毒死蜱胁迫下斑马鱼胚胎蛋白质组的差异表达
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
毒死蜱是目前世界上生产和销售量最大的有机磷杀虫剂之一,随着我国经济发展对粮食需求量的增加,粮食和经济作物的多种病害并存以及农药残留量的增加使病虫害的抗药性迅速增加,迫使农民越来越多地使用农药,同时,随着一些高毒的有机磷农药被禁止生产和使用,毒死蜱等中低毒有机磷农药被大量的使用。由毒死蜱引发的人和动物所产生的多种毒性反应已引起人们的广泛关注。
     本论文选用斑马鱼这一新型的毒理模式动物,研究了毒死蜱对斑马鱼胚胎的急性毒理,在表型上观察了毒死蜱对斑马鱼胚胎发育的影响,结果显示:毒死蜱能引起很多的毒理学终点:如动物极破裂,细胞分裂不规律,外包不完全,脊柱弯曲,黑色素不全,卵黄囊病,卵凝结,尾部不分离,心率降低,孵化率降低等。同时统计了孵化率、心率、畸形等与毒死蜱浓度的相关性。为毒死蜱的合理使用提供了科学依据。
     借助双向电泳、质谱分析等蛋白质组学分析方法,构建斑马鱼胚胎的蛋白质表达谱。利用Imagemaster 2D Elite 6.01分析软件,分析得到在250ppm浓度的毒死蜱胁迫下,24hpf斑马鱼胚胎产生的19个差异蛋白质,这些差异蛋白都是体积百分比变化均大于2倍甚至3倍,且符合t检验(p<0.05)的显著差异蛋白点。
     通过基质辅助激光解析电离飞行时间质谱技术(MALDI-TOF-MS)获得了这些差异蛋白质的肽质量指纹图谱(PMF),并通过对斑马鱼蛋白数据库检索,初步鉴定得到4个差异蛋白,其中,下调表达蛋白三种,分别是:神经调节蛋白2b (neuregulin 2b)、肌节同源盒C(muscle segment homeobox C)、B细胞受体结合蛋白(B-cell receptor-associated protein 31);上调表达蛋白一种:酪蛋白激酶1α1-like (CSNK1A1L - casein kinase 1, alpha 1-like)。通过这些初步的质谱鉴定结果,首先我们验证了毒死蜱的传统毒理机制,即:毒死蜱对神经具有明显的毒理作用。揭示了毒死蜱能影响细胞的发育及凋亡、胞内蛋白运输、转录调控、信号转导等,使我们对毒死蜱的毒理学有了进一步的了解。在毒死蜱胁迫下,斑马鱼还能开启部分磷酸化依赖的信号通路,通过体内自我的调节以应对外来有毒物质的入侵。
     综上所述,本论文对毒死蜱的毒理学在表型和分子水平上进行了综合研究,深入分析了毒死蜱的毒理学机制,揭示了毒死蜱的几种新的毒理可能靶标分子。本研究结果为进一步揭示毒死蜱的毒理代谢网络,探究毒死蜱毒理作用的机制,为减少毒死蜱对动物的毒理作用及其合理使用提供科学依据和技术支持。
Chlorpyrifos is one of the largest production and sales of organophosphorus pesticide in the world.With the economic development and increasing demands for food, the resistance of pests is increasing rapidly for increase of pesticide residues,which forces farmers to use more pesticides. Meanwhile, some high toxic organophosphate pesticides are prohibited, while chlorpyrifos and other organophosphate pesticides of low toxicity have been widely used. People began to concern human and animal toxicity caused by the chlorpyrifos.
     Zebrafish ,a new model animal, was used in this paper. We studied the acute toxicity of chlorpyrifos on zebrafish embryos. Phenotype of zebrafish embryos treated by chlorpyrifos showed that: chlorpyrifos can cause a lot of toxicological endpoints, for example, animal pole broken, irregular cell division, curvature of the spine, melanin incompleted, yolk sac disease, egg condensation, no separation of the tail, heart rate decreased, and low hatchability. We also analyzed the hatching rate, heart rate, malformations associated with different chlorpyrifos concentrations. We provided a scientific basis for the rational use of chlorpyrifos.
     In addition, by means of two-dimensional electrophoresis, mass spectrometry and other proteomic methods to construct zebrafish embryo protein expression profile in different periods. Under the stress of chlorpyrifos (250ppm) , we found 19 differentially expressed proteins of 24hpf zebrafish embryos. These proteins were of significant difference of protein spot and the percentage of volume change more than 2 times,sometimes up to 3 times, according to the T-test (p <0.05).
