硬质纳米多层膜的微结构与超硬效应
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
以TiN为代表的陶瓷硬质薄膜在包括切削工具涂层在内的表面改性和防护领域得到广泛应用。制造业中高速切削和干式切削等先进技术的发展对刀具提出了更高的要求,需要作为刀具涂层的薄膜材料不仅具有更高的硬度,还应具有优良的高温稳定性。纳米多层膜因超硬效应具有高硬度,特别是它们材料组合的多样性而获得的性能可剪裁性展示了在刀具涂层上的广阔应用前景。而这类材料通过人工微结构设计获得高硬度的强化机制更具理论研究价值。然而,目前尚不能仅从理论上设计出具有超硬效应的纳米多层膜,实验探索仍是获得高硬度纳米多层膜的主要研究方法。
     本论文采用磁控溅射技术制备了VN/SiO_2、VN/AlON、ZrO_2/TiN和TiAlN/Si_3N_4等体系的纳米多层膜,采用XRD、TEM、EDX、SEM和微力学探针等先进测试方法表征了薄膜的微结构和力学性能。研究了通过溅射方法获得含氧化物纳米多层膜的制备技术;研究了纳米多层膜中不同晶体结构模板层对另一调制层晶体生长作用的模板效应;研究了纳米多层膜的高温稳定性;讨论了纳米多层膜的超硬机制。并基于所得研究结果对现有高硬度纳米多层膜的设计准则提出了修正和补充。
     论文的主要研究结果如下:
     1.对VN/SiO_2和VN/AlON纳米多层膜的研究表明,采用金属靶和氧化物陶瓷靶,通过在Ar-N2混合气氛中反应溅射的方法可以高效率地沉积具有高硬度的含氧化物纳米多层膜。在VN/SiO_2和VN/AlON纳米多层膜中,由于NaCl结构VN层晶体结构的模板效应,通常溅射态为非晶的SiO_2或AlON层在其厚度小于约1 nm时能够晶化,并与VN层共格外延生长,从而使多层膜的硬度得到明显提高,最高硬度分别达到34GPa和30Gpa;随着自身厚度的进一步增加,SiO_2或AlON层逐渐转变为以非晶态生长,阻断了纳米多层膜的共格外延生长,多层膜的硬度随之降低。而模板层VN的厚度改变对纳米多层膜的生长结构和力学性能影响相对较小。
     2.对ZrO_2/TiN纳米多层膜的研究表明,与立方结构的氮化物一样,四方结构的ZrO_2也呈现出影响另一沉积层(TiN)晶体生长的模板效应,在此效应下,通常仅以立方结构存在的TiN在层厚小于1.8nm时被强制改变其晶体结构,形成与ZrO_2相同的亚稳态四方晶体结构,并与ZrO_2共格外延生长。随TiN层厚的增加,ZrO_2晶体层对TiN赝晶生长的模板效应逐渐减弱,TiN又以其稳定的NaCl结构生长,多层膜的共格外延生长结构遭到破坏,形成了四方结构ZrO_2和立方结构TiN交替生长的非共格纳米多层结构。ZrO_2/TiN纳米多层膜没有显示出硬度明显升高的超硬效应,其原因与多层膜中的共格应变使得两调制层材料模量差异的减小有关。
     3.在TiAlN/Si_3N_4纳米多层膜中,由于TiAlN层晶体结构的模板作用,溅射态为非晶的Si_3N_4在厚度小于0.6nm时被晶化,并与TiAlN层形成共格外延生长,多层膜产生硬度高达52GPa的超硬效应。随着层厚的增加,Si_3N_4转变为以非晶态生长,多层膜的硬度也随之降低。高温稳定性研究表明,该体系纳米多层膜具有良好的高温结构稳定性,即使在900℃的温度,多层膜仍能保持其晶体结构和调制结构的稳定,其硬度也依然明显高于TiAlN单层膜。但多层膜的抗氧化性并没有相对于TiAlN单层膜得到明显提高。
     4.论文的研究发现,两调制层形成共格结构是纳米多层膜获得超硬效应的必要条件。模量差强化是纳米多层膜获得超硬效应的主要机制,但应考虑各调制层模量在共格生长形成的交变应力场作用下的改变。基于这一研究结果,论文对现有高硬度纳米多层膜的设计准则提出了修正和补充:
     1)两调制层应形成共格外延生长。
     两调制层形成共格界面是纳米多层膜产生超硬效应的必要条件,但多层膜在材料组合上并不仅限于晶格参数相近的两种材料,借助于纳米多层膜晶体生长的模板效应,两种结构类型不同的晶体材料、甚至其中一种为非晶的材料也可形成产生超硬效应所必须的共格界面结构;
     2)调制层在形成共格结构后材料的模量差应尽可能大。
     共格生长的两调制层存在模量差是纳米多层膜获得超硬效应的主要原因,但是,对于各调制层的模量,应是纳米多层膜形成共格结构后在交变应力场作用下的改变值,而非各调制层以单层膜形式存在时的模量。
     以上对设计准则的修正和补充,大大拓展了高硬度纳米多层膜的材料组合空间。
The ceramic hrad films, such as TiN, have been widely applied in some fields of surface modification and protection inclunding coatings of cutting tools. The development of dry and high-speed cutting demands protective cutting-tool coatings with not only high hardness but also good thermal stability at high temperatures. Nanomultilayer films show much potential in the coatings fields of cutting tools, for they can obtain high hardness due to the superhadrness effect and especially can present flexiable performace modification by changing their constituents. Additionally, the nanomultilayer films can obtain high hardness by designing their structure, which shows more research value. However, it’s impossible to design the superhard nanomultilayer only according to the theory now, which leads that the experiments are still the main intestigation method to obtain the nano-multilayer films with high hardness.
     In this work, VN/SiO_2, VN/AlON, ZrO_2/TiN and TiAlN/Si_3N_4 nanomultilayer films were synthesized by magnetron sputtering method, and their microstructure and mechanical properties were characterized by XRD, TEM, EDX, SEM and nanoindentation. The main studies in this work are described as follows: It was investigated that the reactive sputtering method to synthesize the oxide-composed nanomultilayer films, the template effect in nanomultilayer films with different structural template layer that the crystal template can affect the growth of the other layer, the high-temperature thermal stability of nanomultilayer films, and the strengthening models of nanomultilayer films. Finally, the present designing rule for nanomultilayer films with high hardness were modified and supplemented based on the research results.
