LPA_2调控LPA诱导的卵巢癌细胞uPA分泌和细胞侵袭的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究背景
     卵巢癌是死亡率最高的妇科恶性肿瘤。由于缺乏有效的早期筛查手段,2/3以上的卵巢癌患者就诊时已届晚期,其5年生存率仅为20%~30%,而早期卵巢癌患者的5年生存率可达90%。卵巢癌发病隐匿,进展迅速,虽然近20年来在卵巢癌治疗方面取得了长足进展,卵巢癌手术技巧不断提高,新型化疗药物、化疗方案亦陆续投入临床使用,但这些传统的治疗手段均未能显著改善患者的长期生存率。局部浸润与转移是关系到卵巢癌临床治疗成败的关键,而侵袭转移又是一个多步骤、多因素参与的极其复杂的过程。因此研究卵巢癌侵袭转移机制及主要调控因素意义重大,可以为临床治疗提供新思路和分子治疗的靶点。
     溶血磷脂酸(Lysophosphatidic acid,LPA)是新近发现的具有生长因子样作用的脂类小分子物质,主要通过与其特异性G蛋白偶联受体结合发挥多种生物学作用,诱导多种细胞发生增生性和形态学改变。许多晚期肿瘤患者的腹水中都可检测到高水平的LPA。在卵巢癌,研究显示LPA不仅存在于晚期患者的腹水,在早期患者的血浆中也可检测到LPA水平升高,且其特异性和敏感性明显高于CA125。近年发现LPA及其受体信号通路在许多恶性肿瘤的发生、发展、侵袭和转移过程中发挥重要作用,如甲状腺癌、胰腺癌、胃癌、结直肠癌、卵巢癌等。现已知的LPA受体有5种,LPA_1/EDG2、LPA_2/EDG4、LPA_3/EDG7,以及最近识别的LPA_4/GPR23/p2y9和LPA_5/PPARγ。LPA通过与这些受体结合刺激肿瘤细胞的增殖、黏附、侵袭、迁移及侵袭相关细胞因子的分泌。体外研究显示:LPA_1在正常和永生化的卵巢表面上皮细胞中高表达,而LPA_2/EDG4,LPA_3/EDG7在卵巢癌组织和癌细胞系中高表达,提示LPA受体有望成为卵巢癌治疗的新靶点。
     尿激酶型纤溶酶原激活剂(urokinase plasminogen activator,uPA)是降解细胞外基质(extracellular matrix,ECM)最重要的酶类之一,它在肿瘤细胞侵袭和转移中的作用已被证实。uPA与卵巢、乳腺和结肠细胞的恶性转化有关。在卵巢癌,细胞内uPA的水平与卵巢癌的预后呈负相关。与其他癌症相比,uPA在卵巢癌组织和腹水中明显的高表达。
     uPA既可通过催化纤溶酶原转化成纤溶酶导致基底膜的降解,从而加速癌细胞的侵袭和转移,也可通过与其特异性受体(urokinase plasminogen activatorreceptor,uPAR)结合刺激细胞的迁移和增殖。研究显示:LPA能够上调卵巢癌细胞uPA的分泌而不影响uPAR的表达,抑制uPA蛋白表达可以明显降低LPA诱导的卵巢癌细胞的侵袭,因此针对LPA及其与uPA关系的研究将有助于我们更好的了解LPA在卵巢癌侵袭、转移中的作用。
     RNA干扰技术作为生物学领域的一种全新的技术,越来越受到广大研究者的重视并在肿瘤基因治疗中有着巨大的发展潜力。选择对肿瘤有治疗作用的靶基因是利用RNA干扰技术进行基因治疗的关键所在。在LPA诱导的肿瘤细胞侵袭转移的研究中发现,尽管其他受体也起作用,但LPA受体2(LPA_2)在LPA诱导的侵袭相关因子的分泌中起关键作用。故本研究选择LPA_2作为RNA干扰基因治疗的靶点。
     基于以上报道,本研究首先观察LPA对人卵巢癌SKOV-3细胞uPA蛋白分泌和细胞侵袭能力的影响;其次,通过脂质体介导法将针对LPA_2的小干扰RNA转染人卵巢癌SKOV-3细胞,观察转染后卵巢癌SKOV-3细胞中LPA_2 mRNA和蛋白的表达情况;同时研究LPA_2受体抑制后对LPA诱导的uPA蛋白分泌、细胞侵袭和迁移能力的影响,探讨LPA_2受体在LPA诱导的卵巢癌侵袭转移中的作用。
     第一部分溶血磷脂酸对卵巢癌SKOV-3细胞uPA分泌的影响
     目的:研究发现,在卵巢癌患者的血浆和腹水中LPA的水平明显升高,且其水平与卵巢癌的生物学行为有一定的相关性。本研究旨在探讨溶血磷脂酸(lysophosphatidic acid,LPA)对人卵巢癌SKOV-3细胞尿激酶型纤溶酶原激活剂(uPA)分泌和细胞侵袭能力的影响。
     方法:
     1.常规培养的人卵巢癌SKOV-3细胞,加入不同浓度的LPA(0、2、20、40、80μmol/L)作用24小时后,收集细胞上清液,采用酶联免疫吸附试验(ELISA)检测溶血磷脂酸作用后,人卵巢癌SKOV-3细胞上清液中uPA蛋白的表达。
     2.常规培养的人卵巢癌SKOV-3细胞,加入80μmol/L LPA,作用0、3、8、12、24小时后,收集细胞上清液,采用酶联免疫吸附试验(ELISA)检测溶血磷脂酸作用后,人卵巢癌SKOV-3细胞上清液中uPA蛋白的表达。
     3.常规培养的人卵巢癌SKOV-3细胞,加入0或80μmol/L LPA后,利用Matrigel Transwell小室法检测LPA对SKOV-3细胞体外侵袭能力的影响。
     结果:
     1.加入不同浓度的LPA,作用24小时后,2μmol/L LPA即可引起uPA分泌增加,但与对照相比无明显的统计学差异(P>0.05);而加入20、40、80μmol/LLPA后,uPA蛋白分泌量明显增加(P<0.001)。
     2.加入80μmol/L LPA,作用不同时间后,与对照相比,8小时后LPA诱导的uPA产量即明显增加(P<0.01)。
     3.Matrigel Transwell小室检测80μmol/L LPA作用后,穿透人工基底膜的SKOV-3细胞数较无LPA作用的对照组明显增多(219.4±23.6 vs.67±10.9)(P<0.001)。
     结论:
     1.低浓度的LPA即可诱导uPA分泌增加,且随着LPA浓度的加大,uPA产量明显增多;二者间呈现明显的浓度依赖性。
     2.相同浓度LPA作用于SKOV-3细胞,随着时间的延长uPA分泌量增多,二者间呈现明显的时间依赖性。
     3.LPA可以明显增加SKOV-3细胞的体外侵袭能力。
     第二部分siRNA沉默LPA_2基因对LPA诱导的卵巢癌SKOV-3细胞uPA产量和细胞侵袭的影响
     目的:运用RNA干扰技术抑制卵巢癌SKOV-3细胞中LPA_2基因的表达,观察LPA_2基因沉默对LPA诱导的uPA产量和细胞侵袭、迁移能力的影响,探讨RNA干扰技术在抗肿瘤基因治疗方面的应用前景以及沉默LPA_2基因作为卵巢肿瘤治疗靶点的可能性。
     方法:
     1.复苏、培养卵巢癌细胞株SKOV-3至对数生长期,将实验分成三组,即正常对照组、阴性对照组和干扰组。
     2.经脂质体介导将不同浓度梯度的siRNA转染至SKOV-3细胞中,观察转染效果,筛选出最佳转染浓度。
     3.将特异性siRNA及阴性对照siRNA分别转染至干扰组和阴性对照组,正常对照组未作任何siRNA的转染,仅加转染液。
     4.转染36小时后采用半定量RT-PCR和Western blot检测LPA_2 mRNA和蛋白的表达情况。
     5.采用酶联免疫吸附实验(ELISA)检测干扰前、后LPA诱导的uPA产量的变化,采用Matrigel Transwell小室法和Transwell Chemotaxis实验检测干扰后LPA对卵巢癌细胞体外侵袭和迁移能力的影响。
     结果:
     1.半定量RT-PCR和Western blot结果显示siRNA转染后,SKOV-3细胞LPA_2 mRNA表达受抑制、蛋白表达水平降低。
     2.ELISA结果显示干扰后80μmol/L LPA诱导的uPA产量下降,干扰组uPA蛋白表达(OD值:0.344±0.039)较阴性对照组uPA蛋白表达(OD值:0.746±0.031)明显降低(P<0.001)。
     3.Matrigel Transwell小室实验结果显示,80μmol/L LPA刺激后,干扰组穿过Matrigel膜的细胞数(36.2±3.3),明显低于阴性对照组(178±17.2)(P<0.001)。
     4.Transwell Chemotaxis实验结果显示,80μmol/L LPA刺激后,干扰组进入下室的细胞数(57±7.6)较阴性对照组(220.4±25.5)明显下降(P<0.001)。
     结论:
     1.针对LPA_2基因的特异性siRNA成功转染SKOV-3细胞后,能够特异性抑制、降解同源mRNA,有效阻滞LPA_2 mRNA和蛋白的表达,可作为特异性阻断LPA_2基因表达、评价其功能的良好手段。
     2.经RNA干扰技术特异性沉默LPA_2基因后,能够明显抑制LPA诱导的SKOV-3细胞uPA的分泌及细胞的侵袭和迁移能力,提示LPA_2可能成为卵巢癌治疗的靶基因。
Background:
     Ovarian cancer accounts for more deaths than all other gynecologic malignancies combined.Because of the obscure early symptoms and the absence of effective measures of universal inspection and early diagnosis of ovarian cancer,more than 2/3 of the patients with ovarian cancer have reached an advanced stage when they were diagnosed,with little hope to get good curative effect,and the 5-year survival is only 20%-30%,while the survival rate of patients diagnosed in early stage could reach up to 90%.Although three therapeutic advances of malignant ovarian carcinoma in the late twenty years,which are comprehensive stage laparotomy, cytoreductive surgery and omentectomy,and paclitaxel-cisplatin combined chemotherapy,cannot improve the patients' survival rate in the long run.The invasion and metastasis of ovarian cancer are the most important influencing factors to success or failure of treatment.The metastasis of tumors is a complicated process including multiple steps and factors.So it has an important significance to investigate the metastasis and invasive mechanism of epithelial ovarian cancer,and can provide new methods and potential targets for molecule treatment.
     LPA is a small molecular lipid functionally related with growth factors.Its signaling pathways play many biological functions mainly through G protein-coupled receptor.LPA induces proliferative and/or morphological effects.Recent years,LPA and its pathways were found to play important roles in the appearance,development, invasion and transfer of malignant tumors,such as thyroid cancer,pancreatic cancer, gastric cancer,colorectal cancer,ovarian caner and so on.To date,five LPA receptors have been found,namely LPA1/EDG-2,LPA2/EDG-4,LPA3/EDG-7, LPA4/GPR23/p2y9,and LPA5/PPARγ.LPA stimulates the proliferation,adhesion, invasion and metastasis,and the production of various invasion-associated factors through these receptors.In vitro studies have shown that LPA_1 is highly expressed in the normal and immortalized ovarian cells,while LPA_2/EDG4 and LPA_3/EDG7 mRNA are highly expressed in ovarian tissues and tumor cell lines.Thus LPA receptor is hopeful to become a new target for treatment of ovarian carcinoma.
     Urokinase plasminogen activator(uPA)is one of the most important enzymes to degrade extracellular matrix(ECM).The function it performs in the invasion and metastasis of tumor cells is also testified,uPA has been linked to the malignant transformation in ovarian,breast and colon cells.In ovarian cancer,cellular uPA levels correlate inversely with prognosis.In comparison with other cancers,uPA is highly expressed in ovarian cancer cell lines and ascites.
     uPA contributes to metastasis and migration because it catalyzes the conversion of plasminogen to plasmin,thus leading to degradation of the basement membrane.It also stimulates cellular migration and proliferation pltentially by binding to its specific cell surface receptor(uPAR).Recent research shows that LPA can induce uPA but not uPAR the secretion of uPA not uPAR and accelerate the uPA-induced invasion of tumor cells.Therefore,research on the relationship between LPA and uPA will help us understand the function of LPA in the invasion and metastasis of ovarian cancer.
     As a totally new way in biological field RNA interference technology has very huge potential and is getting more and more importance from the investigators.To choose the target gene which has therapeutic action on tumor is the key of the RNA interference.The studies on LPA-induced metastasis of tumor cells show that LPA_2 receptor plays an important part role in the secretion of invasion-associated cell factors in response to LPA,although other LPA receptors could also mediate the response.So we choose LPA_2 receptor to be the target gene to RNA interference.
     Based on the above report,this research will firstly observe the role of LPA on the production of uPA in human ovarian cancer cell line SKOV-3.Secondly,LPA_2 siRNA was transfected into SKOV-3 by using Lipofectamine~(TM)2000.The transfection effect was identified through detecting LPA_2 mRNA level by semiquantitative RT-PCR and protein level by Western blot,respectively. Furthermore,the role of inhibiting LPA_2 pathway in LPA-induced uPA regulation was observed,and the function of LPA2 in LPA-induced invasion and metastasis of ovarian cancer would be discussed.
     PartⅠ:Effect of lysophosphatidic acid(LPA)on urokinase plasminogen activator(uPA)secretion of ovarian cancer SKOV-3 cells
     Objective:To investigate the effect of LPA on the uPA secretion and cell invasion ability of ovarian cancer SKOV-3 cells.
     Methods:Human ovarian cancer cell lines were cultured in various concentrations of LPA(0,2,20,40,80μmol/L)for 24 hours and cultured in 80μmol/L LPA for different time-points up to 24 hours(0,3,8,12,24h).Then cell culture supernatant was collected,and LPA-induced uPA expression was analyzed using uPA ELISA.After LPA stimulation with the concentrations of 0 or 80μmol/L, the invasiveness of SKOV-3 cells was analyzed by using Matrigel Transwell Assay.
     Results:
     1.After 24h of incubation with various concentrations of LPA,2μmol/L of LPA can cause the increase of uPA secretion in comparison with the control group(P>0.05).While after adding LPA with concentration of 20,40,80μmol/L,the uPA secretion increased obviously(P<0.001).
     2.After incubation with 80μmol/L LPA in different time-points up to 24 hours, the secretion of uPA increased obviously in comparison with the control group after 8 hours(P<0.01).
     3.The number of SKOV-3 cells that penetrated the Matrigel after 80μmol/L LPA stimulation increased obviously in comparison with control,group(219.4±23.6 vs.67±10.9)(P<0.001).
     Conclusions:
     1.The low concentration of LPA could induce uPA secretion.With the increase of LPA concentrations,the production of uPA significantly increased,there was obvious dose-dependent manner between LPA and uPA.
     2.LPA treatment at 80μmol/L induced considerably uPA secretion in time-dependent manner.
     3.LPA could significantly increase the invasion ability of SKOV-3 cells in vitro.
     PartⅡ:Effect of inhibition of LPA_2 by siRNA on LPA-induced uPA production and cell invasion of ovarian cancer SKOV-3 cells
     Objective:The purpose of this study is to investigat the inhibition effect of RNA interference(RNAi)on the expression of LPA_2 in ovarian cancer SKOV-3 cells,and to observe its impact on the output of LPA-induced uPA and on cell invasion. Meanwhile,we will explore the applying prospects of RNAi technique on anti-tumor genetic treatment and the possibility that knock-down of LPA_2 gene as a treatment target of ovarian cancer.
     Methods:
     1.Ovarian cancer cell strain SKOV-3 was resuscitated and cultivated until it came to logarithmic growing period,and then they were divided into three groups, which were normal control group,negative control group and siRNA group.
     2.The siRNA of different concentrations of grads were transfected into SKOV-3 cells in order to observe the transfection effects,and then the optimal transfection concentration was selected.
     3.The specific siRNA and negative control siRNA were transfected into siRNA group and negative control group respectively.The normal control group was not transfected by any siRNA,only transfection liquid.
     4.The expression of LPA2 mRNA and protein were detected by using the semi-quantitative RT-PCR and Western blot after 36 hours.Meanwhile,the production of LPA-induced uPA was measured by ELISA analyse before and after the interference.The impacts of LPA on the ex-vivo invasion ability of ovarian cancer using Matrigel invasion assay.
     Results:
     1.The results of semi-quantitative RT-PCR and Western blot indicated that after transfection of LPA_2-specifical siRNA,the expression of LPA2 mRNA and protein in SKOV-3 cells were obviously reduced.
     2.ELISA results indicated that the production of uPA induced by LPA of 80μmol/L after interference decreased,which of siRNA group(uPA OD 450nm: 0.344±0.039)decreases obviously in comparsion with that of negative control group (uPA OD 450nm:0.746±0.031)(P<0.001).
     3.The experiment of Matrigel invasion membrane indicated that the number (36.2±3.3)of cells that penetrated through Marigel chamber in siRNA group after the stimulation of 80μmol/L LPA were lower than that of negative control group (178±17.2)(P<0.001).
     4.The experiment of Transwell Chemotaxis chamber indicated that the number (57±7.6)of cells that entered the lower well in siRNA group after the LPA stimulation decreased obviously than that of negative control group(220.4±25.5)(P<0.001).
     Conclusions:
     1.The specific siRNA aiming at LPA2 gene can be successfully transfected into SKOV-3 cells and then inhibites and degrades congenetic mRNA.It can also block the expression of LPA2 mRNA and protein effectively,and can be used as a new tool of blocking LPA2 gene expression and evaluating its biological function.
     2.The inhibition of LPA_2 gene by using RNAi can reduce the LPA-induced uPA secretion and the ability cell invasion and migration in SKOV-3 cells,which indicates that LPA2 is probable to work as target gene in the therapy of ovarian cancer.
引文
1. Fourcade 0, Simon MF, Viode C, Rugani N, Leballe F, Ragab A, Fournie B, Sarda L, Chap H. Secretory phospholipase A2 generates the novel lipid mediator lysophosphatidic acid in membrane microvesicles shed from activated cells. Cell. 1995;80(6):919-927.
    2. Pages C, Simon MF, Valet P, Saulnier-Blache JS. Lysophosphatidic acid synthesis and release. Prostaglandins Other Lipid Mediat. 2001;64(1-4):1-10.
    3. Tigyi G. Physiological responses to lysophosphatidic acid and related glycero-phospholipids. Prostaglandins. 2001;64(1-4):47-62.
    4. Xie Y, Gibbs TC, Meier KE. Lysophosphatidic acid as an autocrine and paracrine mediator. Biochim Biophys Acta. 2002; 1582( 1 -3):270-281.
    5. Ediger TL, Toews ML. Dual effects of lysophosphatidic acid on human airway smooth muscle cell proliferation and survival. Biochim Biophys Acta. 2001;1531(1-2):59-67.
    6. Fukushima N, Chun J. The LPA receptors. Prostaglandins. 2001 ;64(1-4):21-32.
    
