, Ku BK, Ramsey D, Maynard A, Kagan VE, Castranova V, Baron P.Unusual inflammatory and fibrogenic pulmonary responses to single-walled carbon nanotubes in mice. Am J Physiol Lung Cell Mol Physiol 2005;289(5):L698-708.
    72. Li Z, Hulderman T, Salmen R, Chapman R, Leonard SS, Young SH, Shvedova A, Luster MI, Simeonova PP. Cardiovascular effects of pulmonary exposure to single-wall carbon nanotubes. Environ Health Perspect 2007;115(3):377-82.
    73. Manna SK, Sarkar S, Barr J, Wise K, Barrera EV, Jejelowo O, Rice-Ficht AC, Ramesh GT. Single-Walled Carbon Nanotube Induces Oxidative Stress and Activates Nuclear Transcription Factor-KB in Human Keratinocytes. Nano Lett 2005;5(9):1676-84.
    74. Shieh CC, Coghlan M, Sullivan JP, Gopalakrishnan M. Potassium channels: molecular defects, diseases, and therapeutic opportunities. Pharmacol Rev 2000;52(4):557-94.
    75. Oudit GY, Kassiri Z, Sah R, et al. The molecular physiology of the cardiac transient outward potassium current Ito in normal and diseased myocardium. J Mol Cell Cardiol 2001;33:851-72.
    76. Sah R, Ramirez RJ, Oudit GY, et al. Regulation of cardiac excitation-contraction coupling by action potential repolarization:role of the transient outward potassium current (Ito). J Physiol 2003;546:5-18.
    77. Dun W, Baba S, Yagi T, Boyden PA. Dynamic remodeling of K+ and Ca2+ currents in cells that survived in the epicardial border zone of canine healed infarcted heart. Am J Physiol Heart Circ Physiol 2004; 287(3):H 1046-54.
    78. Osadchii OE. Cardiac hypertrophy induced by sustained beta-adrenoreceptor activation:pathophysiological aspects. Heart Fail Rev 2007; 12(1):66-86.
    79. Monica Gallego, Ernesto Casis, M. Jesus Izquierdo, Oscar Casis. Restoration of cardiac transient outward potassium current by norepinephrine in diabetic rats. Pflugers Archiv European Journal of Physiology 2000; 441(1):102-7.
    80. Sonner PM, Filosa JA, Stern JE. Diminished A-type potassium current and altered firing properties in presympathetic PVN neurones in renovascular hypertensive rats. J Physiol 2008; 586(6):1605-22.
    81. Tseng G..Ikr:The hERG channel. Journal of Molecular and Cellular Cardiology 2001;33(5):835-49.
    82. Lei M, Brown HF, Terrar DA.Modulation of delayed rectifier potassium current, iK, by isoprenaline in rabbit isolated pacemaker cells. Exp Physiol 2000; 85:27-35.
    83. Heath BM, Terrar DA. Protein kinase C enhances the rapidly activating delayed rectifier potassium current, IKr, through a reduction in Ctype inactivation in guineapig ventricular myocytes. Journal of Physiology 2000;522(3):391-402.
    84. Shieh CC, Coghlan M, Sullivan JP, Gopalakrishnan M. Potassium Channels: Molecular Defects, Diseases, and Therapeutic Opportunities. Pharmacol Rev 2000; 52(4):557-93.
    85. Lopatin AN, Nichols CG.Inward rectifiers in the heart:an update on Ik1.J Mol Cell Cardiol 2001; 33:625-638.
    86. Dobrev D, Wettwer E, Kortner A, Knaut M, Schuler S, Ravens U. Human inward rectifier potassium channels in chronic and postoperative atrial fibrillation. Cardiovasc Res 2002;54(2):397-404.
    87. Nattel S. Remodeling of cardiac inward-rectifier currents:an often-overlooked contributor to arrhythmogenic states. J Mol Cell Cardiol 2003;35(12):1395-8.
    88. Zhang S, Chen XJ, Gu C, Zhang Y, Xu JD, Bian ZP, Yang D, Gu N. The effect of iron oxide magnetic nanoparticles on smooth muscle cells. Nanoscale Res Lett 2009; 4:70-7.
    89. Goldstein JL, Anderson RG, Brown MS. Coated pits, coated vesicles, and receptor-mediated endocytosis. Nature 1979; 279(5715):679-85.