     Through matrix-assisted laser desorption ionization time of flight mass spectrometry (MALDI-TOF-MS), we got these specific-expressed protein mass fingerprintings (PMFs). And through the zebrafish protein database, initially identified 4 differential-expressed proteins,3 down-regulated proteins:neuregulin 2b,muscle segment homeobox C,B-cell receptor-associated protein 31,and 1 up-regulated proteins: CSNK1A1L - casein kinase 1, alpha 1-like. We first verified the traditional toxicological mechanism of chlorpyrifos: It can cause significant toxicological effects on the nerves. We also revealed chlorpyrifos can affect cell development and apoptosis, intracellular protein transport, transcriptional regulation, signal transduction,ect. Make us have a better understanding to the toxicology of chlorpyrifos. Besides, zebrafish can also open some phosphorylation-dependent signaling pathway, through self-regulation in response to foreign toxicity invasion.
     In summary, we have made a comprehensive study on the toxicology of chlorpyrifos at the phenotypic and molecular level, analysed the toxicological mechanism of chlorpyrifos and revealed several new targets for molecular toxicology, The results further uncovered the toxicity of chlorpyrifos metabolic networks, explored the mechanism of toxicity of chlorpyrifos and provided a scientific basis and technical support to reduce the toxicity of chlorpyrifos on the animal and its rational use.
引文
1.黄文思. 8种中低毒有机磷杀虫剂使用注意事项.科学种养.2008(10).-51-52.
    2.梁丹涛,沈根祥.δ-六六六在斑马鱼体内的生物富集情况研究.农业环境科学学报.2007,26(B10).-509-513.
    3.廖翔,应天翼.考马斯亮蓝染色双向电泳凝胶胶内酶切方法的改进.生物技术通讯.2003,14(6).-509-511.
    4.林玲,王玉柱.邻苯二甲酸二丁酯对斑马鱼胚胎发育毒性的研究.卫生研究.2008,37(3).-278-280.
    5.刘喜平,熊丽.氯氰菊酯急性暴露对斑马鱼钙调磷酸酶信号的调节.化学与生物工程.2007,24(6).-45-47.
    6.孟慧,段翠芳.植物蛋白质组学研究概况.热带农业科学.2006,26(2).-60-64,82.
    7.孟昭璐,刘皓慈.阿特拉津对斑马鱼影响的研究.职业与健康.2008,24(3).-205-208.
    8.王会平,伍一军.毒死蜱的神经毒性作用及机制.环境与职业医学.2008,25(3).-314-318.
    9.王晓光,李海屏.我国高毒有机磷农药替代品种开发进展.农药.2001,40(2).-10-13.
    10.曾嵘,夏其昌.蛋白质组学研究进展与趋势.中国科学院院刊.2002,17(3).-166-169.
    11.郑光,周志俊.毒死蜱的毒理学研究进展.中国公共卫生.2002,18(4).-496-498.
    12.周炳,赵美蓉. 4种农药对斑马鱼胚胎的毒理研究.浙江工业大学学报.2008,36(2).-136-140.
    13.周宇,于红霞.氯代苯类有机污染物对斑马鱼胚胎联合毒性效应的研究.农业环境科学学报.2003,22(3).-340-344.
    14. Aldridge, J. E., E. D. Levin, et al. (2005). Developmental exposure of rats to chlorpyrifos leads to behavioral alterations in adulthood, involving serotonergic mechanisms and resembling animal models of depression. Environ Health Perspect 113(5): 527-31.
    15. Amitai, G., D. Moorad, et al. (1998). Inhibition of acetylcholinesterase and butyrylcholinesterase by chlorpyrifos-oxon. Biochem Pharmacol 56(3): 293-9.
    16. Blader, P., N. Fischer, et al. (1997). The activity of neurogenin1 is controlled by local cues in the zebrafish embryo. Development 124(22): 4557-69.
    17. Blader, P., C. Plessy, et al. (2003). Multiple regulatory elements with spatially and temporally distinct activities control neurogenin1 expression in primary neurons of the zebrafish embryo. Mech Dev 120(2): 211-8.
    18. Chang, H., D. J. Riese, 2nd, et al. (1997). Ligands for ErbB-family receptors encoded by a neuregulin-like gene. Nature 387(6632): 509-12.