    7. Xu Y, Gaudette DC, Boynton JD, Frankel A, Fang XJ, Sharma A, Hurteau J, Casey G, Goodbody A, Mellors A, et al. Characterization of an ovarian cancer activating factor in ascites from ovarian cancer patients. Clin Cancer Res. 1995;1(10): 1223-1232.
    8. Xu Y, Shen Z, Wiper DW, Wu M, Morton RE, Elson P, Kennedy AW, Belinson J, Markman M, Casey G. Lysophosphatidic acid as a potential biomarker for ovarian and other gynecologic cancers. JAMA. 1998;280(8):719-723.
    9. Fang X, Gaudette D, Furui T, Mao M, Estrella V, Eder A, Pustilnik T, Sasagawa T, Lapushin R, Yu S, Jaffe RB, Wiener JR, Erickson JR, Mills GB. Lysophospholipid growth factors in the initiation, progression, metastases, and management of ovarian cancer. Ann N Y Acad Sci. 2000;905:188-208.
    10. Shen Z, Belinson J, Morton RE, Xu Y, Xu Y. Phorbol 12-myristate 13-acetate stimulates lysophosphatidic acid secretion from ovarian and cervical cancer cells but not from breast or leukemia cells. Gynecol Oncol. 1998;71(3):364-368.
    11. Gududuru V, Zeng K, Tsukahara R, Makarova N, Fujiwara Y, Pigg KR, Baker DL, Tigyi G, Miller DD. Identification of Darmstoff analogs as selective agonists and antagonists of lysophosphatidic acid receptors. Bioorg Med Chem Lett. 2006; 16(2):451-456.
    