    90. Takei K, Haucke V. Clathrin-mediated endocytosis:membrane factors pull the trigger.Trends Cell Biol 2001;11(9):385-91.
    91. Wang LH, Rothberg KG, and Anderson RG. Mis-assembly of clathrin lattices on endosomes reveals a regulatory switch for coated pit formation. J Cell Biol 1993; 123:1107-17.
    92. Elferink JG. Chlorpromazine inhibits phagocytosis and exocytosis in rabbit polymorphonuclear leukocytes. Biochem Pharmacol 1979; 28(7):965-68.
    93. Pelkmans L, Helenius A. Endocytosis via caveolae. Traffic 2002;3(5):311-20.
    94. Lajoie P, Nabi IR. Regulation of raft-dependent endocytosis. J Cell Mol Med 2007;11(4):644-53.
    95. Ferrari A, Pellegrini V, Arcangeli C, Fittipaldi A, Giacca M, Beltram F. Caveolae-mediated internalization of extracellular HIV-1 tat fusion proteins visualized in real time. Mol Ther 2003;8(2):284-94.
    96. Kwik J, Boyle S, Fooksman D, Margolis L, Sheetz MP, Edidin M. Membrane cholesterol, lateral mobility, and the phosphatidylinositol 4,5-bisphosphate-dependent organization of cell actin. Proc Natl Acad Sci USA 2003; 100 (24):13964-9.
    97. Qualmann B, Kessels MM, Kelly RB. Molecular links between endocytosis and the actin cytoskeleton. J Cell Biol 2000; 150(5):F 111-6.
    98. Swanson JA. Shaping cups into phagosomes and macropinosomes. Nat Rev Mol Cell Biol 2008;9(8):639-49.
    99. Jones AT. Macropinocytosis:searching for an endocytic identity and role in the uptake of cell penetrating peptides. J Cell Mol Med 2007;11(4):670-84.
    100. Peetla C, Labhasetwar V.Biophysical characterization of nanoparticle-endothelial model cell membrane interactions. Mol Pharm 2008;5(3):418-29.
    101. Desai MP, Labhasetwar V, Walter E, Levy RJ, Amidon GL.The mechanism of uptake of biodegradable microparticles in Caco-2 cells is size dependent. Pharm Res 1997;14(11):1568-73.
    102. Gao H, Shi W, Freund LB. Mechanics of receptor-mediated endocytosis. Proc Natl Acad Sci USA 2005;102(27):9469-74.
    103. Aoyama Y, Kanamori T, Nakai T, Sasaki T, Horiuchi S, Sando S, Niidome T. Artificial viruses and their application to gene delivery. Size-controlled gene coating with glycocluster nanoparticles. J Am Chem Soc 2003;125(12):3455-7.
    104. Osaki F, Kanamori T, Sando S, Sera T, Aoyama Y. A quantum dot conjugated sugar ball and its cellular uptake. On the size effects of endocytosis in the subviral region. J Am Chem Soc 2004;126(21):6520-1.
    105. Lai SK, Hida K, Man ST, Chen C, Machamer C, Schroer TA, Hanes J. Privileged delivery of polymer nanoparticles to the perinuclear region of live cells via a non-clathrin, non-degradative pathway. Biomaterials 2007;28(18):2876-84.
    106. Lai SK, Hida K, Chen C, Hanes J.Characterization of the intracellular dynamics of a non-degradative pathway accessed by polymer nanoparticles. J Control Release 2008; 125(2):107-11.
    107. Zhang S, Li J, Lykotrafitis G, Bao G, Suresh S. Size-Dependent Endocytosis of Nanoparticles. Adv Mater Deerfield 2009;21:419-424.
    108. Gao H, Shi W, Freund LB. Mechanics of receptor-Mechanics of receptor-mediated endocytosis. Proc Natl Acad Sci USA 2005;102(27):9469-74.
    109. Champion JA, Mitragotri S.Role of target geometry in phagocytosis. Proc Natl Acad Sci USA 2006;103(13):4930-4.
    110. Huang X, Teng X, Chen D, Tang F, He J. The effect of the shape of mesoporous silica nanoparticles on cellular uptake and cell function. Biomaterials 2010;31(3):438-48.