     The main conclusions in this work are summarized as follows:
     1. The studies on the VN/SiO_2 and VN/AlON multilayers indicate that the reactive sputtering method with higher deposition rate can be successfully used to synthesize the oxide-composed multilayers with high hardness. The results show that, under the template effect of Nacl-type VN, normally amphorous SiO_2 and AlON with very low thickness (<1nm) can be crystallized and further grow epitaxially with VN layer, accompanied by a remarkable increase in hardness of multilayers. On further increase of SiO_2 and AlON layer thickness, the SiO_2 and AlON gradually transform into amorphous structure, resulting in a rapid decline in hardness. On the other hand, the change of VN layer thickness shows a relatively small effect on the growth structure and mechanical properties of the nanomultilayers.
     2. The studies on ZrO_2/TiN multilayers show that the tetragonal structural ZrO_2 also presents the template effect like the NaCl-type structural TiN. Under this template effect, TiN with layer thickness lower than 1.8nm can grow into metastable tetragonal structure and grow epitaxially with ZrO_2. With further increase of thickness, TiN gradually transforms into NaCl-type structure and blocks the epitaxial gowth of multilayers, resulting in a rapid decline in crystal integrity. In addition, ZrO_2/TiN multilayers don’t present the superhardness effect, for the coherent strain in multilayers can change the modulus of the modulation material.
     3. The studies on TiAlN/Si_3N_4 multilayers show that under the t1emplate effect of TiAlN, normally amorphous Si_3N_4 with low layer thickness (<~0.6nm) can be crystallized and grow epitaxially with TiAlN layer, accompanied by a remarkable increase in hardness. On further increase of layer thickness, Si_3N_4 gradually changes into amorphous structure, resulting in a quick decline in hardness. The research about the thermal stabilities of nanomultilayer films indicates, TiAlN/Si_3N_4 nanomultilayer films present good high-temperature structural stability, and their crystal structure and modulation structure can still be stable even at 900℃, which results in their higher hardness than TiAlN single film. However, TiAlN/Si_3N_4 nanomultilayer films don’t show apparently higher oxidation resistance than TiAlN single film.
     4. The studies indicate that it’s necessary to form a coherent structure for nanomultilayers in order to obtain high hardness, The modulus-difference strengthening dominates the superhardness effect compared with the alternating stress field strengthening, but it should be taken into account that the effect of alternating stress field on the modulus of modulation layers in nanomulatilayer films. Based on these studies, the present designing rule for nanomultilayer films with high hardness were modified and supplemented in this work, which were mainly described as follows:
     1) The two modulation layers should form the coherent structure;
     It’s necessary to form a coherent structure between the two modulation layers for nanomultilayer films to obtain high hardness, but it doesn’t mean that the lattice parameters of two modulation layers have to be nearly equal. Under the template effect, the nanomultilayer films can also grow into coherent structure even if their lattice parameters have a large difference.
     2) The modulus difference of two modulation layers under the coherent strain should be as large as possible;
     A large difference between the modulus of two modulation layer with coherent structure is the main reason for nano-multilayer films to obtain high hardness. However, herein the modulus isn’t the modulus of the bulk constituents of multialyers, but the modulus of two modulation layer under the coherent strain in nanomultilayers.
     The above modification and supplement to the present designing rule can expand the scope of material combination for nanomultilayer films with high hardness.
引文
[1] 宋健,制造业的现代化,人民日报,2002, 9, 26-26.
    [2] 肖寿, 高鸣智, 邓晓春, 高速切削刀具材料应用进展, 2008, 60,48-50.
    [3] T. Cselle, A. Barimani. Today’s applications and future developments of coatings for drills and rotating cutting tools, Surface and Coatings Technology, 76-77, 712-718.
    [4] 吴大维, 刘传胜, 傅得君, 彭友贵, 范湘军. 刀具涂层技术的新进展, 中国机械工程, 2000, 5, 574-576.
    [5] I. Milossev, H. H. Stehblow, B. Navinsek, M. Metikos-Hukovic, Electrochemical and thermal oxidation of TiN coatings studied by XPS, Surf. Interface Anal. (UK), 1995, 23(7-8), 529-539.
    [6] J.H. Hsieh, A.L.K. Tan, X.T. Zeng, Oxidation and wear behaviors of Ti-based thin films, Surface and Coatings Technology, 2006, 201(7), 4094-4098.
    [7] I. Milo?ev, H.H. Strehblow, B. Navin?ek, Comparison of TiN, ZrN and CrN hard nitride coatings: Electrochemical and thermal oxidation, Thin Solid Films,1997, 303(1-2), 246-254.
    [8] B.Y. Man, L. Guzmana, A. Miotelloa, M. Adamia, Microstructure, oxidation and H2 permeation resistance of TiAlN films deposited by DC magnetron sputtering technique, Surface and Coatings Technology, 2004, 180 –181, 9–14.
    [9] P.J. Peter, N. Boris, C, Miha, Z. Anton, Oxidation behaviour of TiAlN coatings sputtered at low temperature, 1999, 53, 127-131.
    [10] G.T. Liu, J.G. Duh, K.H. Chung, J.H. Wang, Mechanical characteristics and corrosion behavior of (Ti,Al)N coatings on dental alloys, Surface and Coatings Technology, 2005, 200(7), 2100-2105.
    [11] G. S. Kim, S. Y. Lee, J.H. Hahn, Properties of TiAlN coatings synthesized by closed-field unbalanced magnetron sputtering, Surface and Coatings Technology, 2005, 193(1-3), 213-218.
    [12] S.Veprek, The search for novel, superhard materials, J.Vac.Sci.Technol. A, 1999; 7(5), 2401-2420.
    [13] W.Schedler, Hartmetall fur den Praktiker (VDI.Dusseldorf),1998.
    [14] Metals Handbook, 10th ed, edited by J.R.Davis. P.Allen, S.R.Lampman et al.(ASM International, Metals Park, OH), 1990, 2, 950-953.
    [15] A.Y. Liu, M. L.Cohen, Prediction of New Low Compressibility Solids,Science,1989,245(4920), 841-842.
    [16] Y.A. Chen, L.Guo, E. G.Wang, alpha beta Experimental evidence for alpha and beta -phases of pure crystalline C3N4 in films deposited on nickel substrates, Philosophical Magazine Letters, 1997, 75(3), 155-162.
    [17] Metals Handbook, 10th ed, Edited by J.R.Davis. P.Allen, S.R.Lampman et al. (ASM International, Metals Park, OH). 1990, 2, 950-953.
    [18] Y.Zhang, Z.Zhou, H.Li, Crystalline carbon nitride films formation by chemical vapor deposition, Appl. Phys. Lett. 1996, 68, 634-636.
    [19] Y.Chen, L. P.Guo, F.Chen, E.G.Wang, Synthesis and characterization of C3N4 crystalline films on silicon, J.Phys: Condens. Mater, 1996, 8, 685-690.