    12. Kyoko Noguchi, Satoshi Ishii, Takao Shimizu. Identification of p2y9/GPR23 as a Novel G Protein-coupled Receptor for Lysophosphatidic Acid, Structurally Distant from the Edg Family. J Biol Chem. 2003;278(28):25600-25606.
    
    13. Pustilnik TB, Estrella V, Wiener JR, Mao M, Eder A, Watt MA, Bast RC Jr, Mills GB. Lysophosphatidic acid induces urokinase secretion by ovarian cancer cells. Clin Cancer Res. 1999;5(11):3704-3710.
    
    14. Hu YL, Tee MK, Goetzl EJ, Auersperg N, Mills GB, Ferrara N, Jaffe RB. Lysophosphatidic acid induction of vascular endothelial growth factor expression in human ovarian cancer cells. J Natl Cancer Inst. 2001;93(10):762—768. Comment in: J Natl Cancer Inst. 2001;93(10):734-735.
    
    15. Goetzl EJ, Dolezalova H, Kong Y, Hu YL, Jaffe RB, Kalli KR, Conover CA. Distinctive expression and functions of the type 4 endothelial differentiation gene-encoded Gprotein-coupled receptor for lysophosphatidic acid in ovarian cancer. Cancer Res. 1999;59(20):5370-5375.
    
    16. Furui T, LaPushin R, Mao M, Khan H, Watt SR, Watt MA, Lu Y, Fang X, Tsutsui S, Siddik ZH, Bast RC, Mills GB. Overexpression of Edg-2/vzg-l induces apoptosis and anoikis in ovarian cancer cells in a lysophosphatidic acid independent manner. Clin Cancer Res. 1999;5(12):4308-4318.
    
    17. Vignati S, Albertini V, Rinaldi A, Kwee I, Riva C, Oldrini R, Capella C, Bertoni F, Carbone GM, Catapano CV. Cellular and molecular consequences of peroxisome proliferator-activated receptor-gamma activation in ovarian cancer cells. Neoplasia. 2006;8(10):851-861.
    
    18. Hu YL, Albanese C, Pestell RG, Jaffe RB. Dual mechanisms for lysophosphatidic acid stimulation of human ovarian carcinoma cells. J Natl Cancer Inst. 2003;95(10):733-740.
    
    19. Fang X, Yu S, Bast RC, Liu S, Xu HJ, Hu SX, LaPushin R, Claret FX, Aggarwal BB, Lu Y, Mills GB. Mechanisms for lysophosphatidic acid-induced cytokine production in ovarian cancer cells. J Biol Chem. 2004;279(10):9653-9661.
    
    20. Yamada T, Sato K, Komachi M, Malchinkhuu E, Tobo M, Kimura T, Kuwabara A, Yanagita Y, Ikeya T, Tanahashi Y, Ogawa T, Ohwada S, Morishita Y, Ohta H, Im DS, Tamoto K, Tomura H, Okajima F. Lysophosphatidic acid (LPA) in malignant ascites stimulates motility of human pancreatic cancer cells through LPA1. J Biol Chem. 2004;279(8):6595-6605. Epub 2003 Dec 3.
    
    21. Shida D, Kitayama J, Yamaguchi H, Okaji Y, Tsuno NH, Watanabe T, Takuwa Y, Nagawa H. Lysophosphatidic acid (LPA) enhances the metastatic potential of human colon carcinoma DLD1 cells through LPA1. Cancer Res. 2003 ;63(7): 1706-1711.
    
    22. Chen M, Towers LN, O'Connor KL. LPA2 (EDG4) mediates Rho-dependent chemotaxis with lower efficacy than LPA1 (EDG2) in breast carcinoma cells. Am J Physiol Cell Physiol. 2007;292(5):C1927-1933.
    
    23. Fujita T, Miyamoto S, Onoyama I, Sonoda K, Mekada E, Nakano H. Expression of lysophosphatidic acid receptors and vascular endothelial growth factor mediating lysophosphatidic acid in the development of human ovarian cancer. Cancer Lett. 2003;192(2):161-169.
    
    24. Duffy MJ. Proteases as prognostic markers in cancer. Clin Cancer Res. 1996;2(4): 613-618.
    
    25. Odekon LE, Sato Y, and Rifkin DB. Urokinase-type plasminogen activator mediates basic fibroblast growth factor-induced bovine endothelial cell migration independent of its proteolytic activity. J Cell Physiol. 1992; 150(2):258-263.
    
    26. Chambers SK, Gertz RE Jr, Ivins CM, and Kacinski BM. The significance of urokinase-type plasminogen activator, its inhibitors, and its receptors in ascites of patients with epithelial ovarian cancer. Cancer (Phila.) 1995;75(7):1627—1633.
    
    27. Young TN, Rodriquez GC, Moser TL, Bast RC, Pizzo SV, and Stack S. Coordinate expression of urinary-type plasminogen activator and its receptor accompanies malignant transformation of the ovarian surface epithelium. Am J Obstet Gynecol. 1994;170(5 Pt 1):1285-1296.
    28.Karlan BY,Amin W,Band V,Zurawski VR Jr,and Littlefield BA.Plasminogen activator secretion by established lines of human ovarian carcinoma cells in vitro.Gynecol Oncol.1988;31(1):103-112.
    29.Moser TL,Young TN,Rodriquez GC,Pizzo SV,Bast RC Jr,and Stack MS.Secretion of extracellular matrix-degrading proteinases is increased in epithelial ovarian carcinoma.Int J Cancer.1994;56(4):552-559.
    30.Schmalfeldt B,Kuhn W,Reuning U,Pache L,Dettmar P,Schmitt M,Janicke F,Holfer H,and Graeff H.Primary tumor and metastasis in ovarian cancer differ in their content of urokinase-type plasminogen activator,its receptor,and inhibitors types 1 and 2.Cancer Res.1995;55(18):3958-3963.
    31.Kuhn W,Pache L,Schmalfeldt B,Dettmar P,Schmitt M,Janicke F,and Graeff H.Urokinase(uPA)and PAI-1 predict survival in advanced ovarian cancer patients (FIGO III)after radical surgery and platinum-based chemotherapy.Gynecol Oncol.1994;55(3 Pt 1):401-409.
    32.毛敬,辛晓燕,刘玉,郭会玲,李萍.卵巢癌uPA及HPA的表达与卵巢癌转移的相关性研究.现代肿瘤医学.2006;14(3):329-331.
    33.Li H,Ye X,Mahanivong C,Bian D,Chun J,Huang S.Signaling mechanisms responsible for lysophosphatidic acid-induced urokinase plasminogen activator expression in ovarian cancer cells.J Biol Chem.2005;280(11):10564-10571.
    34.Jones JL,Walker RA.Control of matrix metalloproteinase activity in cancer.J Pathol.1997;183(4):377-379.
    35.Stack MS,Ellerbroek SM,Fishman DA.The role of proteolytic enzymes in the pathology of epithelial ovarian carcinoma.Int J Oncol.1998;12(3):569-576.
    36.Yan C,Han R.Genistein suppresses adhesion-induced protein tyrosine phosphorylation and invasion of B16-BL6 melanoma cells.Cancer Lett.1998;129(1):117-124.
    37.Yan C,Han R.Suppression of adhesion-induced protein tyrosine phosphorylation decreases invasive and metastatic potentials of B16-BL6 melanoma cells by protein tyrosine kinase inhibitor genistein.Invasion Metastasis.1997;17(4):189-198.
    38. Mignatti P, Rifkin DB.Biology and biochemistry of proteinases in tumor invasion. Physiol Rev. 1993;73:161-195.
    
