基于微卫星标记和线粒体基因序列的中国二化螟Chilo suppressalis (Walker)种群遗传结构研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
二化螟Chilo suppressalis(Walker)属鳞翅目Lepidoptera,草螟蛾科Crambidae,其分布范围广、经济危害重,是水稻种植区的最主要害虫之一。由于其食性较杂,寄主较多,分布范围广泛,二化螟与众多寄主之间以及与复杂多变的环境之间的交互作用可能会带来其较强的遗传变异,从而增加对该种害虫防治工作的难度。因此,了解二化螟不同地理种群的遗传结构,分析各个种群间的亲缘关系,再现演化历史,探讨分化成因及预防机制就显得非常必要。
     本研究首次采用扩增二化螟4个微卫星位点(microsatellite loci)和4个线粒体DNA(mtDNA)基因片断等两种分子标记相结合的手段,运用系统发育分析方法、谱系生物地理学方法以及遗传变异参数分析等多种生物信息学的研究方法,对采自我国18个不同地区的二化螟种群进行系统而深入的比较研究,获得以下结果与结论:
     1)扩增了我国18个不同地区的二化螟种群中381个个体的4个微卫星位点(microsatellite loci)和4个线粒体DNA(mtDNA)基因片断。这18种群基本覆盖了二化螟在我国的分布区域。在4个微卫星位点上,共检测到39个等位基因。在4个线粒体基因中,共获得并向GenBank中注册了98个单倍型,其中包括:22个16S基因的单倍型,27个COⅠ基因的单倍型,24个COⅡ基因的单倍型,和25个ND1基因的单倍型。
     2)微卫星标记(microsatellite marker)和线粒体(mtDNA)基因序列数据均表明18个取样点的二化螟种群间出现了明显的遗传分化,只是基于前者获得的结果较后者的为小。以微卫星标记得出的种群间分化参数F_(STS)在-0.00011-0.12946之间,以16S基因序列数据求得的种群间分化参数F_(STS)在-0.00358-0.41001之间,COⅠ数据的F_(STS)在-0.01918-0.55016之间变化,COⅡ数据的F_(STS)在-0.02904-0.38614之间波动,ND1数据的F_(STS)在-0.03202-0.48485间变动。其中COⅠ和COⅡ基因具有很高的遗传变异度。平均核酸多样度分别为0.86%和0.69%,变异位点占序列长度的比例依次为13.9%和9.6%。
     3)基于微卫星标记数据构建的NJ树和依据线粒体基因序列数据生成的MP树以及ML树,以及4个基因的单倍型网状图分析均可得出如下结论:中国的二化螟C.suppressalis很可能分化为遗传上不同的、与地理位置相一致的3个分支,即华中分支、西南分支和华北东北分支。这3大分支在南北方向上被秦岭、伏牛山、长江、淮河等山脉和河流分隔开来;长江以南区域,则以罗霄山脉为界分为东西两支。而且,二化螟的遗传分化大致与其在3大地理区域内每年发生的代次相一致。在华中地区,二化螟一年发生3到4代,而在西南地区和华北东北地区,二化螟分别发生2到3代和1到2代。
     4)中性检验结果表明华中、西南和华北东北等3大地理区域间存在明显的遗传分化。当18个种群放在一起考虑时,4个基因的Tajima's D均为显著性的负值(从-1.85到-1.47,P<0.05),Fu's F值为显著性的负值或接近显著性的负值(-7.59--2.90,P=0.03-0.26);当把华中、西南以及华北东北等3大地理区域的种群各自单独作为一组分析时,虽然Tajima's D未达到显著性水平,但仍为负值(从-1.37到-0.42),而Fu's F值在不同的区域中出现负值甚至出现正值(-0.49-2.27),表明3大地理区域间遗传分化明显。
     5)基于微卫星标记数据和mtDNA基因序列数据的遗传变异分析(AMOVA)结果均显示我国的二化螟种群遗传分化明显。种群分化参数F_(ST)为:微卫星标记数据计算结果是0.06004(P<10~(-4)),16S、COⅠ、COⅡ和ND1等4个mtDNA基因序列数据计算结果分别为0.19485(P<10~(-4))、0.27607(P<10~(-4))、0.22949(P<10~(-4))和0.29285(P<10~(-4))。华中、西南和华北东北等3大地理区域间种群分化参数F_(CT)为:微卫星标记数据计算结果是0.03855(P<10~(-4)),16S、COⅠ、COⅡ和ND1等4个基因序列数据计算的F_(CT)分别为0.10682(P<10~(-4))、0.21533(P<10~(-4))、0.16862(P<10~(-4))和0.23845(P<10~(-4))。再次证明了中国的二化螟种群已分化为华中、西南和华北东北等3个分支。各区域内种群分化参数F_(SC)为:微卫星标记数据计算结果是0.02236(P<10~(-4)),16S、COⅠ、COⅡ和ND1等4个基因序列数据计算的F_(SC)分别为0.09855(P<10~(-4))、0.07741(P<10~(-4))、0.07322(P<10~(-4))和0.07143(P<10~(-4))。两种分子标记手段获得了相同的结果,即区域间种群分化参数F_(CT)是同一标记方法的区域内种群分化参数F_(SC)的二倍或更多,表明华中、西南和华北东北等3大区域间基因交流有限。