    [20] Y.A. Li, S. Xu, H.S. Li, W.Y. Luo, Polycrystalline carbon nitride β-C3N4 films synthesized by radio frequency magnetron sputtering, Journal of Materials Science Letters, 1997,17(1), 31-35.
    [21] D. L. Yu, F. R. Xiao, T. S. Wang, Y. J. Tian, J. L. He, D. C. Li,W. K. Wang, Synthesis of graphite-C3N4 crystal by ion beam sputtering, Journal of Materials Science Letters, 2000,19(7), 553-556.
    [22] D.J.Johnson, Y.Chen, Y.He, Deposition of carbon nitride via hot filament assisted CVD and pulsed laser deposition, Diamond Relat. Matter.,1997, 6, 1799-1805
    [23] Y. Chen, L. Guo, E.G.Wang, alpha beta Experimental evidence for alpha - and beta -phases of pure crystalline C3N4 in films deposited on nickel substrates, Philos. Mag. Lett. 1997, 75, 155-162.
    [24] S. Veprek, S. Reiprich, Li Shizhi, Superhard nanocrystalline composite materials: The TiN/Si3N4 system, Applied Physics Letters, 1995, 66, 2640-2648.
    [25] S. Veprek, Conventional and new approaches towards the design of novel superhard materials, Surface and Coatings Technology, 1997, 97(1-3), 15-22.
    [26] R.F. Zhang, S. Veprek, On the spinodal nature of the phase segregation and formation of stable nanostructure in the Ti–Si–N system, Materials Science and Engineering: A, 2006, 424(1-2), 128-137.
    [27] S. Veprek, S. Reiprich, A concept for the design of novel superhard coatings Thin Solid Films, 1996, 268, 64-71.
    [28] S. Veprek, M. Haussmann, S. Reiprich, Superhard nanocrystalline W 2 N/amorphous Si3N4 composite materials J. Vac. Sci. Technol. A, 1996, 14, 46-52.
    [29] S. Veprek, M. Jilek, Super- and ultrahard nanacomposite coatings: generic concept for their preparation, properties and industrial applications, 2002, 67(3-4), 443-449.
    [30] S. Ma, J. Procházka, P. Karvánková, Q. Ma, X. Niu, X. Wang, D. Ma, K. Xu, S. Vep ek, Comparative study of the tribological behaviour of superhard nanocomposite coatings nc-TiN/a-Si3N4 with TiN, Surface and Coatings Technology, 2005, 194(1) ,143-148.
    [31] S. Veprek, H.-D. M?nnling, P. Karvankova, J. Prochazka, The issue of the reproducibility of deposition of superhard nanocomposites with hardness of ≥50 GPa, Surface and Coatings Technology, 2006,200(12-13), 3876-3885.
    [32] S. Veprek, S. Mukherjee, P. Karvankova, H.-D. M?nnling, J. L. He, K. Moto, Limits to the strength of super- and ultrahard nanocomposite coatings, Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 2003, 21(3), 532-544.
    [33] X.P. Hu, G.Y. Li, M.Y. Gu. Microstructure and properties of Ti-Si-N nanocomposite films. Journal of Vacuum Science and Technology, 2002, 20 (6), 1921-1925.
    [34] 胡晓萍,董云杉,孔明,李戈扬,顾明元, TiN/Si3N4 纳米多层膜的生长结构与超硬效应, 真空科学与技术学报, 2005, 25(4), 263-267.
    [35] M. Kong, W. Zhao, L. Wei, G Li, Investigations on the microstructure and hardening mechanism of TiN/Si 3 N 4 nanocomposite coatings, Journal of Physics D, Applied Physics, 2007,40, 2858-2863.
    [36] L. Hultman, J. Bare?o, A. Flink, H. S?derberg,,K. Larsson, V. Petrova, M. Odén, J. E. Greene, I. Petrov,Interface structure in superhard TiN-SiN nanolaminates and nanocomposites: Film growth experiments and ab initio calculations,Physical Review B, 2007, 75, 155437.
    [37] S.A. Barnett, Meenam Shinn., Plastic and Elastic Properties of Compositionally Modulated Thin Films. Annu. Rev. Mater. Sci., 1994, 24, 481-511.
    [38] J. S. Koehler, Attempt to Design a Stronge Solid. Phys. Rev. B, 1970, 2, 547~551.
    [39] S. L.Lehoczky, Strength Enhancement in Thin-layered Al-Cu Laminates. Journal of Applied Physics. 1978, 49, 5479-5485.
    [40] U.Helmersson, S.Todorova, S.A.Barnett et al., Growth of single-crystal TiN/VN stained-lay superlattice with extremely high mechanical hardness, J.Appl. Phys., 1987, 62(2), 481-484.
    [41] W.M. Yang, T. Tsakalakos, J E. Hilliard, Enhanced Elastic Modulus in Composition-modulated Gold-nikel and Copper-palladium Foils. Journal of Applied Physics. 1977, 48, 876-879.
    [42] T. Tsakalakos, J. E. Hilliard, Elastic modulus in composition-modulated copper-nickel foils.Journal of Applied Physics, 1983, 54, 734-737.
    [43] R. C. Cammarata, Schlesinger T E, Kim C, et al. Nanoindentation Study of the Mechanical Properties of Copper-nickel multilayered thin films. Appl. Phys. Lett. 1990, 56, 19, 1862-1864.
    [44] C. Kim, S. B. Qadri, M. R. scanlon, R. C. Cammarata, Low-dimension Structural Properties and Microindentation studies of Ion-beam-sputtered Multilayers of Ag/Al Films. Thin Solid Films. 1994, 240, 52-55.
    [45] G.Y. Li, J.H. Xu, L.Q. Zhang, L. Wu, M.Y. Gu, Growth, Microstructure, and Microhardness of W/Mo nanostructured multilayers. J. Vac. Sci. Technol. B. 2001, 19(1), 94-97.
    [46] K. K. Shih, D. B.Dove, Ti/TiN, Hf/HfN and W/WN Multilayer Films with High Mechanical Hardness. Appl. Phys. Lett. 1992, 61(6), 654-656.
    [47] Y. Kang, C. Lee, J. Lee, Effects of Processing Variables on the Mechanical Properties of Ta/TaN Multilayer Coatings. Materials Science and Engineering B. 2000, 75, 17-23.
    [48] J. Wang, W.Z. Li, H.D. Li, Mechanical Properties of nanoscaled TiC/Fe multilayers deposited by ion beam sputtering technique. Thin Solid Films. 2001,382, 190-193.
    [49] T. C. Chou, T. G. Nieh, S. D. McAdams, G. M. Pharr, W.C. Oliver, Mechanical Properties and Microstruceures of Metal/ceramic Microlaminates:Part1.Nb/MoSi2 Systems. J. Mater. Res.1992, 7(10), 2774-2784.