    39. Carmeliet P, Moons L, Lijnen R, Baes M, Lemaitre V, Tipping P, Drew A, Eeckhout Y, Shapiro S, Lupu F, Collen D. Urokinase-generated plasmin activates matrix metalloproteinases during aneurysm formation. Nat Genet. 1997; 17(4):439-444.
    
    40. Rifkin DB, Gleizes PE, Harpel J, Nunes I, Munger J, Mazzieri R, Noguera I. Plasminogen/plasminogen activator and growth factor activation. Ciba Found Symp. 1997;212:105-115; discussion 116-118.
    
    41.Andreasen PA, Kjoller L, Christensen L, Duffy MJ. The urokinase-type plasminogen activator system in cancer metastasis: a review. Int J Cancer. 1997;72(1):1-22.
    
    42. Wilhelm O, Schmitt M, Hohl S, Senekowitsch R, Graeff H. Antisense inhibition of urokinase reduces spread of human ovarian cancer in mice. Clin Exp Metastasis. 1995;13(4):296-302.
    
    43. Sato S, Kopitz C, Schmalix WA, Muehlenweg B, Kessler H, Schmitt M, Kruger A, Magdolen V. High-affinity urokinase-derived cyclic peptides inhibiting urokinase/urokinase receptor-interaction: effects on tumor growth and spread. FEBS Lett. 2002;528(1-3):212-216.
    
    44. Suzuki M, Kobayashi H, Tanaka Y, Hirashima Y, Kanayama N, Takei Y, Saga Y, Suzuki M, Itoh H, Terao T. Suppression of invasion and peritoneal carcinomatosis of ovarian cancer cell line by overexpression of bikunin. Int J Cancer. 2003;104(3):289-302.
    
    45. Pujade-Lauraine E, Lu H, Mirshahi S, Soria J, Soria C, Bernadou A, Kruithof EK, Lijnen HR, Burtin P. The plasminogen-activation system in ovarian tumors. Int J Cancer. 1993;55(1):27-31.
    
    46. Murthi P, Barker G, Nowell CJ, Rice GE, Baker MS, Kalionis B, Quinn MA. Plasminogen fragmentation and increased production of extracellular matrix-degrading proteinases are associated with serous epithelial ovarian cancer progression. Gynecol Oncol. 2004;92(1):80-88.
    47. Schmalfeldt B, Prechtel D, Harting K, Spathe K, Rutke S, Konik E, Fridman R, Berger U, Schmitt M, Kuhn W, Lengyel E. Increased expression of matrix metalloproteinases (MMP)-2, MMP-9, and the urokinase-type plasminogen activator is associated with progression from benign to advanced ovarian cancer. Clin Cancer Res. 2001;7(8):2396-2404.
    
    48. Borgfeldt C, Hansson SR, Gustavsson B, Masback A, Casslen B. Dedifferentiation of serous ovarian cancer from cystic to solid rumors is associated with increased expression of mRNA for urokinase plasminogen activator (uPA), its receptor (uPAR) and its inhibitor (PAI-1). Int J Cancer. 2001;92(4):497-502.
    
    49. Konecny G, Untch M, Pihan A, Kimmig R, Gropp M, Stieber P, Hepp H, Slamon D, Pegram M. Association of urokinase-type plasminogen activator and its inhibitor with disease progression and prognosis in ovarian cancer. Clin Cancer Res. 2001 ;7(6): 1743-1749.
    
    50. Fischer K, Lutz V, Wilhelm O, Schmitt M, Graeff H, Heiss P, Nishiguchi T, Harbeck N, Kessler H, Luther T, Magdolen V, Reuning U. Urokinase induces proliferation of human ovarian cancer cells: characterization of structural elements required for growth factor function. FEBS Lett. 1998;438(l-2):101-105.
    
    51. Fishman DA, Kearns A, Larsh S, Enghild JJ, Stack MS. Autocrine regulation of growth stimulation in human epithelial ovarian carcinoma by serine-proteinase-catalysed release of the urinary-type-plasminogen-activator N-terminal fragment. Biochem J. 1999;341 ( Pt 3):765-769.
    
    52. So J, Navari J, Wang FQ, Fishman DA. Lysophosphatidic acid enhances epithelial ovarian carcinoma invasion through the increased expression of interleukin-8. Gynecol Oncol. 2004;95(2):314-322.
    
    53. So J, Wang FQ, Navari J, Schreher J, Fishman DA. LPA-induced epithelial ovarian cancer (EOC) in vitro invasion and migration are mediated by VEGF receptor-2 (VEGF-R2). Gynecol Oncol. 2005;97(3):870-878.
    
    54. Fang X, Schummer M, Mao M, Yu S, Tabassam FH, Swaby R, Hasegawa Y, Tanyi JL, LaPushin R, Eder A, Jaffe R, Erickson J, Mills GB. Lysophosphatidic acid is a bioactive mediator in ovarian cancer. Biochim Biophys Acta. 2002; 1582( 1 -3):257-264.
    
    55. Moolenaar WH, Kranenburg O, Postma FR, Zondag GC. Lysophosphatidic acid: G-protein signalling and cellular responses. Curr Opin Cell Biol. 1997;9(2):168-173.
    
    56. Meng Y, Kang S, So J, Reierstad S, Fishman DA. Translocation of Fas by LPA prevents ovarian cancer cells from anti-Fas-induced apoptosis. Gynecol Oncol. 2005;96(2):462-469.
    
    57. Meng Y, Kang S, Fishman DA. Lysophosphatidic acid stimulates fas ligand microvesicle release from ovarian cancer cells. Cancer Immunol Immunother. 2005;54(8):807-814. Epub 2005 Jan 21.
    
    58. Meng Y, Graves L, Do TV, So J, Fishman DA. Upregulation of FasL by LPA on ovarian cancer cell surface leads to apoptosis of activated lymphocytes. Gynecol Oncol. 2004;95(3):488-495.
    
    59. Fishman DA, Liu Y, Ellerbroek SM, Stack MS. Lysophosphatidic acid promotes matrix metalloproteinase (MMP) activation and MMP-dependent invasion in ovarian cancer cells. Cancer Res. 2001 ;61 (7):3194-3199.
    
    60. Luquain C, Singh A, Wang L, Natarajan V, Morris AJ. Role of phospholipase D in agonist-stimulated lysophosphatidic acid synthesis by ovarian cancer cells. Lipid Res. 2003;44(10): 1963-75. Epub 2003 Jul 1.
    
    61.Symowicz J, Adley BP, Woo MM, Auersperg N, Hudson LG, Stack MS. Cyclooxygenase-2 functions as a downstream mediator of lysophosphatidic acid to promote aggressive behavior in ovarian carcinoma cells. Cancer Res. 2005;65(6):2234-2242.
    
    62. Kang S, Luo R, Smicun Y, Fishman DA, Meng Y. Selective induction of cyclooxygenase-2 plays a role in lysophosphatidic acid regulated Fas ligand cell surface presentation. FEBS Lett. 2006;580(2):443-449. Epub 2005 Dec 20.
    
    63. Schwartz BM, Hong G, Morrison BH, Wu W, Baudhuin LM, Xiao YJ, Mok SC, Xu Y. Lysophospholipids increase interleukin-8 expression in ovarian cancer cells. Gynecol Oncol. 2001;81(2):291-300.
    64. Frankel A, Mills GB. Peptide and lipid growth factors decrease cis-diamminedichloroplatinum-induced cell death in human ovarian cancer cells. Clin Cancer Res. 1996;2(8): 1307-1313.
    
    65. Nicosia SV, Bai W, Cheng JQ, Coppola D, Kruk PA. Oncogenic pathways implicated in ovarian epithelial cancer. Hematol Oncol Clin North Am. 2003;17(4):927-943.
    
    66. Bian D, Mahanivong C, Yu J, Frisch SM, Pan ZK, Ye RD, Huang S. The G12/13-RhoA signaling pathway contributes to efficient lysophosphatidic acid-stimulated cell migration. Oncogene. 2006;25(15):2234-2244.
    
    67. Bian D, Su S, Mahanivong C, Cheng RK, Han Q, Pan ZK, Sun P, Huang S. Lysophosphatidic Acid Stimulates Ovarian Cancer Cell Migration via a Ras-MEK Kinase 1 Pathway. Cancer Res. 2004;64(12):4209-4217.
    
    68. Do TV, Symowicz JC, Berman DM, Liotta LA, Petricoin EF 3rd, Stack MS, Fishman DA. Lysophosphatidic acid down-regulates stress fibers and up-regulates pro-matrix metalloproteinase-2 activation in ovarian cancer cells. Mol Cancer Res. 2007;5(2):121-131.
    