    111. Harush-Frenkel O, Rozentur E, Benita S, Altschuler Y. Surface charge of nanoparticles determines their endocytic and transcytotic pathway in polarized MDCK cells. Biomacromolecules 2008;9(2):435-43.
    112. Foged C, Brodin B, Frokjaer S, Sundblad A. Particle size and surface charge affect particle uptake by human dendritic cells in an in vitro model. Int J Pharm 2005;298(2):315-22.
    113. Harush-Frenkel O, Debotton N, Benita S, Altschuler Y Targeting of nanoparticles to the clathrin-mediated endocytic pathway. Biochem Biophys Res Commun 2007;353(1):26-32.
    114. Billotey C, Wilhelm C, Devaud M, Bacri JC, Bittoun J, Gazeau F. Cell internalization of anionic maghemite nanoparticles:quantitative effect on magnetic resonance imaging. Magn Reson Med 2003;49(4):646-54.
    115. Wilhelm C, Billotey C, Roger J, Pons JN, Bacri JC, Gazeau F. Intracellular uptake of anionic superparamagnetic nanoparticles as a function of their surface coating. Biomaterials 2003;24(6):1001-11.
    116. Wilhelm C, Gazeau F, Bacri JC. Magnetophoresis and ferromagnetic resonance of magnetically labeled cells. Eur Biophys J Biophy 2002;31(2):118-25.
    117. de la Fuente JM, Berry CC.Tat peptide as an efficient molecule to translocate gold nanoparticles into the cell nucleus. Bioconjug Chem 2005;16(5):1176-80.
    118. Tkachenko AG, Xie H, Coleman D, Glomm W, Ryan J, Anderson MF, Franzen S, Feldheim DL. Multifunctional gold nanoparticle-peptide complexes for nuclear targeting. J Am Chem Soc 2003;125(16):4700-1.
    119. Tkachenko AG, Xie H, Franzen S, Feldheim DL. Assembly and characterization of biomolecule-gold nanoparticle conjugates and their use in intracellular imaging. Methods Mol Biol 2005;303:85-99.
    120. Tkachenko AG, Xie H, Liu Y, Coleman D, Ryan J, Glomm WR, Shipton MK, Franzen S, Feldheim DL. Cellular trajectories of peptide-modified gold particle complexes:comparison of nuclear localization signals and peptide transduction domains. Bioconjug Chem 2004;15(3):482-90.
    121. Zauner W, Farrow NA, Haines AM. In vitro uptake of polystyrene microspheres: effect of particle size, cell line and cell density. J Control Release 2001;71(1):39-51.
    122. Alberola AP, Radler JO. The defined presentation of nanoparticles to cells and their surface controlled uptake. Biomaterials 2009;30(22):3766-70.
    123. Luzio JP, Pryor PR, Bright NA. Lysosomes:fusion and function. Nat Rev Mol Cell Biol 2007;8(8):622-32.
    124. Denzer K, Kleijmeer MJ, Heijnen HF, Stoorvogel W, Geuze HJ. Exosome:from internal vesicle of the multivesicular body to intercellular signaling device. J Cell Sci 2000;113 Pt 19:3365-74.
    125. Frank JA, Anderson SA, Kalsih H, Jordan EK, Lewis BK, Yocum GT, Arbab AS. Methods for magnetically labeling stem and other cells for detection by in vivo magnetic resonance imaging. Cytotherapy 2004; 6:621-5.
    126. Arbab AS, Bashaw LA, Miller BR, Jordan EK, Lewis BK, Kalish H, Frank JA. Characterization of biophysical and metabolic properties of cells labeled with superparamagnetic iron oxide nanoparticles and transfection agent for cellular MR imaging. Radiology 2003;229:838-46.
    127. Chithrani BD, Chan WC. Elucidating the mechanism of cellular uptake and removal of protein-coated gold nanoparticles of different sizes and shapes. Nano Lett 2007;7(6):1542-50.
    128. Panyam J, Labhasetwar V. Dynamics of endocytosis and exocytosis of poly (D,L-lactide-co-glycolide) nanoparticles in vascular smooth muscle cells. Pharm Res 2003;20(2):212-20.
    129. Jin H, Heller DA, Strano MS. Single-particle tracking of endocytosis and exocytosis of single-walled carbon nanotubes in NIH-3T3 cells. Nano Lett 2008;8(6):1577-85.