    [50] J.O.Kim, J.D.Achenbach, M.Shinn, S.A. Barnett, Effective elastic constants and acoustic properties ofsingle-crystal TiN/NbN superlattices, J. Mater. Res., 1992, 7(3), 2248-2256.
    [51] M. Shinn, L.Hultman, S.A.Barnett, Growth, structure and microhardness of epitaxial TiN/NbN superlattices, .J Mater. Res., 1992, 7(4), 901-911.
    [52] X. Chu, M.S.Wong, W.D. Sproul, S.L.Rohde, S.A. Barnett, Deposition and properties of polycrystalline TiN/NbN superlattice coatings, J. Vac. Sci. Technol. A, 1992, 10(4), 1604-1609.
    [53] M. Larsson, P. Hollman, P. Hedenqvist, S. Hogmark, et al., Deposition and microstructure of PVD TiN-NbN reactive electron beam evaporation and DC sputtering, Surf. Coat. Technol., 1996, 86-87, 351-356.
    [54] H. Ljungcrantz, C. Engstrom, L.Hultman, et al., Nanoindentation hardness, abrasive wear, and microstructure of TiN/NbN polycrystalline nanostructured multilayer films grown by reactive magnetron sputtering, J. Vac.Sci. Tehnol. A, 1998, 16(5), 3104-3113.
    [55] K.M.Hubbard, T.R.Jervis, P.B. Mirkarimi, S.A.Barnett, Mechanical properties of epitaxial TiN/(V0.6Nb0.4)N superlattices measured by nanoindentation, J. Appl. Phys., 1992, 72, 4466-4468.
    [56] P.B.Mirkarimi, L.Hultman, S.A.Barnett, Enhanced hardness in lattice-matched Sigle-Crystal TiN/V0.6Nb0.4N superlattices, Appl. Phys Lett., 1990, 57(25), 2654-2656.
    [57] P.B.Mirkarimi, S.A.Barnett, K.M.Hubbard, T.R.Jervis, L.Hultman, Structure and mechanical properties of Epitaxial TiN/V0.3Nb0.7N (100) superlattice, J. Mater. Res., 1994, 9(6):1456-1467.
    [58] M.Shinn, S.A. Barnett, Effect of superlattice layer elastic moduli on hardness, Appl. Phys. Lett., 1994 ,64(1) ,61-63
    [59] X. Chu, S.A.Barnett, Model of superlattice yield stress and hardness enhancements, J. Appl. Phys, 1995, 77(9), 4403-4411.
    [60] P.M. Anderson, C.Li, Hall-petch relations for multilayered materials, Nanostructure Mater. 1995, 5(3), 349-353.
    [61] M.Kato, T.Mori, L.H. Schwartz, Hardening by spinodal modulated structure, Acta. Metall., 1980, 28, 285-289.
    [62] R.C.Cammarata, The supermodulus effect in compositionally modulated thin films, Scripta Matall., 1986, 20, 479-480.
    [63] T.H.Courtney, Mechanical behavior of material. New York: McGraw-Hill, Inc., 1992.
    [64] E.S.Pacheco, T. Mura, Interaction between a screw dislocation and a bimetallic interface, J. Mech. Phys. Solids, 1969, 17,163-170.
    [65] J.E.Krzanowski, The effect of composition profile sharp on the strength of metallic multilayer stuuctures. Scripta Metall. Meter., 1991, 25, 1465-1470.
    [66] J.G.Sevillano, Haasen P, Gerold V, Kowtorzs G, editors. Strength of metals and alloys. Oxford: Pergamon 1980, 819-825.
    [67] E.O. Hall, Proc. Phys. Soc.London, 1951,25,1465-1472.
    [68] G.E.Dieter, Mechanical metallurgy. New York: McGraw-Hill, Inc.,1986.
    [69] P.M.Anderson, T. Foeckw, P.M. Hazzledine, Dislocation-based deformation mechanisms in metallic nanolaminates, MRS Bulletin, 1999, 24(2), 27-33.
    [70] G.Y.Li, Z H.Han, J.W Tian, J. H. Xu, M. Y. Gu. Alternating stress and superhardness effect in TiN/NbN superlattice films, J.Vac.Sci. Technol A, 2002, 20(3):674-677.
    [71] M.A.Grinfeld, P.M. Hazzledine, B.Shoykhet, D.M.Dimiduk, Coherency Stresses in Lamellar Ti-Al, Matallurgical and Materials transactions A, 1998, 29A(3): 937-942.
    [72] D. Lebouvier, P.Gilormini, E. Felder, A kinematic model for plastic indentation of a bilayer, Thin Solid Films, 1989, 172(2):227-231.
    [73] G.Y.Li, J.H. Xu, L.Q. Zhang, L. Wu, M.Y. Gu, Growth, microstructure, and microhardness of W/Mo nanostructured multilayers, J. Vac. Sci. Technol. B ,2001, 19(1) 94-97.
    [74] J.H.Xu, G. Y.Li, M.Kamiko, M.Y. Gu, Y.M. Zhou, R.Yamamoto, Superhardness effects of heterostructure NbN/TaN nanostructured multilayers, J. Appl. Phys., 2001, 89(7), 3674-3678.
    [75] J.H.Xu, M. Kamiko, Y.M. Zhou, G.H. Lu, R.Yamamoto. Structure transformations and superhardness effects in V/Ti nanostructured multilayers, Appl. Phys. Lett., 2002, 81(7), 1189-1191.
    [76] G. Y. Li, J.J.Lao, J.W. Tian, Z.H. Han, M.Y.Gu, Coherent growth and mechanical properties of AlN/VN multilayers, J.Appl. Phys., 2004, 95(1), 92-96.
    [77] I. W. Kim, Q. Li, L. D. Marks, S. A. Barnett, Critical thickness for transformation of epitaxially stabilized cubic AlN in superlattices, Appl. Phys. Lett., 2001, 78, 892-894.
    [78] X.P.Hu, X.J.Yu, J.J.Lao, G.Y.Li, M.Y.Gu, Formation of metasable c-AlN and its effect on the mechnical properties of AlN/(Ti,Al)N nanoscale multilayers. J.Vac.Sci. B, 2003, 21(6), 2411-2414.
    [79] J.H.Xu, G.Y.Li, M.Y.Gu, The microstructure and mechanical properties of TaN/TiN and TaWN/TiN superlattice films, Thin solid films, 2000, 370(1-2), 45-49.
    [80] M.Nordin, M.Larsson, S. Hogmark, Mechanical and tribological properties of multilayered PVD TiN/CrN, TiN/MoN, TiN/NbN and TiN/TaN coatings on cemented carbide, Surf. Coat. Technol., 1998, 106(2-3), 234-241.