    69. Wang FQ, Smicun Y, Calluzzo N, Fishman DA. Inhibition of matrilysin expression by antisense or RNA interference decreases lysophosphatidic acid-induced epithelial ovarian cancer invasion. Mol Cancer Res. 2006;4(11):831-841.
    
    70. Wu WT, Chen CN, Lin CI, Chen JH, Lee H. Lysophospholipids enhance matrix metalloproteinase-2 expression in human endothelial cells. Endocrinology. 2005;146(8):3387-3400. Epub 2005 May 5.
    
    71. Albini A, Iwamoto Y, Kleinman HK, Martin GR, Aaronson SA, Kozlowski JM, McEwan RN. A rapid in vitro assay for quantitating the invasive potential of tumor cells. Cancer Res. 1987;47(12):3239-3245.
    
    72. Rodriguez GC, Haisley C, Hurteau J, Moser TL, Whitaker R, Bast RC Jr, Stack MS. Regulation of invasion of epithelial ovarian cancer by transforming growth factor-beta. Gynecol Oncol. 2001;80(2):245-253.
    
    73. Pinkas J, Leder P. MEK1 signaling mediates transformation and metastasis of EpH4 mammary epithelial cells independent of an epithelial to mesenchymal transition. Cancer Res. 2002;62( 16):4781 -4790.
    
    74. Lee Z, Swaby RF, Liang Y, Yu S, Liu S, Lu KH, Bast RC Jr, Mills GB, Fang X. Lysophosphatidic acid is a major regulator of growth-regulated oncogene alpha in ovarian cancer. Cancer Res. 2006;66(5):2740-2748.
    
    75. Albini A, Iwamoto Y, Kleinman HK, Martin GR, Aaronson SA, Kozlowski JM, McEwan RN. A rapid in vitro assay for quantitating the invasive potential of tumor cells. Cancer Res. 1987;47(12):3239-3245.
    
    76. 王元天,许纯孝.MTT比色法测定膀肤癌细胞的体外侵袭力.肿瘤. 2001;21(1):45-47.
    
    77. Aoki Y, Cioca DP, Oidaira H, Kamiya J, Kiyosawa K. RNA interference may be more potent tan antisense RNA in hunan cancer cell line. Clin Exp Pharmacol Physiol. 2003;30(1):96-102.
    
    78. Wilda M, Fuchs U, Wossmann W, Borkhardt A. Killing of leukemin cells with a BCR/ABL fusion gene by RNA interference (RNAi). Oncogene. 2002;21(37): 5716-5724.
    
    79. Tsuchiya A, Sakamoto M, Yasuda J, Chuma M, Ohta T, Ohki M, Yasugi T, Taketani Y, Hirohashi S. Expression profiling in ovarian clear cell carcinoma: identification of hepatocyte nuclear factor-1 beta as a molecular marker and a possible molecular target for therapy of ovarian clear cell carcinoma. Am J Pathol. 2003;163(6):2503-2512.
    
    80. Spankuch-Schmitt B, Bereiter-Hahn J, Kaufmann M. Effect of RNA silencing of polo-like kinase-1 (PLK1) on apoptasis and spindle formation in human cancer cells. J Natl Cancer Inst. 2002;94(24): 1863-1877.
    
    81. Zhang L, Yang N, Mohamed-Hadley A, Rubin SC, Coukos G. Vector-based RNAi, a novel tool for isoform-specific knock-down of VEGF and anti-angiogenesis gene therapy of cancer. Biochem Biophys Res Commun. 2003;303(4):1169-1178.
    
    82. Huang MC, Lee HY, Yeh CC, Kong Y, Zaloudek CJ, Goetzl EJ. Induction of protein growth factor systems in the ovaries of transgenic mice overexpressing human type 2 lysophosphatidic acid G protein-coupled receptor (LPA2). Oncogene. 2004;23(1):122-129.
    
    83. Mills GB, May C, McGill M, Roifman CM, Mellors A. A putative new growth factor in ascetic fluid from ovarian cancer patients: identification, characterization, and mechanism of action. Cancer Res. 1988;48(5):1066-1071.
    
    84. Jalink K, Eichholtz T, Postma FR, van Corven EJ, Moolenaar WH. Lysophosphatidic acid induces neuronal shape changes via a novel, receptor-mediated signaling pathway: similarity to thrombin action. Cell Growth Differ. 1993;4(4):247-255.
    85. Simon MF, Daviaud D, Pradere JP, Gres S, Guigne C, Wabitsch M, Chun J, Valet P, Saulnier-Blache JS. Lysophosphatidic acid inhibits adi pocyte differentiation via lysophosphatidic acid 1 receptor-dependent down-regulation of peroxisome proliferator-activated receptor gamma. J Biol Chem. 2005;280(15): 14656-14662.
    
    86. Stein CA, Cohen JS. Oligodeoxynucleotides as inhibitors of gene expression a review. Cancer Res. 1988;48(10):2659-2668.
    
    87. Wang P, Wu X, Chen W, Liu J, Wang X. The lysophosphatidic acid (LPA) receptors their expression and significance in epithelial ovarian neoplasms. Gynecol Oncol. 2007; 104:714-720.
    1. Jorgensen R. Altered gene expression in plants due to trans interactions between homologous genes. Trends Biotechnol. 1990;8(12):340-344.
    
    2. Guo S, Kemphues KJ. par-1, a gene required for establishing polarity in C. elegans embryos, encodes a putative Ser/Thr kinase that is asymmetrically distributed. Cell. 1995;81(4):611-620.
    
    3. Fire A, Xu S, Montgomery MK, Kostas SA, Driver SE, Mello CC. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature. 1998;391(6669):806-811.
    
    4. Zamore PD, Tuschl T, Sharp PA, Bartel DP. RNAi: double-stranded RNA directs the ATP-dependent cleavage of mRNA at 21 to 23 nucleotide intervals. Cell. 2000;101(1):25-33.
    
    5. Hammond SM, Bernstein E, Beach D, Hannon GJ. An RNA-directed nuclease mediates post-transcriptional gene silencing in Drosophila cells. Nature. 2000;404(6775):293-296.
    
    6. Sanders M, Lannoo N, Maddelein W, Depicker A, Van Montagu M, Cornelissen M, Jacobs J. The preferred route for the degradation of silencing target RNAs in transgenic plants depends on pre-established silencing conditions. Nucleic Acids Res. 2004;32(11):3400-3409.
    
    7. Gondi CS, Lakka SS, Dinh DH, Olivero WC, Gujrati M, Rao JS. RNAi-mediated inhibition of cathepsin B and uPAR leads to decreased cell invasion, angiogenesis and tumor growth in gliomas. Oncogene. 2004;23(52):8486-8496.
    
    8. Taulli R, Accornero P, Follenzi A, Mangano T, Morotti A, Scuoppo C, Forni PE, Bersani F, Crepaldi T, Chiarle R, Naldini L, Ponzetto C. RNAi technology and lentiviral delivery as a powerful tool to suppress Tpr-Met-mediated tumorigenesis. Cancer Gene Ther. 2005;12(5):456-463.
    
    9. Sumimoto H, Yamagata S, Shimizu A, Miyoshi H, Mizuguchi H, Hayakawa T, Miyagishi M, Taira K, Kawakami Y. Gene therapy for human small-cell lung carcinoma by inactivation of Skp-2 with virally mediated RNA interference. Gene Ther. 2005; 12(1):95-l00.
    
    10. Uchida H, Tanaka T, Sasaki K, Kato K, Dehari H, Ito Y, Kobune M, Miyagishi M, Taira K, Tahara H, Hamada H. Adenovirus-mediated transfer of siRNA against survivin induced apoptosis and attenuated tumor cell growth in vitro and in vivo. Mol Ther. 2004; 10(1): 162-171.
    
    11. Parry DH, Xu J, Ruvkun G. A whole-genome RNAi Screen for C. elegans miRNA pathway genes. Curr Biol. 2007; 17(23):2013-2022.
    
    12. Mlotshwa S, Yang Z, Kim Y, Chen X. Floral patterning defects induced by Arabidopsis APETALA2 and microRNA172 expression in Nicotiana benthamiana. Plant Mol Biol. 2006;61(4-5):781-793.
    
    13. Bertrand JR, Pottier M, Vekris A, Opolon P, Maksimenko A, Malvy C. Comparison of antisense oligonucleotides and siRNAs in cell culture and in vivo. Biochem Biophys Res Commun. 2002;296(4): 1000-1004.
    
    14. Griesenbach U, Kitson C, Escudero Garcia S, Farley R, Singh C, Somerton L, Painter H, Smith RL, Gill DR, Hyde SC, Chow YH, Hu J, Gray M, Edbrooke M, Ogilvie V, MacGregor G, Scheule RK, Cheng SH, Caplen NJ, Alton EW. Inefficient cationic lipid-mediated siRNA and antisense oligonucleotide transfer to airway epithelial cells in vivo. Respir Res. 2006;15;7-26.
    