    130. Nel A, Xia T, Madler L, Li N. Toxic potential of materials at the nanolevel. Science 2006;311(5761):622-7.
    131. Pisanic TR 2nd, Blackwell JD, Shubayev VI, Finones RR, Jin S. Nanotoxicity of iron oxide nanoparticle internalization in growing neurons. Biomaterials 2007;28(16):2572-81.
    132. Soenen SJ, Illyes E, Vercauteren D, Braeckmans K, Majer Z, De Smedt SC, DeCuyper M. The role of nanoparticle concentration-dependent induction of cellular stress in the internalization of non-toxic cationic magnetoliposomes. Biomaterials 2009;30(36):6803-13.
    133. Gao L, Zhuang J, Nie L, Zhang J, Zhang Y, Gu N, Wang T, Feng J,Yang D, Perrett S, Yan X. Intrinsic peroxidase-like activity of ferromagnetic nanoparticles. Nat Nanotechnol 2007;2:577-83.
    134. Huang DM, Hsiao JK, Chen YC, Chien LY, Yao M, Chen YK, Ko BS,Hsu SC, Tai LA, Cheng HY, Wang SW, Yang CS, Chen YC. Thepromotion of human mesenchymal stem cell proliferation by superparamagnetic iron oxide nanoparticles. Biomaterials 2009;30:3645-51.
    135. Rouault TA. The role of iron regulatory proteins in mammalian iron homeostasis and disease. Nat Chem Biol 2006;2(8):406-14.
    136. Arosio P, Ingrassia R, Cavadini P. Ferritins:a family of molecules for iron storage, antioxidation and more. Biochim Biophys Acta 2009;1790(7):589-99.
    137. Ganz T. Cellular iron:ferroportin is the only way out. Cell Metab 2005;1(3):155-7.
    138. Park KH, Chhowalla M, Iqbal Z, Sesti F. Single-walled Carbon Nanotubes Are a New Class of Ion Channel Blockers. J Biol Chem 2003;278:50212-6.
    139. Chhowalla M, Unalan HE, Wang Y, Iqbal Z, Park KH, Sesti F. Irreversible blocking of ion channels using functionalized single-walled carbon nanotubes. Nanotechnology 2005;16:2982-6.
    140. Hool LC. Reactive oxygen species in cardiac signalling:from mitochondria to plasma membrane ion channels. Clin Exp Pharmacol Physiol 2006;33(1-2):146-51.
    141. Thannickal VJ, Fanburg BL. Reactive oxygen species in cell signaling. Am J Physiol Lung Cell Mol Physiol 2000;279(6):L 1005-28.
    142. Yuan LL, Adams JP, Swank M, Sweatt JD, and Johnston D. Protein kinase modulation of dendritic K+ channels in hippocampus involves a mitogen-activated protein kinase pathway. J Neurosci 2002;22:4860-8.
    143. Schrader LA, Birnbaum SG, Nadin BM, Ren Y, Bui D, Anderson AE, Sweatt JD.ERK/MAPK regulates the Kv4.2 potassium channel by direct phosphorylation of the pore-forming subunit. Am J Physiol Cell Physiol 2006;290(3):C852-61.
    144. Gutterman DD. Mitochondria and Reactive Oxygen Species:An Evolution in Function. Circ Res 2005;97:302-4.
    145. Droge W, Schipper HM.Oxidative stress and aberrant signaling in aging and cognitive decline. Aging Cell 2007;6(3):361-70.
    146. Grossman E. Does increased oxidative stress cause hypertension? Diabetes Care 2008;31 Suppl 2:S185-9.
    147. Petersen OH, Michalak M, Verkhratsky A. Calcium signalling:Past, present and future. Cell Calcium 2005;38:161-9.
    148. Berridgel MJ, Bootmanl MD, Roderick HL. Calcium signalling:dynamics, homeostasis and remodeling. Nature Reviews Molecular Cell Biology 2003;4: 517-29.
    149. Nakamura T, Coetzee WA, Vega-Sa'enz de Miera E, et al. Modulation of Kv4 channels, key components of rat ventricular transient outward K+ current, by PKC. Am J Physiol 1997;273:H1775-86.