     6)二化螟两两种群间的基因交流水平较低(M<100,81.7%N_em<1.0),即使在地理距离最近的种群间也是如此。这可能是由于地理隔离以及该害虫的非迁飞性特性引起的。
     在本研究涉及的整个取样范围内,没有发现与经度或纬度相一致的单向性基因流动。不过,当分析范围缩小至华中、西南或华北东北这些较小的区域时,基因流动的趋向变得明显起来。在华中地区,基因流倾向于从宁波流向西部,如衢州、南昌等地。在西南地区,基因流可能是从柳州向西流向贵阳、雅安等地。在华北东北地区,基因则可能流自武汉或驻马店,向北到沈阳、长春等地。在3个小范围内基因交流比较明显,而在全国整个取样点的范围内缺乏基因交流进一步确认了地理隔离作用,而且暗示着中国的二化螟可能起源于3个不同的避难所(refugia),并经历了平行进化从而形成了目前的遗传结构。
     本研究所得的二化螟有效种群(effective populaion size)较小、距离最近的种群间基因交流有限以及很强的距离隔离关系(isolation-by-distance relationship)等结果表明二化螟处于遗传平衡状态(genetic equilibrium),3个地区之间的遗传分化很可能是迁徙-漂变平衡的结果(migration-drift equilibrium)。
     7)二化螟4个mtDNA基因的错配分布(mismatch distribution)均为单峰(unimodal)。按照2.3%/1百万年的分子变异率,依据上述4个基因序列数据计算的合并时间(相当于群体扩张的启动时间)依次大约是65000或128800年,100000或282000年,100000或282000年,和100000或133000年。总的来说,在这4个基因中,每个基因在3大区域中的绝大多数τ值基本相近,各区域间τ值的95%置信值(95%C.I.)相互重叠,表明各区域的种群扩张时间大体相同。在华中地区,COⅠ,COⅡ,和ND1基因数据得出的合并时间早于60000年。在华北东北地区,16S,COⅠ,和ND1基因的分化时间大于120000年。在西南地区,16S,COⅠ,COⅡ,和ND1基因分化早于140000年前。只有华北东北地区的COⅡ基因和华中地区的16S基因例外。两者计算结果为种群分化时间晚于10000年前。考虑到昆虫分子钟的不精确性和缺乏必要的昆虫化石资料,3大分支分隔于3个避难所的时间大约开始于60000年以前,这个时间远早于水稻的人工栽培(domestication)时间。这可能表示二化螟的种群分化很可能是气候因素和/或地质事件(如,最后一次冰盛期)单独或共同作用的结果,二化螟在野生稻的人工栽培过程中经历了寄主转换。伴随着野生稻的人工栽培过程,栽培稻为蛀食于其植株体内的蛀虫提供了新的生境,进而强化了业已形成的遗传分化。
Chilo suppressalis(Walker)(Lepidoptera:Crambidae),the striped stem borer(SSB) or Asian rice borer,is a widespread insect species,extending from Asia and Oceania into the Middle East and Europe.It is regarded as one of the most important rice pests in rice growing regions.The wide range distributions,large amount of its host plants and the complex interactions between the borer and the diverse environments may bring to its high genetic variation,which makes it difficult to manage this pest.It is reasonable to find out the population genetic structure of the C.suppressalis populations hosting on rice in China,analyze its phylogeography and infer the demographic history of this species as well as its differentiation mechanism.