    [81] X. Chu, S.A.Barnett, M.S.Wong, W.D.Sproul, Reactive unbalanced magnetron sputter deposition of polycrystalline TiN/NbN superlattice, Surf. Coat. Technol., 1993, 57, 13-18.
    [82] P.Yashar, S.A. Barnett, J.Rechner, W.D. Sproul, Structure and mechanical properties of polycrystalline CrN/TiN superlattices, J. Vac.Sci. Tehnol. A, 1998, 16(5), 2913-2918.
    [83] A.Madan, I.W. Kim, S.C.Cheng, P. Yashar, et al. Stabilization of cubic AlN in epitaxial AlN/TiN superlattices, Phys. Rev. Lett., 1997, 78(9), 1743-1746.
    [84] D. Li, X. Chu, S.C.Cheng, X.W. Lin, V.P. Dravid, Y.W. Chung, et al., Synthesis of superhard carbon nitride composite coatings, Appl. Phys. Lett., 1995 , 67(2) :203-205.
    [85] D.Li, X.W.Lin, S.C.Cheng, V.P. Dravid, et al., Structure and hardness studies of CNx/TiNnanocomposite coatings, Appl. Phys. Lett., 1996, 68(9), 1211-1213.
    [86] M.L.Wu, X.W.Lin, V.P. Dravid, Y.W. Chung, et al., Preparation and characterization of superhard CNx/ZrN multilayers, J. Vac. Sci. Technol. A, 1997, 15(3), 946-950.
    [87] M.L.Wu, W.D.Qian, Y.W.Chung, M.S.Wong, et al., Superhard coatings of CNx/ZrN multilayers prepared by DC magnetron sputtering, Thin Solid Films, 1997(308-309), 113-117.
    [88] 劳技军, 孔明, 张慧娟, 李戈扬. TiN/SiC 纳米多层膜的生长结构与力学性能, 物理学报, 2004, 53(6) ,1961-1996.
    [89] S.A. Barnett, A. Madan, I. Kim, K. Martin. Stability of nanometer thick layers in hard films, MRS Bulletin, 2003, 28(3), 169-172.
    [90] M. Setoyama, M. Irie H. Ohara, M. Tsujioka, Y. Takeda, T. Nomura , N. Kitagawa, Thermal stability of TiN/AlN superlattices, Thin Solid Films, 1999 (341),126-123.
    [91] Do-Geun Kim, Tae-Yeon Seong, Young-Joon Baik,Oxidation behavior of TiN/AlN multilayer films prepared by ion beam-assisted deposition, thin solid films, 2001(397), 203-207.
    [92] P. Panjan, B. Navinsek, A.Cvelbar, A.Zalar; Vlcek J. High-temperature oxidation of TiN/CrN multilayers reactively sputtered at low temperatures, Surface and Coatings Technology, 1998 (98), 1497-1502.
    [93] I. Wadsworth, I. J. Smith, L.A. Donohue and W.-D. Münz, Thermal stability and oxidation resistance of TiAlN/CrN multilayer coatings, 1997(94-95), 315-321.
    [94] S. Paldey, S. C. Deevi, Single layer and multilayer wear resistant coatings of (Ti,Al)N: a review, Mater. Sci. Eng. A, 2003, 342, 58-64.
    [95] A. A. Layyous, D. M. Freinkel, R. Israel, Al2O3-caoted cemented carbides: optimization of structure, number of layers and type of interlayer, Surf. Coat. Technol. 1992, 56, 89-94.
    [96] W.D.Sproul. New routes in the preparation of mechanically hard films, Science, 1996, 273(16), 889-892.
    [97] W.D. Sproul. High-rate reactive DC magnetron sputtering of oxide and nitride superlattice coatings, Vacuum, 1998, 51(4), 641-646.
    [98] P.Yashar, S.A.Barnett, L. Hultman, W.D. Sproul. Deposition and mechanical properties of polycrystalline Y2O3/ZrO2 superlattices, Jounal of Materials Research, 1999, 14(9), 3614-3622.
    [99] L. Wei, F.H.Mei, N.Shao, M. Kong, G..Y. Li, Appl. Phys. Lett. 2005, 86, 021919.
    [100] L. Wei, M. Kong, Y.S. Dong, G.Y. Li, J. Appl.Phys. 2005, 028519.
    [1]. 杨于兴, 漆王睿, X 射线衍射分析, 上海交通大学出版社, 1989.
    [2]. C.Kim, S.B.Qadri, M.R.Scanlon, R.C.Cammarata. Low-dimension structural properties and microindentation studies of ion-beam-sputtered multilayers of Ag/Al films, Thin Solid Films, 1994; 240:52~55.
    [3]. 廖乾初,蓝芬兰, 扫描电镜原理及应用技术, 冶金工业出版社,1990.
    [4]. 戎咏华,分析电子显微学导论,高等教育出版社, 2006.
    [5]. 刘世宏, X 射线光电子能谱分析, 科学出版社,1988.
    [6]. W.C. Oliver, G.M. Pharr, Measurement of hardness and elastic modulus by instrumented indentation: Advances in understanding and refinements to methodology, J. Mater. Res., 2004, 19(1), 3-20.
    [7]. W. C. Oliver, G.M.Pharr, An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiment, J. Mater. Res., 1992, 7(6): 1564-1583.
    [8]. J.W. Tian, Z.H. Han, Q.X. Lai, et al. Two-step penetration: a reliable method of the measurement of mechanical properties of hard coatings. Surface and Coatings Technology, 2004, 176(3): 267~271.
    [1]. S. Paldey, S. C. Deevi, Single layer and multilayer wear resistant coatings of (Ti,Al)N: a review, Mater. Sci. Eng. A , 2003, 342 ,58-64.
    [2]. A.A. Layyous, D. M. Freinkel, R. Israel, Al2O3-caoted cemented carbides: optimization of structure, number of layers and type of interlayer, Surf. Coat. Technol. 1992, 56, 89-75.
    [3]. U.Helmersson, S. Todorova, S. A. Barnett, Growth of single-crystal TiN/VN strained-layer superlattices with extremely high mechanical hardness, J.Appl. Phys. 1987, 62 , 481-487.
    [4]. W.D. Sproul. New routes in the preparation of mechanically hard films, Science, 1996, 273(16), 889-892.
    [5]. W.D. Sproul, Reactive sputter deposition of polycrystalline nitride and oxide superlattice coatings 1996 Sur. Coat. Technol. 86-87 ,170.
    [6]. 吴大维, 付德君, 毛先维, 叶明生, C3N4/TiN 交替复合膜的微结构研究, 物理学报,2004, 48, 904-908.