    15. Sakamoto N, Tanabe Y, Yokota T, Satoh K, Sekine-Osajima Y, Nakagawa M, Itsui Y, Tasaka M, Sakurai Y, Cheng-Hsin C, Yano M, Ohkoshi S, Aoyagi Y, Maekawa S, Enomoto N, Kohara M, Watanabe M. Inhibition of hepatitis C virus infection and expression in vitro and in vivo by recombinant adenovirus expressing short hairpin RNA. J Gastroenterol Hepatol. 2007 Aug 7 [Epub ahead of print]
    
    16. Zender L, Hutker S, Liedtke C, Tillmann HL, Zender S, Mundt B, Waltemathe M, Gosling T, Flemming P, Malek NP, Trautwein C, Manns MP, Kuhnel F, Kubicka S. Caspase 8 small interfering RNA prevents acute liver failure in mice. Proc Natl Acad Sci U S A. 2003;100(13):7797-7802.
    17. Coburn GA, Cullen BR. Potent and specific inhibition of human immunodeficiency virus type 1 replication by RNA interference. J Virol. 2002;76(18):9225-9231.
    18. Triboulet R, Mari B, Lin YL, Chable-Bessia C, Bennasser Y, Lebrigand K, Cardinaud B, Maurin T, Barbry P, Baillat V, Reynes J, Corbeau P, Jeang KT, Benkirane M. Suppression of microRNA-silencing pathway by HIV-1 during virus replication. Science. 2007;315(5818): 1579-1582.
    19. Zhou H, Jin M, Yu Z, Xu X, Peng Y, Wu H, Liu J, Liu H, Cao S, Chen H. Effective small interfering RNAs targeting matrix and nucleocapsid protein gene inhibit influenza A virus replication in cells and mice. Antiviral Res. 2007;76(2): 186-193.
    20. Hahn WC, Weinberg RA. Modelling the molecular circuitry of cancer. Nat Rev Cancer. 2002;2(5):331-341.
    21. Yoshinouchi M, Yamada T, Kizaki M, Fen J, Koseki T, Ikeda Y, Nishihara T, Yamato K. In vitro and in vivo growth suppression of human papillomavirus 16-positive cervical cancer cells by E6 siRNA. Mol Ther. 2003;8(5):762-768.
    22. Nagy P, Arndt-Jovin DJ, Jovin TM. Small interfering RNAs suppress the expression of endogenous and GFP-fused epidermal growth factor receptor (erbB1) and induce apoptosis in erbBl-overexpressing cells. Exp Cell Res. 2003;285(1):39-49.
    23. Chen S, Gao G, Chen W, Lu Q, Tang S, Hua Z, Ye W, Gu D, Wang S, Zhang Y. VEGF-specific siRNAs modified with 2'-deoxy effectively suppress VEGF expression and inhibit growth of nasopharyngeal carcinoma xenograft in a mouse model. Sci China C Life Sci. 2008;51(2):104-110.
    24. Verma UN, Surabhi RM, Schmaltieg A, Becerra C, Gaynor RB. Small interfering RNAs directed against beta-catenin inhibit the in vitro and in vivo growth of colon cancer cells. Clin Cancer Res. 2003;9(4):1291-1300.
    25. Cioca DP, Aoki Y, Kiyosawa K. RNA interference is a functional pathway with therapeutic potential in human myeloid leukemia cell lines. Cancer Gene Ther.
    2003;10(2):125-133.
    26. Wu H, Hait WN, Yang JM. Small interfering RNA-induced suppression of MDR1 (P-glycoprotein) restores sensitivity to multidrug-resistant cancer cells. Cancer Res. 2003;63(7):1515-1519.
    
    27. Nieth C, Priebsch A, Stege A, Lage H. Modulation of the classical multidrug resistance (MDR) phenotype by RNA interference (RNAi). FEBS Lett. 2003;545(2-3):144-150.
    
    28. Guo J, Verma UN, Gaynor RB, Frenkel EP, Becerra CR. Enhanced chemosensitivity to irinotecan by RNA interference-mediated down-regulation of the nuclear factor-kappaB p65 subunit. Clin Cancer Res. 2004; 10(10):3333-3341. Comment in: Clin Cancer Res. 2004;10(10):3262-3264.
    
    29. Shirane D, Sugao K, Namiki S, Tanabe M, Iino M, Hirose K. Enzymatic production of RNAi libraries from cDNAs. Nat Genet. 2004;36(2):190-196.
    
    30. Brummelkamp TR, Nijman SM, Dirac AM, Bernards R. Loss of the cylindromatosis tumour suppressor inhibits apoptosis by activating NF-kappaB. Nature. 2003;424(6950):797-801.
    1.Xu Y,Gaudette DC,Boynton JD,Frankel A,Fang XJ,Sharma A,Hurteau J,Casey G,Goodbody A,Mellors A,et al.Characterization of an ovarian cancer activating in ascites from ovarian cancer patients.Clin Cancer Res.1995;1(10):1223-1313.
    2.Thumser AE,Voysey JE,Wilton DC.The binding of lysophospholipid to rat liver fatty acid-binding protein and albumin.Biochem J.1994;301(Pt 3):801-806.
    3.Tokumura A,Iimori M,Nishioka Y,Kitahara M,Sakashita M,Tanaka S.Lysophosphatidic acids induce proliferation of cultured vascular smooth muscle cells from rat aorta.Am J Physiol.1994;267(1 Pt 1):C204-C210.
    4.Eichholtz T,Jalink K,Fahrenfort I,Moolenaar WH.The bioactive phospholipid lysophosphatidic acid is released from activated platelets.Biochem J.1993;291(Pt 3):677-680.
    5.Imai A,Furui T,Tamaya T,Mills GB.A gonadotropin-releasing hormone-responsive phosphatase hydrolyses lysophosphatidic acid within the plasma membrane of ovarian cancer cells.J Clin Endocrinol Metab.2000;85(9):3370-3375.
    6.Xu J,Love LM,Singh I,Zhang QX,Dewald J,Wang DA,Fischer D J,Tigyi G,Berthiaume LG,Waggoner DW,Brindley DN.Brindley,Lipid phosphate phosphatase-1 and Ca2 + control lysophosphatidate signaling through EDG-2receptors.J Biol Chem.2000;275(36):27520-27530.
    7. Hooks SB, Santos WL, Im DS, Heise CE, Macdonald TL, Lynch KR. Lysophosphatidic acid-induced mitogenesis is regulated by lipid phosphate phosphatases and is edg-receptor independent. J Biol Chem. 2000;276(7):4611-4621.
    8. Gududuru V, Zeng K, Tsukahara R, Makarova N, Fujiwara Y, Pigg KR, Baker DL, Tigyi G, Miller DD. Identification of Darmstoff analogs as selective agonists and antagonists of lysophosphatidic acid receptors. Bioorg Med Chem Lett. 2006; 16(2):451-456.
    9. Noguchi K, Ishii S, Shimizu T. Identification of p2y9/GPR23 as a Novel G Protein-coupled Receptor for Lysophosphatidic Acid, Structurally Distant from the Edg Family. J Biol Chem. 2003;278(28):25600-25606.
    10. Pustilnik TB, Estrella V, Wiener JR, Mao M, Eder A, Watt MA, Bast RC Jr, Mills GB. Lysophosphatidic acid induces urokinase secretion by ovarian cancer cells. Clin Cancer Res. 1999;5(11):3704-3710.
    11. Hu YL, Tee MK, Goetzl EJ, Auersperg N, Mills GB, Ferrara N, Jaffe RB. Lysophosphatidic acid induction of vascular endothelial growth factor expression in human ovarian cancer cells. J Natl Cancer Inst. 2001;93(10):762-768.
    12. Goetzl EJ, Dolezalova H, Kong Y, Hu YL, Jaffe RB, Kalli KR, Conover CA. Distinctive expression and functions of the type 4 endothelial differentiation gene-encoded Gprotein-coupled receptor for lysophosphatidic acid in ovarian cancer. Cancer Res. 1999;59(20):5370-5375.
    13. Furui T, LaPushin R, Mao M, Khan H, Watt SR, Watt MA, Lu Y, Fang X, Tsutsui S, Siddik ZH, Bast RC, Mills GB. Overexpression of Edg-2/vzg-1 induces apoptosis and anoikis in ovarian cancer cells in a lysophosphatidic acid independent manner. Clin Cancer Res. 1999;5(12):4308-4318.
    14. Vignati S, Albertini V, Rinaldi A, Kwee I, Riva C, Oldrini R, Capella C, Bertoni F, Carbone GM, Catapano CV. Cellular and molecular consequences of peroxisome proliferator-activated receptor-gamma activation in ovarian cancer cells. Neoplasia. 2006;8(10):851-861.
    15. Moolenaar WH. Lysophosphatidic acid, a multifunctional phospholipid messenger. J Biol Chem. 1995;270(22):12949-12952.
    