     This dissertation deals with the phylogenetic relationships among 18 C.suppressalis populations hosting on rice in China,examines geographical pattern of C.suppressalis microsatellites and haplotypes,and infers the demographic history and differentiation mechanism of this species,using 4 microsatellite markers and the sequences of 4 mtDNA genes.The principle achievements of this dissertation are as follows:
     1.We amplified the sequences of 4 microsatellite loci and 4 mtDNA genes of 381 individuals from 18 populations(covering the potential distribution range of C suppressalis in China).We observed 39 alleles in 4 microsatellite loci,obtained and submitted to GenBank 98 different haplotypes,including 22 haplotypes of the 16S gene, 27 haplotypes of the COⅠgene,24 haplotypes of the COⅡgene,and 25 haplotypes of the ND1 gene.
     2.The data of microsatellite marker and mtDNA gene sequences show that SSB C. suppressalis is highly differentiated,though microsatellite markers display reduced differentiation among samples compared with mtDNA sequence data.The population pairwise F_(ST)S from the former marker range -0.00011-0.12946 and those from the latter one are -0.00358 -0.41001 for 16S,-0.01918 -0.55016 for COⅠ,-0.02904 -0.38614 for COⅡ,-0.03202 -0.48485 for ND1.In addition,our results reveal high genetic variability of COⅠand COⅡgenes in C.suppressalis,meanπ=0.86%and 0.69%.respectively;variable sites are 13.9%and 9.6%,respectively.
     3.Based on whether NJ tree reconstructed from the microsatellite data or MP and ML tree from mtDNA sequences,or the statistical parsimony networks analysis of the 4 genes,the conclusion can be drawn that C.suppressalis probably has three genetically diverse and geographically localized clades in China,that is,CC(central China)clade, SW(southwestern China)clade and NN(northern and northeastern China)clade,which are isolated by Qinling Mountain,Funiu Mountain,Yangtze River and Huaihe River along latitude and by Luoxiao Mountains in the vast area south to Yangtze River.
     Moreover,the genetic differentiation of C.suppressalis is roughly in accordance with the observed number of generations of this species in a year.In CC clade,in which rice is planted in two seasons,C suppressalis has three to four generations per year. Whereas in SW clade and NN clade,in which large number of diverse rice varieties grow in one season,the striped stem borers develop in two to three generations in the former region,and they appear in one to two generations in the latter one.
     4.Neutrality tests support the idea that C.suppressalis is highly differentiated as well.All Tajima's D of the 4 genes are significant negative(ranging-1.85 to-1.47,P<0.05)in all C.suppressalis populations pooled in one group,and negative(ranging-1.37 to-0.42),though not significant,in CC,NN,SW regions.For each of the 4 genes,all populations pooled in one group,Fu's F statistic was(nearly)significantly negative (-7.59- -2.90,P=0.03-0.26);Fu's F statistic was negative or even positive for various subgroups of samples.Thus,strong population subdivision was evident.