    150. An WF, Bowlby MR, Betty M, Cao J, Ling HP, Mendoza G, Hinson JW, Mattsson KJ, Strassle BW, Trimmer JS, Rhodes KJ. Modulation of A-type potassium channels by a family of calcium sensors. Nature 2000;403(6769):553-6.
    1. Rimai DS, Quesnel DJ, Busnaia AA. The adhesion of dry particles in the nanometer to micrometer-size range. Colloids Surf A:Physicochem Eng Aspects. 2000;165:3-10.
    2. Lopez CF, Nielsen SO, Moore PB, Klein ML.Understanding nature's design for a nanosyringe. Proc Natl Acad Sci USA.2004 Mar 30;101(13):4431-4.
    3. Kostarelos K, Lacerda L, Pastorin G, Wu W, Wieckowski S, Luangsivilay J, Godefroy S, Pantarotto D, Briand JP, Muller S, Prato M, Bianco A. Cellular uptake of functionalized carbon nanotubes is independent of functional group and cell type. Nat Nanotechnol.2007 Feb;2(2):108-13.
    4. Raynal I, Prigent P, Peyramaure S, Najid A, Rebuzzi C, Corot C. Macrophage endocytosis of superparamagnetic iron oxide nanoparticles:mechanisms and comparison of ferumoxides and ferumoxtran-10. Invest Radiol.2004 Jan;39(1):56-63.
    5. Palecanda A, Kobzik L. Receptors for unopsonized particles:the role of alveolar macrophage scavenger receptors.Curr Mol Med.2001 Nov;1(5):589-95.
    6. Arredouani MS, Palecanda A, Koziel H, Huang YC, Imrich A, Sulahian TH, Ning YY, Yang Z, Pikkarainen T, Sankala M, Vargas SO, Takeya M, Tryggvason K, Kobzik L.MARCO is the major binding receptor for unopsonized particles and bacteria on human alveolar macrophages. J Immunol.2005 Nov 1; 175(9):6058-64.
    7. Hamilton RF Jr, Thakur SA, Mayfair JK, Holian A. MARCO mediates silica uptake and toxicity in alveolar macrophages from C57BL/6 mice.J Biol Chem.2006 Nov 10;281(45):34218-26.
    8. Kanno S, Furuyama A, Hirano S.A murine scavenger receptor MARCO recognizes polystyrene nanoparticles. Toxicol Sci.2007 Jun;97(2):398-406.
    9. Thakur SA, Hamilton RF Jr, Pikkarainen T, Holian A. Differential binding of inorganic particles to MARCO. Toxicol Sci.2009 Jan;107(1):238-46.
    10. Oh JM, Choi SJ, Kim ST, Choy JH. Cellular uptake mechanism of an inorganic nanovehicle and its drug conjugates:Enhanced efficacy due to clathrin-mediated endocytosis. Bioconjug Chem.2006 Nov-Dec;17(6):1411-7.
    11. Lai SK, Hida K, Man ST, Chen C, Machamer C, Schroer TA, Hanes J.Privileged delivery of polymer nanoparticles to the perinuclear region of live cells via a non-clathrin, non-degradative pathway. Biomaterials.2007 Jun;28(18):2876-84.
    12. Huang M, Ma Z, Khor E, Lim LY. Uptake of FITC-chitosan nanoparticles by A549 cells. Pharm Res.2002; 19(10):1488-94.
    13. Luhmann T, Rimann M, Bittermann AG, Hall H. Cellular uptake and intracellular pathways of PLL-g-PEG-DNA nanoparticles. Bioconjug Chem.2008; 19 (9): 1907-16.
    14. Deniger DC, Kolokoltsov AA, Moore AC, Albrecht TB, Davey RA. Targeting and penetration of virus receptor bearing cells by nanoparticles coated with envelope proteins of Moloney murine leukemia virus. Nano Lett.2006;6(11):2414-21.
    15. Walsh M, Tangney M, O'Neill MJ, Larkin JO, Soden DM, McKenna SL, Darcy R, O'Sullivan GC, O'Driscoll CM.Evaluation of cellular uptake and gene transfer efficiency of pegylated poly-L-lysine compacted DNA:implications for cancer gene therapy. Mol Pharm.2006;3(6):644-53.