    16. Murch O, Collin M, Thiemermann C. Lysophosphatidic acid reduces the organ injury caused by endotoxemia-a role for G-protein-coupled receptors and peroxisome proliferator-activated receptor-gamma. Shock. 2007;27:48-54.
    17. Liotta LA, Steeg PS, Stetler-Stevenson WG. Cancer metastasis and angiogenesis: an imbalance of positive and negative regulation. Cell. 1991 ;64(2):327-336.
    18. So J, Wang FQ, Navari J, Schreher J, Fishman DA. LPA-induced epithelial ovarian cancer (ECO) in vitro invasion and migration are mediated by VEGF receptor-2 (VEGF-R_2). Gynecol Oncol. 2005;97(3):870-878.
    19. Xu Y, Fang XJ, Casey G, Mills GB. Lysophospholipids activate ovarian and breast cancer cells. Biochem J. 1995;309 (Pt 3):933-940.
    20. Li H, Ye X, Mahanivong C, Bian D, Chun J, Huang S. Signaling Mechanisms Responsible for Lysophosphatidic Acid-induced Urokinase Plasminogen Activator Expression in Ovarian Cancer Cells. J Biol Chem. 2005;280(11):10564-10571.
    21. Fishman DA, Liu Y, Ellerbroek SM, Stack MS. Lysophosphatidic acid promotes matrix metalloproteinase (MMP) activation and MMP-dependent invasion in ovarian cancer cells. Cancer Res. 2001;61(7):3194-3199.
    22. Schwartz BM, Hong G, Morrison BH, Wu W, Baudhuin LM, Xiao YJ, Mok SC, Xu Y. Lysophospholipids increase interleukin-8 expression in ovarian cancer cells. Gynecol Oncol. 2001;81(2):291-300.
    23. Fang X, Yu S, Bast RC, Liu S, Xu HJ, Hu SX, LaPushin R, Claret FX, Aggarwal BB, Lu Y, Mills GB. Mechanisms for lysophosphatidic acid-induced cytokine production in ovarian cancer cells. J Biol Chem. 2004;279(10):9653-9661.
    24. Chou CH, Wei LH, Kuo ML, Huang YJ, Lai KP, Chen CA, Hsieh CY. Up-regulation of interleukin-6 in human ovarian cancer cell via a Gi/PI3K-Akt/NF-kappaB pathway by lysophosphatidic acid, an ovarian cancer-activating factor. Carcinogenesis. 2005;26(1):45-52.
    
    25. Maughan K. Specific keynote: in the shadow of illness—supporting women with ovarian cancer. Gynecol Oncol. 2003;88(l Pt 2):S129-133 [discussion S134- 125].
    
    26. Boocock CA, Charnock-Jones DS, Sharkey AM, McLaren J, Barker PJ, Wright KA, Twentyman PR, Smith SK. Expression of vascular endothelial growth factor and its receptors flt and KDR in ovarian carcinoma. J Natl Cancer Inst. 1995;87(7):506-516.
    
    27. Davidson B, Goldberg I, Gotlieb WH, Kopolovic J, Ben-Baruch G, Nesland JM, Reich R. The prognostic value of metalloproteinases and angiogenic factors in ovarian carcinoma. Mol Cell Endocrinol. 2002;187(1-2):39- 45.
    
    28.乐杰,主编.妇产科学.第6版.北京:人民卫生出版社.2003;305-310.
    
    29. Xu Y, Shen Z, Wiper DW, Wu M, Morton RE, Elson P, Kennedy AW, Belinson J, Markman M, Casey G. Lysophosphatidic acid as a potential biomarker for ovarian and other gynecologic cancers. JAMA. 1998;280(8):719-723.
    
    30. Springett GM, Bonham L, Hummer A, Linkov I, Misra D, Ma C, Pezzoni G, Di Giovine S, Singer J, Kawasaki H, Spriggs D, Soslow R, Dupont J. Lysophosphatidic acid acyltransferase-beta is a prognostic marker and therapeutic target in gynecologic malignancies. Cancer Res. 2005;65(20):9415-9425.
    31. Bonham L, Leung DW, White T, Hollenback D, Klein P, Tulinsky J, Coon M, de Vries P, Singer JW. Lysophosphatidic acid acyltransferase-beta: a novel target for induction of tumour cell apoptosis. Expert Opin Ther Targets. 2003;7(5):643-661.
    
    32. Coon M, Ball A, Pound J, Ap S, Hollenback D, White T, Tulinsky J, Bonham L, Morrison DK, Finney R, Singer JW. Inhibition of lysophosphatidic acid acyhransferase-beta disrupts Proliferative and survival signals in normal cells and induces apoptosis of tumor cells. Mol Cancer Ther. 2003;2(10):1067-1078.
    
    33. Sawada K, Morishige K, Tahara M, Ikebuchi Y, Kawagishi R, Tasaka K, Murata Y. Lysophosphatidic acid induces focal adhesion assembly through Rho/Rho-associated kinase pathway in human ovarian cancer cells. Gynecol Oncol. 2002;87(3):252-259.
    1. Contos JJ, Ishii I, Chun J. Lysophosphatidic acid receptors. Mol Pharmacol. 2000;58:1188-96.
    2. Siess W, Zangl KJ, Essler M, Bauer M, Brandl R, Corrinth C, et al. Lysophosphatidic acid mediates the rapid activation of platelets and endothelial cells by mildly oxidized low density lipoprotein and accumulates in human atherosclerotic lesions. Proc Natl Acad Sci USA. 1999;96:6931-6.
    3. Xu Y, Fang XJ, Casey G, Mills GB. Lysophospholipids activate ovarian and breast cancer cells. Biochem J. 1995;309(Pt 3):933-40.
    4. Schulte KM, Beyer A, Kohrer K, Oberhauser S, Roher HD. Lysophosphatidic acid, a novel lipid growth factor for human thyroid cells: over-expression of the high-affinity receptor edg4 in differentiated thyroid cancer. Int J Cancer. 2001;92:249-56.
    5. Yamada T, Sato K, Komachi M, Malchinkhuu E, Tobo M, Kimura T, et al. Lysophosphatidic acid (LPA) in malignant ascites stimulates motility of human pancreatic cancer cells through LPA1. J Biol Chem. 2004;279:6595-605. Epub 2003 Dec 3.
    6. Xu Y, Gaudette DC, Boynton JD, Frankel A, Fang XJ, Sharma A, et al. Characterization of an ovarian cancer activating factor in ascites from ovarian cancer patients. Clin Cancer Res. 1995;1:1223-32.
    7. Fang X, Schummer M, Mao M, Yu S, Tabassam FH, Swaby R, et al. Lysophosphatidic acid is a bioactive mediator in ovarian cancer. Biochim Biophys Acta. 2002;1582(1-3):257-64.
    8. Westermann AM, Havik E, Postma FR, Beijnen JH, Dalesio O, Moolenaar WH, et al. Malignant effusions contain lysophosphatidic acid (LPA)-like activity. Ann Oncol. 1998;9:437-42.
    9. An S, Bleu T, Hallmark OG, Goetzl EJ. Characterization of a novel subtype of human G protein-coupled receptor for lysophosphatidic acid. J Biol Chem. 1998;273:7906-10.
    10. Bandoh K, Aoki J, Hosono H, Kobayashi S, Kobayashi T, Murakami-Murofushi K, et al. Molecular cloning and characterization of a novel human G-protein-coupled receptor, EDG7, for lysophosphatidic acid. J Biol Chem. 1999;274:27776-85.
    11. Ye X, Ishii I, Kingsbury MA, Chun J. Lysophosphatidic acid as a novel cell survival/apoptotic factor. Biochim Biophys Acta. 2002; 1585(2-3): 108-13.
    12. Noguchi K, Ishii S, Shimizu T. Identification of p2y9/GPR23 as a novel G protein-coupled receptor for lysophosphatidic acid, structurally distant from the Edg family. J Biol Chem. 2003;278:25600-6. Epub 2003 Apr 30.
    13. McIntyre TM, Pontsler AV, Silva AR, St Hilaire A, Xu Y, Hinshaw JC, et al. Identification of an intracellular receptor for lysophosphatidic acid (LPA): LPA is a transcellular PPARgamma agonist. Proc Natl Acad Sci USA. 2003; 100:131-6. Epub 2002 Dec 26. Erratum in: Proc Natl Acad Sci USA. 2003; 100:2163.
    14. Hu YL, Tee MK, Goetzl EJ, Auersperg N, Mills GB, Ferrara N, et al. Lysophosphatidic acid induction of vascular endothelial growth factor expression in human ovarian cancer cells. J Natl Cancer Inst. 2001;93:762-8.
    15. Pustilnik TB, Estrella V, Wiener JR, Mao M, Eder A, Watt MA, et al. Lysophosphatidic acid induces urokinase secretion by ovarian cancer cells. Clin Cancer Res. 1999;5:3704-10.
    16. Li H, Ye X, Mahanivong C, Bian D, Chun J, Huang S. Signaling mechanisms responsible for lysophosphatidic acid-induced urokinase plasminogen activator expression in ovarian cancer cells. J Biol Chem. 2005;280:10564-71. Epub 2005 Jan 14.
    17. Huang MC, Lee HY, Yeh CC, Kong Y, Zaloudek CJ, Goetzl EJ. Induction of protein growth factor systems in the ovaries of transgenic mice overexpressing human type 2 lysophosphatidic acid G protein-coupled receptor (LPA2). Oncogene. 2004;23:122-9.
    