     5.AMOVA both from microsatellite data and mtDNA gene sequences indicate that significant genetic structure of C.suppressalis exists at various hierarchical levels (among regions,among populations within regions,and within populations).The genetic differentiation of C.suppressalis among samples is highly significant.F_(ST)from microsatellite data is 0.06004(P<10~(-4)).F_(ST)from 16S,COⅠ,COⅡ,and ND1 gene is 0.19485(P<10~(-4)),0.27607(P<10~(-4)),0.22949(P<10~(-4)),and 0.29285(P<10~(14)), respectively.The fixation index among CC,SW and NN clusters is highly significant. F_(CT)is 0.03855(P<10~(-4))for microsatellite data,F_(CT)for 16S,COⅠ,COⅡ,and ND1 is 0.10682(P<10~(-4)),0.21533(P<10~(-4)),0.16862(P<10~(-4)),and 0.23845(P<10~(-4)), respectively,indicating that C.suppressalis in China is subdivided into three groups (CC,SW,and NN).The fixation index among samples within groups is significant.F_(SC) is 0.02236(P<10~(-4))for microsatellite data.F_(SC)is 0.09855(P<10~(-4)),0.07741(P<10~(-4)),0.07322(P<10~(-4)),and 0.07143(P<10~(-4))for 16S,COⅠ,COⅡ,and ND1, respectively The fixation index among three regions is almost twice or even more than twice the one among populations within them,an indicator that there is limited gene flow between regions.
     6.The estimates indicate small amounts of gene flow(M<100,81.7%N_em<1.0), between pairwise populations,even between most adjacent populations of C. suppressalis.This may be due to the geographic isolation and the borers' nonmigratory character.
     There are no apparent unidirectional gene flows among the populations along latitude or longitude over China.However,when analysis is confined in different separate regions the trends are clearer.In CC region,the gene flow tends to be from Ningbo to western parts like Quzhou,Nangchang.In SW region,it is likely to be from Liuzhou to the places western to it,like Guiyang and Yaan;while in NN region,it seems to start in Wuhan or Zhumadian,northward till Changchun.The unidirectional gene flow in the three specific regions and the absence of gene flow at larger scales over China confirm the strong isolation-by-distance relationships of this species and may imply that C.suppressalis in the three different regions have arisen in separate refuges and experienced parallel evolutions.
     These findings that C.suppressalis populations have small long-term effective population sizes,limited gene flow between adjacent populations,and strong isolation-by-distance relationships,support the idea that populations of this species are at or very close to genetic equilibrium,and the observed differentiation among three regions is likely the result of migration-drift equilibrium
     7.The unimodal mismatch distributions of each of 16S,COⅠ,COⅡ,and ND1 gene within C.suppressalis reflect the main coalescence depth of the haplotypes,ultimately tracing back to a single ancestor.Based on 2.3%/a million years(Myr),the coalescence time(equated with the onset of demographic or range expansion)for 16S,COⅠ,COⅡ, and ND1 is about 65 000 or 128 800 years,100 000 or 282 000 years,approximately 100 000 or 282 000 years,and 100 000 or 133 000 years,respectively.In general,most ofτ-values at each of the 4 gene segments were similar among the three regions and all had overlapping 95%C.I.(confidence interval),indicating that the population expansions date back to roughly the same time period.The coalescence time of CC clade at COⅠ,COⅡ,and ND1 is earlier than 60 000 years.The divergence time of NN clade at COⅠ,16S,and ND1 is more than 120 000 years,and the separation date of SW clade at COⅠ,COⅡ,16S,and ND1 dataset is over 140 000 years ago.The only two exceptions are NN clade at COⅡand CC clade at 16S,which are less than 10 000 years. Considering the approximate nature of molecular clock in insects,and the absence of fossil data,the three major clades may have started their divergence in three refugia isolated at one period of approximately at least 60 000 years ago,which is long before rice domestication.This implies that the differentiations of C.suppressalis are probably due to climatic and /or geological events(e.g.the last glacial maximum),and C. suppressalis switched from wild to cultivated rice during the process of domestication. The domesticated rice has been providing a new ecotope for the herbivore and subsequently strengthened the genetic differentiations of the borer along with rice domestication process.
引文
陈国宏,季从亮,王敏强,Steffen Weigend.2006.12个中国地方鸡种群体遗传结构及遗传多样性分析[J].畜牧兽医学报,37:105-111.
    陈日曌,藏连生,牟瑛,刘梅,孙光芝,王志明.2003.吉林省二化螟发生世代及药剂防治的初步研究[J].吉林农业大学学报,25:250-252,256.