    [7]. 劳技军, 孔明, 张慧娟, 李戈扬, TiN/SiC 纳米多层膜的生长结构与力学性能, 物理学报, 2004, 53, 1961-1965.
    [8]. L. Wei, F. H. Mei, N. Shao, G. Y. Li, Study on the growth and superhardness of TiN/SiO2 nanomultilayers, 2005, Acta Phys. Sin. 54(4), 1742-1748.
    [9]. M. Kong, L .Wei, Y. S. Dong, G.Y. Li, Epitaxial growth and superhardness effect in TiN/Al2O3 nanomultilayers, Acta Phys. Sin. 2006, 55, 770-774.
    [10]. Z. Zhou, W.M. Rainforth, D.B. Lewis, S. Creasy, J.J. Forsyth, F. Clegg, A.P. Ehiasarian, P.Eh. Hovespian and W.-D. Münz, Oxidation behaviour of nanoscale TiAlN/VN multilayer coatings, Surf. Coat. Technol. 2004, 177–178, 198-203.
    [11]. G.. Gassner, P.H. Mayrhofer, K. Kutschej, C. Mitterer and M. Kathrein, A New Low Friction Concept for High Temperatures: Lubricious Oxide Formation on Sputtered VN Coatings , Tribol. Lett. 2004, 17, 751-754.
    [12]. K. Kutschej, P.H. Mayrhofer, M. Kathrein, P. Polcik and C. Mitterer, Influence of oxide phase formation on the tribological behaviour of Ti-Al-V-N coatings, Surf. Coat. Technol. 2005, 200, 1731-1736.
    [13]. C. Stamp, A.J. Freeman, Formation and Stability of Enhanced Superhard Nanostructured AlN/VN and AlN/TiN Superlattice Material, Surface Engineering 2002--Synthesis, 507-512.
    [14]. Q. Li, I. W. Kim, S. A. Barnett, L. D. Marks, Structures of AlN/VN superlattices with different AlN layer thicknesses, Journal of Material Research, 2002, 17, 1224-1231.
    [15]. G.Y. Li, J.J. Lao, J.W. Tian, Z.H. Han, M.Y. Gu, Coherent growth and mechanical properties of AlN/VN multilayers, J. Appl. Phys. 2004, 95, 92 -95
    [16]. W.D. Munz, Large-scale manufacturing of nanoscale multilayered hard coatings deposited by cathodic arc/unbalanced magnetron sputtering, MRS Bulletin, 2003, 28 (3), 173-179.
    [17]. C.Kim, S.B.Qadri, M.R.Scanlon, R.C.Cammarata. Low-dimension structural properties and microindentation studies of ion-beam-sputtered multilayers of Ag/Al films, Thin Solid Films, 1994, 240, 52~55
    [18]. J. W. Tian, Z. H. Han, Q. X. Lai, X.J. Yu, G.Y. Li, Two-step penetration: a reliable method for the measurement of mechanical properties of hard coatings, Sur. Coat. Technol. 2004, 176 267-272.
    [19]. Germany Normal. DIN Universal h?rteprüfung, 50359-1:1997-10,
    [20]. W. C. Oliver, G. M. Pharr, An Improved Technique for Determining Hardness and Elastic Modulus Using Load and Displacement Sensing Indentation Experiments, J. Mater. Res. 1992, 7, 1564-1570.
    [21]. D. Li, X. Chu, S.C.Cheng, X.W. Lin, V.P. Dravid, Y.W. Chung, et al., Synthesis of superhard carbon nitride composite coatings, Appl. Phys. Lett., 1995, 67(2) :203~205.
    [22]. 劳技军, 孔明, 张慧娟, 李戈扬. TiN/SiC 纳米多层膜的生长结构与力学性能, 物理学报, 2004; 53(6) :1961~1996.
    [23]. Y. Zhang, M. G. Lagally, Atomistic Processes in the Early Stages of Thin-Film Growth, Science, 1997, 276, 377-383.
    [24]. J. S. Koehler. Attempt to Design a Stronge Solid. Phys. Rev. B, 1970, 2, 547~551.
    [25]. M.Kato, T.Mori, L.H. Schwartz, Hardening by spinodal modulated structure, Acta. Metall., 1980, 28, 285.
    [26]. P.M. Anderson, C.Li, Hall-petch relations for multilayered materials, Nanostructure Mater., 1995, 5(3), 349.
    [1]. M. Sridharan, M. Sillassen, J. B?ttiger, J. Chevallier, H. Birkedal, Pulsed DC magnetron sputtered Al2O3 films and their hardness, Surface and Coatings Technology, 2007, 202(4-7), 920-924
    [2]. C.I. Sarafoglou, D.I. Pantelis, S. Beauvais, M. Jeandin, Study of Al2O3 coatings on AISI 316 stainless steel obtained by controlled atmosphere plasma spraying (CAPS), Surface and Coatings Technology, 2007, 202(1), 155-161.
    [3]. S. Ruppi, A. Larsson, A. Flink, Nanoindentation hardness, texture and microstructure of α-Al2O3 and κ-Al2O3 coatings, Thin Solid Films, In Press, 2007.
    [4]. K. Reszka, J. Rakoczy, Zb. ?urek, A. Czy?niewski, A. Gilewicz, M. Homa, Catalytic properties of Al2O3 deposited by ion sputtering using DC and RF sources, Vacuum, 2005, 78(2-4), 149-155.
    [5]. A. A. Layyous, D. M. Freinkel, R. Israel, Al2O3-caoted cemented carbides: optimization of structure, number of layers and type of interlayer, Surface and Coatings Technology, 1992, 56(1), 89-95
    [6]. M. Halvarsson, J.E. Trancik, S. Ruppi, The microstructure of CVD κ- Al2O3 multilayers separated by thin intermediate TiN or TiC layers, International Journal of Refractory Metals and Hard Materials, 2006, 24(1-2),32-38.
    [7]. M. Fallqvist, M. Olsson, S. Ruppi, Abrasive wear of multilayer κ- Al2O3–Ti(C,N) CVD coatings on cemented carbide, Wear, Volume, 2007, 263(1-6), 74-80.
    [8]. S.Vuorinen, M.Halversson, Structure of multilayer TIN-Al2O3 coatings, Int. J. Refractory Metals Hard Mater., 1997, 15,(1-3), 169–178.
    [9]. X.D. Wang, F.M. Wang, W.C. Li. Synthesis, microstructures and properties of γ-aluminum oxynitride Mater. Sci. Eng. A , 2003, 342, 245-250.
    [10]. C. Kim, S B Qadri, M R Scanlon, R C Cammarata, Low-dimension structural properties and microindentation studies of ion-beam-sputtered multilayers of Ag/Al films, Thin Solid Films , 1994 , 240, 52-55.