    19. Chen, P., J. Y. Xie, et al. (2000). Identification of Protein Spots in Silver-stained Two-dimensional Gels by MALDI-TOF Mass Peptide Map Analysis. Sheng Wu Hua Xue Yu Sheng Wu Wu Li Xue Bao (Shanghai) 32(4): 387-391.
    20. Craig, P. M., C. Hogstrand, et al. (2009). Gene expression endpoints following chronic waterborne copper exposure in a genomic model organism, the zebrafish, Danio rerio. Physiol Genomics 40(1): 23-33.
    21. D'Alessio, M. and M. Frasch (1996). msh may play a conserved role in dorsoventral patterning of the neuroectoderm and mesoderm. Mech Dev 58(1-2): 217-31.
    22. De Wit, M., D. Keil, et al. (2008). Molecular targets of TBBPA in zebrafish analysed through integration of genomic and proteomic approaches. Chemosphere 74(1): 96-105.
    23. DeRisi, J., L. Penland, et al. (1996). Use of a cDNA microarray to analyse gene expression patterns in human cancer. Nat Genet 14(4): 457-60.
    24. DeRisi, J. L., V. R. Iyer, et al. (1997). Exploring the metabolic and genetic control of gene expression on a genomic scale. Science 278(5338): 680-6.
    25. Eaton, J. G., J. M. McKim, et al. (1978). Metal toxicity to embryos and larvae of seven freshwater fish species--I. Cadmium. Bull Environ Contam Toxicol 19(1): 95-103.
    26. Eisen, M. B., P. T. Spellman, et al. (1998). Cluster analysis and display of genome-wide expression patterns. Proc Natl Acad Sci U S A 95(25): 14863-8.
    27. Fountoulakis, M., P. Berndt, et al. (2000). Two-dimensional database of mouse liver proteins: changes in hepatic protein levels following treatment with acetaminophen or its nontoxic regioisomer 3-acetamidophenol. Electrophoresis 21(11): 2148-61.
    28. Garcia, S. J., F. J. Seidler, et al. (2002). Chlorpyrifos targets developing glia: effects on glial fibrillary acidic protein. Brain Res Dev Brain Res 133(2): 151-61.
    29. Garcia, S. J., F. J. Seidler, et al. (2003). Developmental neurotoxicity elicited by prenatal or postnatal chlorpyrifos exposure: effects on neurospecific proteins indicate changing vulnerabilities. Environ Health Perspect 111(3): 297-303.
    30. Gurvich, N., M. G. Berman, et al. (2005). Association of valproate-induced teratogenesis with histone deacetylase inhibition in vivo. FASEB J 19(9): 1166-8.
    31. Hallare, A., K. Nagel, et al. (2006). Comparative embryotoxicity and proteotoxicity of three carrier solvents to zebrafish (Danio rerio) embryos. Ecotoxicol Environ Saf 63(3): 378-88.
    32. Hallare, A. V., H. R. Kohler, et al. (2004). Developmental toxicity and stress protein responses in zebrafish embryos after exposure to diclofenac and its solvent, DMSO. Chemosphere 56(7): 659-66.
    33. Halloran, M. C., M. Sato-Maeda, et al. (2000). Laser-induced gene expression in specific cells of transgenic zebrafish. Development 127(9): 1953-60.
    34. Heasman, J. (2002). Morpholino oligos: making sense of antisense? Dev Biol 243(2): 209-14.
    35. Higashijima, S., Y. Hotta, et al. (2000). Visualization of cranial motor neurons in live transgenic zebrafish expressing green fluorescent protein under the control of the islet-1 promoter/enhancer. J Neurosci 20(1): 206-18.
    36. Hill, A. J., H. Teraoka, et al. (2005). Zebrafish as a model vertebrate for investigating chemical toxicity. Toxicol Sci 86(1): 6-19.
    37. Hisaoka, K. K. (1958). The effects of 2-acetylaminofluorene on the embryonic development of the zebrafish. II. Histochemical studies. Cancer Res 18(6): 664-7.
    38. Holder, N. and Q. Xu (1999). Microinjection of DNA, RNA, and protein into the fertilized zebrafish egg for analysis of gene function. Methods Mol Biol 97: 487-90.
    39. Honjo, Y., J. Kniss, et al. (2008). Neuregulin-mediated ErbB3 signaling is required for formation of zebrafish dorsal root ganglion neurons. Development 135(15): 2615-25.