    陈学新.1997.昆虫生物地理学[M]北京:中国林业出版社.
    陈学新.2000.昆虫分子系统学和进化[M]∥程家安,唐振华主编.昆虫分子科学.北京:科学出版社.3-24.
    成新跃,周红章,张广学.2000.分子生物学技术在昆虫系统学研究中的应用[J].动物分类学报,25(2):121-132.
    邓玲玲.2006.长江谷地更新世气候[J].贵州师范大学学报(自然科学版),24:29-32.
    丁锦华,尹楚道,林冠伦,徐冠军,沈允昌.1991.农业昆虫学.南京:江苏科学技术出版社.
    杜玮南,孙红霞,方福德.2000.单核苷酸多态性的研究进展[J].中国医学科学院学报,22:392-394.
    杜正文,张孝羲,王法明.1991.中国水稻病虫害综合防治策略与技术[M].北京:中国农业出版社.
    龚鹏,杨效文,谭声江,陈晓峰.2001.分子遗传标记技术及其在昆虫科学中的应用[J].昆虫知识,38:86-91.
    龚鹏,杨效文,张孝羲等.2002.棉蚜(Aphis gossypii)种群寄主分化和季节分化的微卫星引物PCR研究[J].生态学报,21:765-771.
    龚子同,陈鸿昭,袁大刚,赵玉国,吴运金,张甘霖.2007.中国古水稻的时空分布及其启示意义[J].科学通报,52:562-567.
    顾万春.2004.统计遗传学.北京:科学出版社.
    郭平仲.1993.群体遗传学导论.北京:农业出版社.
    国伟.2005.麦长管蚜地理种群时空动态的分子特征分析[博士学位论文].北京:中国农业大学,1-126.
    胡志昂,张亚平.1997.中国动植物的遗传多样性.杭州:浙江科学技术出版社.
    黄原.1998.分子系统学-原理、方法及应用.北京:中国农业出版社.
    黄镇国,张伟强.2002.再论中国稻作的起源发展和传播[J].热带地理,22:76-79.
    黄族豪,刘迺发,龙进.2006.大石鸡兰州亚种的mtDNA种群遗传结构、单倍型分布和遗传多样性[J].动物学报,52:738-745.
    江云珠.2002.中国稻种(Oryza sativa L.)资源同工酶和SSR标记遗传多样性研究[硕士学位论文].浙江:中国农业科学研究院研究生院中国水稻研究所,1-70.
    李安祥,李慈厚.1996.二化螟及其防治[M].北京:中国农业科技出版社,1-276.
    李崇奇,常青,陈建琴,张保卫,朱立峰,周开亚.2005.东北亚地区野猪种群mtDNA遗传结构及系统地理发生[J].动物学报,51:640-649.刘明,王继华,王同昌.2003.DNA分子标记技术[J].东北林业大学学报,31:65-67.
    刘万清,贺林.1998.SNP——为人类基因组描绘新的蓝图[J].遗传,20:38-40.
    罗学义,谢炜,肖青,张益民,陈天忠,尹向阳.2004.二化螟的发生特点与螟害变重原因分析[J].湖南农业科学,(1):35-37.
    孟庆兰,李相奎,曹德强,崔爱华.1995.山东省水稻二化螟的发生规律及防治[J].农业科技通讯,(8):25-25.
    牛成伟,张青文,叶志华,罗礼智.2006.不同地区甜菜夜蛾种群的遗传多样性分析[J].昆虫学报,49:867-873.
    裴海英,于洪春,赵奎军,王哲,王克文,孙盛伟.2002.黑龙江二化螟发生规律调查[J].植物保护,28:27-28.
    彭奕欣,黄诗笺.1997.进化生物学.长沙:武汉大学出版社,1-386.
    钱迎倩,马克平.1994.生物多样性研究的原理与方法[M].北京:中国科学技术出版社.
    盛承发,王红托,盛世余,高留德,宣维健.2003.我国稻螟灾害的现状及损失估计[J].昆虫知识,40:289-294.
    施立明.1990.遗传多样性及其保存[J].生物科学信息,3:143-146.