    18. Chen M, Towers LN, O'Connor KL. LPA2 (EDG4) mediates Rho-dependent chemotaxis with lower efficacy than LPA1 (EDG2) in breast carcinoma cells. Am J Physiol Cell Physiol. 2007;292:C1927-33.
    19. Wang P, Wu X, Chen W, Liu J, Wang X. The lysophosphatidic acid (LPA) receptors their expression and significance in epithelial ovarian neoplasms. Gynecol Oncol. 2007; 104:714-20. Epub 2007 Jan 3.
    20. Hu YL, Albanese C, Pestell RG, Jaffe RB. Dual mechanisms for lysophosphatidic acid stimulation of human ovarian carcinoma cells. J Natl Cancer Inst. 2003;95(10):733-740.
    21. Shida D, Kitayama J, Yamaguchi H, Okaji Y, Tsuno NH, Watanabe T, et al. Lysophosphatidic acid (LPA) enhances the metastatic potential of human colon carcinoma DLD1 cells through LPA1. Cancer Res. 2003 ;63:1706-11.
    1. Eichholtz T, Jalink K, Fahrenfort I, Moolenaar WH.The bioactive phospholipid lysophosphatidic acid is released from activated platelets. Biochem J. 1993, 291(Pt3): 677-680.
    2. Goetzl EJ, An S. Diversity of cellular receptors and functions for the lysophospholipid growth factors lysophosphatidic acid and sphingosine 1-phosphate. FASEB J. 1998, 12(15):1589-1598.
    3. Xu Y, Shen Z, Wiper DW, Wu M, Morton RE, Elson P, Kennedy AW, Belinson J, Markman M, Casey G. Lysophosphatidic acid as a potential biomarker for ovarian and other gynecologic cancers. JAMA. 1998, 280(8):719-723.
    4. Xu Y, Fang XJ, Casey G, Mills GB. Lysophospholipids activate ovarian and breast cancer cells. Biochem J. 1995, 309(Pt3):933-940.
    5. Westermann AM, Havik E, Postma FR, Beijnen JH, Dalesio O, Moolenaar WH, Rodenhuis S. Malignant effusions contain lysophosphatidic acid (LPA)-like activity. Ann Oncol. 1998, 9(4):437-442.
    6. Moolenaar WH, Kranenburg O, Postma FR, Zondag GC. Lysophosphatidic acid: G-protein signalling and cellular responses. Curr Opin Cell Biol. 1997, 9(2): 168-173.
    7. Duffy MJ. Proteases as prognostic markers in cancer. Clin Cancer Res. 1996, 2(4):613-618.
    8. Chambers SK, Gertz RE Jr, Ivins CM, Kacinski BM. The significance of urokinase- type plasminogen activator, its inhibitors, and its receptor in ascites of patients with epithelial ovarian cancer. Cancer. 1995, 75(7): 1627-1633.
    9. Schmalfeldt B, Kuhn W, Reuning U, Pache L, Dettmar P, Schmitt M, Janicke F, Hofler H, Graeff H. Primary tumor and metastasis in ovarian cancer differ in their content of urokinase-type plasminogen activator, its receptor, and inhibitors types 1 and 2. Cancer Res. 1995, 55(18):3958-3963.
    
    10.Kuhn W, Pache L, Schmalfeldt B, Dettmar P, Schmitt M, Janicke F, Graeff H. Urokinase (uPA) and PAI-1 predict survival in advanced ovarian cancer patients (FIGO Ⅲ) after radical surgery and platinum-based chemotherapy. Gynecol Oncol. 1994, 55(3 Pt 1):401-409.
    
    11.Folkman J, Watson K, Ingber D, Hanahan D. Induction of angiogenesis during the transition from hyperplasia to neoplasia. Nature. 1989, 339(6219):58-61.
    12. Weidner N, Semple JP, Welch WR, Folkman J. Tumor angiogenesis and metastasis-correlation in invasive breast carcinoma. N Engl J Med. 1991, 324(1): 1-8.
    13. Senger DR, Galli SJ, Dvorak AM, Perruzzi CA, Harvey VS, Dvorak HF. Tumor cells secrete a vascular permeability factor that promotes accumulation of ascites fluid. Science. 1983, 219: 983-985.
    14. Gordon JD, Mesiano S, Zaloudek CJ, Jaffe RB. Vascular endothelial growth factor localization in human ovary and fallopian tubes: possible role in reproductive function and ovarian cyst formation. J Clin Endocrinol Metab. 1996, 8:353-359.
    15. Olson TA, Mohanraj D, Carson LF, Ramakrishnan S. Vascular permeability factor gene expression in normal and neoplastic human ovaries. Cancer Res. 1994, 54:276-280.
    16. Abu-Jawdeh GM, Faix JD, Niloff J, Tognazzi K, Manseau E, Dvorak HF, et al. Strong expression of vascular permeability factor (vascular endothelial growth factor) and its receptors in ovarian borderline and malignant neoplasms. Lab Invest. 1996, 74:1105-1115.
    
    17.Yamamoto S, Konishi I, Mandai M, Kuroda H, Komatsu T, Nanbu K, et al. Expression of vascular endothelial growth factor (VEGF) in epithelial ovarian neoplasms: correlation with clinicopathology and patient survival, and analysis of serum VEGF levels. Br J Cancer. 1997, 76:1221- 1227.
    18.Mesiano S, Ferrara N, Jaffe RB. Role of vascular endothelial growth factor in ovarian cancer: inhibition of ascites formation by immunoneutralization. Am J Pathol. 1998, 153:1249-1256.
    19.Yoneda J, Kuniyasu H, Crispens MA, Price JE, Bucana CD, Fidler IJ. Expression of angiogenesis-related genes and progression of human ovarian carcinomas in nude mice. J Natl Cancer Inst. 1998, 90:447-454.
    20. Hartenbach EM, Olson TA, Goswitz JJ, Mohanraj D, Twiggs LB,Carson LF, et al. Vascular endothelial growth factor (VEGF) expression and survival in human epithelial ovarian carcinomas. Cancer Lett. 1997,121:169-175.
    21.Fujimoto J, Sakaguchi H, Aoki I, Khatun S, Tamaya T. Clinical implications of expression of vascular endothelial growth factor in metastatic lesions of ovarian cancers. Br J Cancer. 2001, 85:313-316.
    22.Pustilnik TB, Estrella V, Wiener JR, Mao M, Eder A, Watt MA, Bast RC Jr, Mills GB. Lysophosphatidic acid induces urokinase secretion by ovarian cancer cells. Clin Cancer Res 1999, 5(11): 3704-3710.
    23.Li H, Ye X, Mahanivong C, Bian D, Chun J, Huang S. Signaling mechanisms responsible for lysophosphatidic acid-induced urokinase plasminogen activator expression in ovarian cancer cells. J Biol Chem 2005, 280(11): 10564-10571.
    24.Moolenaar WH. Lysophosphatidic acid, a multifunctional phospholipid messenger. J Biol Chem. 1995, 270:12949-12952.
    
    25. Duffy MJ. Urokinase plasminogen activator and malignancy. Fibrinolysis. 1993, 7: 295-302.
    
    26. Plow EF, Freany DE, Plescia J, and Miles LA. The plasminogen system and cell surfaces: evidence for plasminogen and urokinase receptors on the same cell type. J. Cell Biol, 1986, 103:2411-2420.
    
    27. Birkedal-Hansen H.Proteolytic remodeling of extracellular matrix. Curr Opin Cell Biol. 1995,7:728-735.
    
    28. Young TN, Rodriquez GC, Moser TL, Bast RC, Pizzo SV, and Stack S. Coordinate expression of urinary-type plasminogen activator and its receptor accompanies malignant transformation of the ovarian surface epithelium. Am J Obstet Gynecol. 1994, 170:1285-1296.
    
    29. Casslen B, Bossmar T, Lecander I, and Astedt B. Plasminogen activators and plasminogen activator inhibitors in blood and tumour fluids of patients with ovarian cancer. Eur J Cancer. 1994, 30A: 1302-1309.
    
    30. Gleeson NC, Hill BJ, Moscinski LC, Mark JE, Roberts WS, Hoffman MS, Fiorica JV, and Cavanagh D. Urokinase plasminogen activator in ovarian cancer. Eur J Gynaecol Oncol. 1996, 17:110-113.
    31. Hu YL, Tee MK, Goetzl EJ, Auersperg N, Mills GB, Ferrara N, Jaffe RB. Lysophosphatidic acid induction of vascular endothelial growth factor expression in human ovarian cancer cells. J Natl Cancer Inst. 2001, 93(10):762-768.
    32.Lee J, Park SY, Lee EK, Park CG, Chung HC, Rha SY, Kim YK, Bae GU, Kim BK, Han JW, Lee HY. Activation of hypoxia-inducible factor-1 alpha is necessary for lysophosphatidic acid-induced vascular endothelial growth factor expression. Clin Cancer Res. 2006, 12(21):6351-6358.
    33.So J, Wang FQ, Navari J, Schreher J, Fishman DA.LPA-induced epithelial ovarian cancer (EOC) in vitro invasion and migration are mediated by VEGF receptor-2 (VEGF-R2). Gynecol Oncol. 2005, 97(3):870-878.
    34.Hu YL, Albanese C, Pestell RG, Jaffe RB. Dual mechanisms for lysophosphatidic acid stimulation of human ovarian carcinoma cells. J Natl Cancer Inst. 2003, 95(10):733-740.
    35.Huang MC, Lee HY, Yeh CC, Kong Y, Zaloudek CJ, Goetzl EJ. Induction of protein growth factor systems in the ovaries of transgenic mice overexpressing human type 2 lysophosphatidic acid G protein-coupled receptor (LPA2). Oncogene. 2004, 23(1):122-129.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700