    40. Kaji, H., T. Tsuji, et al. (2000). Profiling of Caenorhabditis elegans proteins using two-dimensional gel electrophoresis and matrix assisted laser desorption/ionization-time of flight-mass spectrometry. Electrophoresis 21(9): 1755-65.
    41. Karanth, S., J. Liu, et al. (2006). Effects of acute chlorpyrifos exposure on in vivo acetylcholine accumulation in rat striatum. Toxicol Appl Pharmacol 216(1): 150-6.
    42. Kaushik, R., C. A. Rosenfeld, et al. (2007). Concentration-dependent interactions of the organophosphates chlorpyrifos oxon and methyl paraoxon with human recombinant acetylcholinesterase. Toxicol Appl Pharmacol 221(2): 243-50.
    43. Kimmel, C. B. (1989). Genetics and early development of zebrafish. Trends Genet 5(8): 283-8.
    44. Kimmel, C. B., W. W. Ballard, et al. (1995). Stages of embryonic development of the zebrafish. Dev Dyn 203(3): 253-310.
    45. Krone, P. H., Z. Lele, et al. (1997). Heat shock genes and the heat shock response in zebrafish embryos. Biochem Cell Biol 75(5): 487-97.
    46. Kumar, K. and B. A. Ansari (1986). Malathion toxicity: effect on the liver of the fish Brachydanio rerio (Cyprinidae). Ecotoxicol Environ Saf 12(3): 199-205.
    47. Laale, H. W. (1977). Culture and preliminary observations of follicular isolates from adult zebra fish, Brachydanio rerio. Can J Zool 55(2): 304-9.
    48. Labrot, F., J. F. Narbonne, et al. (1999). Acute toxicity, toxicokinetics, and tissue target of lead and uranium in the clam Corbicula fluminea and the worm Eisenia fetida: comparison with the fish Brachydanio rerio. Arch Environ Contam Toxicol 36(2): 167-78.
    49. Lanzky, P. F. and B. Halling-Sorensen (1997). The toxic effect of the antibiotic metronidazole on aquatic organisms. Chemosphere 35(11): 2553-61.
    50. Levin, E. D., N. Addy, et al. (2002). Prenatal chlorpyrifos exposure in rats causes persistent behavioral alterations. Neurotoxicol Teratol 24(6): 733-41.
    51. Li, Q., M. Kobayashi, et al. (2009). Chlorpyrifos induces apoptosis in human T cells. Toxicology 255(1-2): 53-7.
    52. Link, V., A. Shevchenko, et al. (2006). Proteomics of early zebrafish embryos. BMC Dev Biol 6: 1.
    53. Linney, E., L. Upchurch, et al. (2004). Zebrafish as a neurotoxicological model. Neurotoxicol Teratol 26(6): 709-18.
    54. Lockhart, D. J., H. Dong, et al. (1996). Expression monitoring by hybridization tohigh-density oligonucleotide arrays. Nat Biotechnol 14(13): 1675-80.
    55. Lockhart, D. J. and E. A. Winzeler (2000). Genomics, gene expression and DNA arrays. Nature 405(6788): 827-36.
    56. Mendelsohn, B. A., B. L. Kassebaum, et al. (2008). The zebrafish embryo as a dynamic model of anoxia tolerance. Dev Dyn 237(7): 1780-8.
    57. Meuling, W. J., L. C. Ravensberg, et al. (2005). Dermal absorption of chlorpyrifos in human volunteers. Int Arch Occup Environ Health 78(1): 44-50.
    58. Nasevicius, A. and S. C. Ekker (2000). Effective targeted gene 'knockdown' in zebrafish. Nat Genet 26(2): 216-20.
    59. Nasevicius, A. and S. C. Ekker (2001). The zebrafish as a novel system for functional genomics and therapeutic development applications. Curr Opin Mol Ther 3(3): 224-8.
    60. Oxtoby, A., A. Jones, et al. (1989). Is your 'double-blind' design truly double-blind? Br J Psychiatry 155: 700-1.
    61. Rasmussen, H. H., E. Mortz, et al. (1994). Identification of transformation sensitive proteins recorded in human two-dimensional gel protein databases by mass spectrometric peptide mapping alone and in combination with microsequencing. Electrophoresis 15(3-4): 406-16.