    施雅风,崔之久,苏珍.2006.中国第四纪冰川与环境变化.石家庄:河北科学技术出版社.
    时敏.2005.基于分子数据与形态特征的茧蜂科系统发育学研究[博士学位论文].杭州:浙江大学,1-192.
    汪小凡,廖万金,宋志平.2001.小毛茛居群的遗传分化及其与空间隔离的相关性 [J].生物多样性.9:138-144.
    王少丽.2000.烟夜蛾种群分化的单链构象多态性(SSCP)和微卫星多态性(MP)分析[硕士学位论文].河南:河南农业大学,1-62.
    王少丽,徐广,杨效文,等.2003.棉铃虫不同寄主植物种群间的微卫星引物扩增多态性研究[J].棉花学报,15:79-82.
    薛进,苏建伟,黎家文,陈秋芳.2007.中国水稻二化螟5个地理种群遗传差异的RAPD分析[J].湖南农业大学学报(自然科学版),33:160-163.
    薛俊杰.1995.豫北沿黄稻区二化螟发生规律研究[J].河南农业科学,(11):12-15.
    杨效文,张广学,陈晓峰.2001.棉蚜微卫星DNA的克隆及其多态性检测[J].昆虫学报.44:586-589.
    俞再葆,夏松年.2007.二化螟的发生与综合防治[J].现代农业科技,(4):22-23.
    郑雪生.2007.水稻二化螟发生为害特点与综合防治技术[J].中国农村小康科技,(8):58-59.82.
    Agusti N,Shayler S P,Harwood J D,Vaughan I P,Sunderland K D,Symondson W O C.2003.Collembola as alternative prey sustaining spiders in arable ecosystems:prey detection within predators using molecular markers[J].Molecular Ecology,12:3467-3475.
    Audzijonyte A,Vainola R.2006.Phylogeographic analyses of a circumarctic coastal and a boreal lacustrine mysid crustacean,and evidence of fast postglacial mtDNA rates[J].Molecular Ecology.15:3287-3301.
    Avise J C.1987.Intraspecific phylogeography:the mitochondrial DNA bridge between population genetics and systematics[J].Annual Review of Ecology and Systematics,18:489-522.
    Avise J C.1994.Molecular markers,natural history and evolution[M].New York:Chapman & Hall.
    Avise J C.1998.The history and purview of phylogeography:a personal reflection[J].Molecular Ecology,7:371-379.
    Avise J C.2000.Phylogeography:the history and formation of species[M].Harvard University Press,Cambridge,Massachusetts.
    Avise J C,Arnold J,Ball R M,Bermingham E,Lamb T,Neigel J E,Reeb C A,Saunders N C.1987.Intraspecific phylogeography:the mitochondrial bridge between population genetics and systematics[J].Annual Review of Ecology and Systematics, 18:489-522.
    Avise J C, Giblin-Davidson C, Laerm J, Patton J C, Lansman R A. 1979. Mitochondrial DNA clones and matriarchal phylogeny within and among geographic populations of the pocket gopher, Geomys pinetis [J]. Proceedings of the National Academy of Sciences, USA, 76: 6694-6698.
    Avise J C, Nelson W S, Susita H. 1994. A speciational history of "living fossils": molecular evolutionary patterns in horseshoe crabs [J]. Evolution, 48: 1986-2001.
    Avise J C, Walker D, Johns G C. 1998. Speciation durations and Pleistocene effects on vertebrate phylogeography [J]. Proceedings of the Royal Society of London.Series B,265:1707-1712.
    
    Ayala F J. 1976. Molecular Evolution [M]. Sinauer Associates, Sunderland, MA. Baker A J, Pereira S L, Haddrath O P, Edge K A. 2006. Multiple gene evidence for expansion of extant penguins out of Antarctica due to global cooling [J]. Proceedings of the Royal Society B-Biological Sciences, 273: 11-17.
    Balding D J, Bishop M. Cannings C. 2001. Handbook of statistical genetics [M]. John Wiley & Sons, Inc.. Hoboken, New Jersey.