    [11]. W.D. Xiao, X.J. Jiang, Optical and mechanical properties of nanocrystalline aluminum oxynitride films prepared by electron cyclotron resonance plasma enhanced chemical vapor deposition, Cryst. Grow. 2004, 264, 165-170.
    [12]. J. W. Tian, Z. H. Han, Q. X. Lai, G.Y. Li, Two-step penetration: a reliable method for the measurement of mechanical properties of hard coatings, Sur. Coat. Technol. 2004, 176, 267-272.
    [13]. W. C. Oliver, G. M. Pharr, An Improved Technique for Determining Hardness and Elastic Modulus Using Load and Displacement Sensing Indentation Experiments, J. Mater. Res. 1992, 7, 1564-1570.
    [14]. J. S. Koehler. Attempt to Design a Stronge Solid. Phys. Rev. B, 1970, 2, 547-551.
    [15]. M.Kato, T.Mori, L.H. Schwartz, Hardening by spinodal modulated structure, Acta. Metall., 1980, 28, 285-293.
    [16]. L. Wei, F. H. Mei, N. Shao, G. Y. Li, Study on the growth and superhardness of TiN/SiO2 nanomultilayers, 2005, Acta Phys. Sin. 54(4), 1742-1748.
    [17]. M. Kong, L .Wei, Y. S. Dong, G.Y. Li, Epitaxial growth and superhardness effect in TiN/Al2O3 nanomultilayers, Acta Phys. Sin. 2006, 55, 770-774.
    [1]. L. D. Huy, P. Laffez, P. Daniel, A. Jouanneaux, N. T. Khoi, D.Simeone, Structure and phase component of ZrO2 thin films studied by Raman spectroscopy and X-ray diffraction, Mater. Sci. & Eng. B, 2003, 104, 163-171.
    [2]. C. Kim, S. B. Qadri, M. R. Scanlon, R. C. Cammarata, Low-dimension structural properties and microindentation studies of ion-beam-sputtered multilayers of Ag/Al films Thin Solid Films, 1994, 240, 52-58.
    [3]. M.Setoyama, A.Nakayama, M.Tanaka, N. Kitagawa, T. Nomura, Formation of cubic-AlN in TiN/AlN superlattices, Surf. Coat. Technol., 1996, 86-87, 225-231.
    [4]. J.H.Xu, G.Y.Li, M.Y.Gu, The microstructure and mechanical properties of TaN/TiN and TaWN/TiN superlattice films, Thin solid films, 2000, 370(1-2), 45-49.
    [5]. M. Larsson, P. Hollman, P. Hedenqvist, S. Hogmark, Deposition and microstructure of PVD TiN-NbN reactive electron beam evaporation and DC sputtering, Surf. Coat. Technol., 1996, 86-87, 351-356.
    [6]. P.Yashar, S.A. Barnett, J.Rechner, W.D. Sproul, Structure and mechanical properties of polycrystalline CrN/TiN superlattices, J. Vac.Sci. Tehnol. A, 1998, 16(5), 2913-2918.
    [7]. 劳技军, 孔明, 张惠娟, 李戈扬. TiN/SiC 纳米多层膜的生长结构与力学性能. 物理学报, 2004, 53(6), 1961-1966.
    [8]. L. Wei, F. H. Mei, N. Shao, M. Kong, G. Y. Li, Template-induced crystallization of amorphous SiO2 and its effects on the mechanical properties of TiN/SiO2 nanomultilayers. Applied Physics Letters.. 2005, 86(2), 021919.
    [9]. J. S. Koehler. Attempt to Design a Stronge Solid. Phys. Rev. B, 1970, 2, 547-551
    [10]. P.M. Anderson, C.Li, Hall-petch relations for multilayered materials, Nanostructure Mater., 1995, 5(3), 349-353.
    [11]. M.Kato, T. Mori, L.H. Schwartz, Hardening by spinodal modulated structure, Acta. Metall., 1980, 28, 285-291.
    [12]. R.C. Cammarata, K. Sieradzki, Effects of surface stress on the elastic moduli of thin films and superlattices, Physical review letters, 1989(62), 2005-2008.
    [1]. K.H. Kim, S.H. Lee. Comparative studies of TiN and Ti1?xAlxN by plasma-assisted chemical vapor deposition using a TiCl4/AlCl3/N2/H2/Ar gas mixture. Thin solid films, 1996, 283(1-2), 165-170.
    [2]. P.W. Shum, Z.F. Zhou, K.Y. Li, Y. G. Shen. XPS, AFM and nanoindentation studies of Ti1?xAlxN films synthesized by reactive unbalanced magnetron sputtering. Materials Science and Engineering: B, 2003, 100(2), 204-213.
    [3]. S. Paldey, S.C. Deevi. Single layer and multilayer wear resistant coatings of (Ti,Al)N: a review. Materials Science and Engineering: A, 2003, 342(1-2), 58-79.
    [4]. T. Ikeda, H. Satoh. Phase formation and characterization of hard coatings in the Ti-Al-N system prepared by the cathodic arc ion plating method. Thin Solid Films, 1991, 195 (1-2), 99-110.
    [5]. S. Inoue, H. Uchida, K. Koterazawa, Y. Yoshinaga. Oxidation behavior of (Ti1-xAlx)N films prepared by r.f. reactive sputtering. Thin Solid Films, 1997, 300(1-2), 171-176.
    [6]. P. In-Work, H.K. Kwang. Coating materials of TiN, Ti–Al–N, and Ti–Si–N by plasma-enhanced chemical vapor deposition for mechanical applications. Journal of Materials Processing Technology, 2002, 130–131, 254–259.
    [7]. T. Akhadejdamrong, A. Mitsuo, C. Iwamoto, T. Yamamoto, Y. Ikuhara, T. Aizawa, Formation of protection layer during oxidation of Al-implanted TiN coating. Materials Transactions, 2002, 43 (6), 1291-1297.
    [8]. A. Mitsuo, T. Aizawa, Thermal oxidation and characterization for surface layers of Al implanted TiN films. Proceedings of the International Conference on Ion Implantation Technology, 2 , 1999, 865-868
    [9]. C.T. Huang, J.G. Duh. Stress and oxidation behaviours of r.f.-sputtered (Ti,Al)N films. Surface & Coatings Technology, 1996, 81 (2-3), 164-171.
    [10]. H. Ichimura, A. Kawana. High-temperature oxidation of ion-plated TiN and TiAlN films. Journal of Materials Research, 1993, 8 (5) , 1093-1100.
    [11]. R. Beyers, R. Sinclair, M.E. Thomas, J. Vac. Sci. Technol. B, 1984(2), 781-786.