    62. Rauh, V. A., R. Garfinkel, et al. (2006). Impact of prenatal chlorpyrifos exposure on neurodevelopment in the first 3 years of life among inner-city children. Pediatrics 118(6): e1845-59.
    63. Roche, H., G. Boge, et al. (1994). Acute and chronic toxicities of colchicine in Brachydanio rerio. Bull Environ Contam Toxicol 52(1): 69-73.
    64. Salazar-Arredondo, E., M. de Jesus Solis-Heredia, et al. (2008). Sperm chromatin alteration and DNA damage by methyl-parathion, chlorpyrifos and diazinon and their oxon metabolites in human spermatozoa. Reprod Toxicol 25(4): 455-60.
    65. Schardein, J. L. and A. R. Scialli (1999). The legislation of toxicologic safety factors: the Food Quality Protection Act with chlorpyrifos as a test case. Reprod Toxicol 13(1): 1-14.
    66. Schena, M., D. Shalon, et al. (1995). Quantitative monitoring of gene expression patterns with a complementary DNA microarray. Science 270(5235): 467-70.
    67. Shaw, A. C., M. Rossel Larsen, et al. (1999). Mapping and identification of interferon gamma-regulated HeLa cell proteins separated by immobilized pH gradient two-dimensional gel electrophoresis. Electrophoresis 20(4-5): 984-93.
    68. Sherman, J. D. (1996). Chlorpyrifos (Dursban)-associated birth defects: report of four cases. Arch Environ Health 51(1): 5-8.
    69. Shevchenko, A., O. N. Jensen, et al. (1996). Linking genome and proteome by mass spectrometry: large-scale identification of yeast proteins from two dimensional gels. Proc Natl Acad Sci U S A 93(25): 14440-5.
    70. Shi, X., L. W. Yeung, et al. (2009). Protein profiles in zebrafish (Danio rerio) embryos exposed to perfluorooctane sulfonate. Toxicol Sci 110(2): 334-40.
    71. Skidmore, J. F. (1965). Resistance to zinc sulphate of the zebrafish (Brachydanio rerio Hamilton-Buchanan) at different phases of its life history. Ann Appl Biol 56(1): 47-53.
    72. Spellman, P. T., G. Sherlock, et al. (1998). Comprehensive identification of cell cycle-regulated genes of the yeast Saccharomyces cerevisiae by microarray hybridization. Mol Biol Cell 9(12): 3273-97.
    73. Spitsbergen, J. M. and M. L. Kent (2003). The state of the art of the zebrafish model for toxicology and toxicologic pathology research--advantages and current limitations. Toxicol Pathol 31 Suppl: 62-87.
    74. Sultatos, L. G. (2007). Concentration-dependent binding of chlorpyrifos oxon to acetylcholinesterase. Toxicol Sci 100(1): 128-35.
    75. Summerton, J., D. Stein, et al. (1997). Morpholino and phosphorothioate antisense oligomers compared in cell-free and in-cell systems. Antisense Nucleic Acid Drug Dev 7(2): 63-70.
    76. Summerton, J. and D. Weller (1997). Morpholino antisense oligomers: design, preparation, and properties. Antisense Nucleic Acid Drug Dev 7(3): 187-95.
    77. Teraoka, H., W. Dong, et al. (2003). Zebrafish as a novel experimental model for developmental toxicology. Congenit Anom (Kyoto) 43(2): 123-32.
    78. Villeneuve, L., R. L. Wang, et al. (2009). Altered gene expression in the brain and ovaries of zebrafish (Danio rerio) exposed to the aromatase inhibitor fadrozole: microarray analysis and hypothesis generation. Environ Toxicol Chem 28(8): 1767-82.
    79. Westerfield, O. (1995). A prescription for hospital safety: treating workplace violence. Healthc Facil Manag Ser: 1-8.
    80. Xu, G., Y. Li, et al. (2007). Mineralization of chlorpyrifos by co-culture of Serratia and Trichosporon spp. Biotechnol Lett 29(10): 1469-73.
    81. Xu, G., W. Zheng, et al. (2008). Biodegradation of chlorpyrifos and 3,5,6-trichloro-2-pyridinol by a newly isolated Paracoccus sp. strain TRP. International Biodeterioration & Biodegradation 62(1): 51-56.
    82. Zok, S., G. Gorge, et al. (1991). Bioconcentration, metabolism and toxicity of substituted anilines in the zebrafish (Brachydanio rerio). Sci Total Environ 109-110: 411-21.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700