    16. Qaddoumi MG, Gukasyan HJ, Davda J, Labhasetwar V, Kim KJ, Lee VH. Clathrin and caveolin-1 expression in primary pigmented rabbit conjunctival epithelial cells: role in PLGA nanoparticle endocytosis. Mol Vis.2003;9:559-68.
    17. Chung TH, Wu SH, Yao M, Lu CW, Lin YS, Hung Y, Mou CY, Chen YC, Huang DM. The effect of surface charge on the uptake and biological function of mesoporous silica nanoparticles in 3T3-L1 cells and human mesenchymal stem cells. Biomaterials. 2007;28(19):2959-66.
    18. Geiser M, Rothen-Rutishauser B, Kapp N, Schurch S, Kreyling W, Schulz H, Semmler M, Im Hof V, Heyder J, Gehr P. Ultrafine particles cross cellular membranes by nonphagocytic mechanisms in lungs and in cultured cells. Environ Health Perspect.2005;113(11):1555-60.
    19. Peetla C, Labhasetwar V.Biophysical characterization of nanoparticle-endothelial model cell membrane interactions. Mol Pharm.2008;5(3):418-29.
    20. Desai MP, Labhasetwar V, Walter E, Levy RJ, Amidon GL.The mechanism of uptake of biodegradable microparticles in Caco-2 cells is size dependent. Pharm Res. 1997;14(11):1568-73.
    21. Gao H, Shi W, Freund LB. Mechanics of receptor-mediated endocytosis. Proc Natl Acad Sci USA.2005;102(27):9469-74.
    22. Aoyama Y, Kanamori T, Nakai T, Sasaki T, Horiuchi S, Sando S, Niidome T. Artificial viruses and their application to gene delivery. Size-controlled gene coating with glycocluster nanoparticles. J Am Chem Soc.2003; 125(12):3455-7.
    23. Osaki F, Kanamori T, Sando S, Sera T, Aoyama Y. A quantum dot conjugated sugar ball and its cellular uptake. On the size effects of endocytosis in the subviral region. J Am Chem Soc.2004;126(21):6520-1.
    24. Lai SK, Hida K, Man ST, Chen C, Machamer C, Schroer TA, Hanes J. Privileged delivery of polymer nanoparticles to the perinuclear region of live cells via a non-clathrin, non-degradative pathway. Biomaterials.2007;28(18):2876-84.
    25. Lai SK, Hida K, Chen C, Hanes J.Characterization of the intracellular dynamics of a non-degradative pathway accessed by polymer nanoparticles. J Control Release. 2008;125(2):107-11.
    26. Champion JA, Mitragotri S.Role of target geometry in phagocytosis. Proc Natl Acad Sci USA.2006;103(13):4930-4.
    27. Harush-Frenkel O, Rozentur E, Benita S, Altschuler Y. Surface charge of nanoparticles determines their endocytic and transcytotic pathway in polarized MDCK cells. Biomacromolecules.2008;9(2):435-43.
    28. Foged C, Brodin B, Frokjaer S, Sundblad A. Particle size and surface charge affect particle uptake by human dendritic cells in an in vitro model. Int J Pharm. 2005;298(2):315-22.
    29. Harush-Frenkel O, Debotton N, Benita S, Altschuler Y.Targeting of nanoparticles to the clathrin-mediated endocytic pathway. Biochem Biophys Res Commun. 2007;353(1):26-32.
    30. de la Fuente JM, Berry CC.Tat peptide as an efficient molecule to translocate gold nanoparticles into the cell nucleus. Bioconjug Chem.2005; 16(5):1176-80.
    31. Tkachenko AG, Xie H, Coleman D, Glomm W, Ryan J, Anderson MF, Franzen S, Feldheim DL. Multifunctional gold nanoparticle-peptide complexes for nuclear targeting. J Am Chem Soc.2003;125(16):4700-1.
    32. Tkachenko AG, Xie H, Franzen S, Feldheim DL. Assembly and characterization of biomolecule-gold nanoparticle conjugates and their use in intracellular imaging. Methods Mol Biol.2005;303:85-99.
    33. Tkachenko AG, Xie H, Liu Y, Coleman D, Ryan J, Glomm WR, Shipton MK, Franzen S, Feldheim DL. Cellular trajectories of peptide-modified gold particle complexes:comparison of nuclear localization signals and peptide transduction domains. Bioconjug Chem.2004 May-Jun;15(3):482-90.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700