    [12]. S. Veprek, New development in superhard coatings: the superhard nanocrystalline-amorphous composites, thin solid films, 1998, 317, 449-454.
    [13]. C.Kim, S.B.Qadri, M.R.Scanlon, R.C.Cammarata. Low-dimension structural properties and microindentation studies of ion-beam-sputtered multilayers of Ag/Al films, Thin Solid Films, 1994, 240, 52~55.
    [14]. W. C. Oliver, G.M. Pharr, An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiment, J. Mater. Res., 1992, 7(6), 564-1583.
    [15]. A. Zerr, G. Miehe, G. Serghiou, M. Schwarz, E. Kroke, R. Riedel, H. Fuess, P. Kroll, and R.Boehler, Nature , 1999, 400, 340-346 .
    [16]. 胡晓萍,董云杉,孔明,李戈扬,顾明元, TiN/Si3N4纳米多层膜的生长结构与超硬效应, 真空科学与技术学报, 2005, 25(4), 263-267.
    [17]. Lars Hultman, Javier Bare?o, Axel Flink, Hans S?derberg,,Karin Larsson, Vania Petrova, Magnus Odén, J. E. Greene, Ivan Petrov,Interface structure in superhard TiN-SiNx nanolaminates and nanocomposites: Film growth experiments and ab initio calculations,Physcial Review B, 2007, 75, 155437.
    [18]. J. S. Koehler. Attempt to Design a Stronge Solid. Phys. Rev. B, 1970, 2, 547-551.
    [19]. S. Veprek, S. Reiprich, Li Shizhi, Superhard nanocrystalline composite materials: The TiN/Si3N4 system, Applied Physics Letters, 1995, 66, 2640-2642.
    [20]. S. Veprek, S. Reiprich, A concept for the design of novel superhard coatings Thin Solid Films, 1996, 268, 64-68.
    [21]. S. Veprek, M. Haussmann, S. Reiprich, Superhard nanocrystalline W2N/amorphous Si3N4 composite materials, J. Vac. Sci. Technol. A, 1996, 14, 46-51.
    [22]. S.Veprek, S.Reiprich, A concept for the design of novel superhard coatings, thin solid films 1995, 268, 64-71.
    [23]. S. Veprek, A. S. Argon, Mechanical properties of superhard nanocomposites, surface and coatings technology, 2001, 146-147, 175-182.
    [24]. Jan Procházka, Pavla Karvánková, G.J. Maritza, S. Vepˇrek, Conditions required for achieving superhardness of ≥45 GPa in nc-TiN/a-Si3N4 nanocomposites, Materials Science and Engineering A, 2004, 384, 102–116.
    [25]. Z.G. Li, M. Mori, S. Miyake, M. Kumagai, H. Saito, Y. Muramatsu, Structure and properties of Ti–Si–N films prepared by ICP assisted magnetron sputtering, 2005, 193, 345-349.
    [26]. Kwang Ho Kim, Sung-ryong Choi, Soon-young Yoon, Superhard Ti–Si–N coatings by a hybrid system of arc ion plating and sputtering techniques, surface and coatings technology, 2002, 161, 243-248.
    [27]. X.P. Hu, G.Y. Li, M.Y. Gu, Microstructure and properties of Ti-Si-N nanocomposite films. Journal of Vacuum Science and Technology, 2002, 20 (6), 1921-1925.
    [28]. M. Kong,W.J. Zhao, L. Wei, Geyang Li, Investigations on the microstructure and hardening mechanism of TiN/Si3N4 nanocomposite coatings, J. Phys. D: Appl. Phys. 2007, 40, 2858–2863.
    [29]. J. E Sundgren, J. Birch, G. Hakansson, L. Hultman and U. Helmersson. Growth, Structural Characterization and Properties of Hard and Wear-protective Layered Materials. Thin Solid Films, 1990, 193-194, 818-831. .
    [1] M.Shinn, S.A. Barnett, Effect of superlattice layer elastic moduli on hardness, Appl. Phys. Lett., 1994, 64(1), 61-63.
    [2] X. Chu, S.A.Barnett, Model of superlattice yield stress and hardness enhancements, J. Appl. Phys, 1995, 77(9), 4403-4411.
    [3] M.Kato, T.Mori, L.H. Schwartz, Hardening by spinodal modulated structure, Acta. Metall., 1980, 28, 285-291.
    [4] P.M.Anderson, C.Li, Hall-petch relations for multilayered materials, Nanostructure Mater., 1995, 5(3), 349-355.
    [5] P.M.Anderson, T. Foeckw, P.M. Hazzledine, Dislocation-based deformation mechanisms in metallic nanolaminates, MRS Bulletin, 1999, 24(2), 27-35.
    [6] S.Koehler. Attempt to design a strong solid, Phys. Rev. B, 1970, 2(2), 547-551.
    [7] S. L. Lehoczky, Strength Enhancement in Thin-layered Al-Cu Laminates. Journal of Applied Physics. 1978, 49, 5479-5485.
    [8] U.Helmersson, S.Todorova, S.A.Barnett, Growth of single-crystal TiN/VN stained-lay superlattice with extremely high mechanical hardness, J.Appl. Phys., 1987, 62(2), 481-484.
    [9] E.S.Pacheco, T. Mura, Interaction between a screw dislocation and a bimetallic interface, J. Mech. Phys. Solids, 1969, 17, 163-170.
    [10] 龚江宏,陶瓷力学性能导论,北京,清华大学出版社,2003,201-202.
    [11] R.C. Cammarata, K. Sieradzki, Effects of surface stress on the elastic moduli of thin films and superlattices, Physical Review Letters, 1989, 62, 2005-2008.
    [12] A.F. Jankowski, T. Tsakalakos, The effect of strain on the elastic constants of noble metals, J. Phys. F: Met. Phys. 1985, 15, 1279-1292.
    [13] E.Nembach, G. Neite, Dislocation in metals, Prog. Mater. Sci. 1985(29), 177-183.
    [14] J.W.Cahn, Hardening by spinodal decomposition, Acta Metall. 1963, 11, 1275-1282.
    [15] M. Kato, T. Mori, L. H. Schwartz, Hardening by spinodal modulated structure, Acta Metall. 1980(28), 285-289.
    [16] P. B. Mirkarimi, S. A. Barnett, K. M. Hubbard, T. R. Jervis and L. Hultman. Structure and Mechanical Properties of Epitaxial TiN/V0.3Nb0.7N Superlattices. J. Mater. Res., 1994, 9(6), 1456-1467.
    [17] M. Shinn, S.A. Barnett, Effect of superlattice layer elastic moduli on hardness. Appl. Phys. Lett., 1994, 64(1), 61~63.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700