    Ballard J W O, Whitlock M C. 2004. The incomplete natural history of mitochondria [J]. Molecular Ecology. 13: 729-744.
    Barker J S, Moore S S. Hetzel D J S, Evans D, Tan S G, et al. 1997. Genetic diversity of Asian water buffalo (Bubalus bubalus): microsatellite variation and a comparison with protein-coding loci [J]. Animal Genetics, 28: 103-115.
    Beerli P. 2006. Comparison of Bayesian and maximum likelihood inference of population genetic parameters [J]. Bioinformatics, 22: 341-345.
    Bogdanowicz S M, Schaefer P W, Harrison R G. 2000. Mitochondrial DNA Variation among Worldwide Populations of Gypsy Moths, Lymantria dispar [J]. Molecular Phylogenetics and Evolution. 15: 487-495.
    Bonnet E, Van der Peer Y. 2002. ZT: a software tool for simple and partial Mantel tests [J]. Journal of Statistical Software. 7: 1-12.
    Broadhurst L M. Coates D J. 2004. Genetic divergence among and diversity within two rare Banksia species and their common close relative in the subgenus Isostylis R.Br. (Proteaceae) [J]. Conservation Genetics, 5: 837-846.
    Brower A V Z. 1994. Rapid morphological radiation and convergence among races of the butterfly Heliconius erato inferred from patterns of mitochondrial DNA evolution [J]. Proceedings of the National Academy of Sciences of the United States of America. 91: 6491-6495.
    
    Brown T A. 1991. Molecular Biology Labfax [M]. Bios Scientific Publishers, Oxford.
    Caterino M S, Cho S. Sperling F A H. 2000. The current state of insect molecular systematics: a thriving tower of babel [J]. Annual Review of Entomology, 45: 1-54.
     Cavalli-Sforza L L, Edwards A W F. 1967. Phylogenetic analysis: models and estimation procedures [J]. American Journal of Human Genetics, 19: 233-257.
    Chen S F, Rossiter S J. Faulkes C G, Jones G. 2006. Population genetic structure and demographic history of the endemic Formosan lesser horseshoe bat (Rhinolophus monoceros) [J]. Molecular Ecology, 15: 1643-1656.
    Clement M, Posada D. Crandall K A. 2000. TCS: a computer program to estimate gene genealogies [J]. Molecular Ecology, 9: 1657-1660.
    Coates B S, Hellmich R L. Lewis L C. 2002a. Beauveria bassiana haplotypedetermination based on nuclear rDNA internal transcribed spacer PCR-RFLP [J]. Mycological Research. 106: 40-50.
    Coates B S, Hellmich R L, Lewis L C. 2002b. Nuclear small subunit rRNA group I intron variation among Beauveria spp. provide tools for strain identification and evidence of horizontal transfer [J]. Current Genetics, 41: 414-424.
    Coates B S. Sumerford D V. Hellmich R L. 2004. Geographic and voltinism differentiation among North American Ostrinia nubilalis (European com borer) mitochondrial cytochrome c oxidase haplotypes [J]. Journal of Insect Science, 4: 1-9.
    Coates B S. Sumerford D V, Hellmich R L, Lewis L C. 2005. Partial mitochondrial genome sequences of Ostrinia nubilalis and Ostrinia furnicalis [J]. International Journal of Biological Sciences, 1: 13-18.
    Darvill B, Ellis J S, Lye G C, Goulson D. 2006. Population structure and inbreeding in a rare and declining bumblebee, Bombus muscorum (Hymenoptera: Apidae) [J]. Molecular Ecology. 15: 601-611.
    De Barro P J. Driver F. 1997. Use of RAPD to distiguish the B biotype from other biotypes of Bemisia tabaci (Hemiptera: Aleyrodidae) [J]. Australian Journal ofEntomology. 36: 149-152.
    Demayo C G. Gould F L. Bottrell D G. Romena A M, Angeles A T. 1994. Geographic variation in larval survival and growth of six Chilo suppressalis (Lepidoptera: Pyralidae) strains on different rice hosts [J]. Environmental Entomology, 23: 1436-1442.
    Dieringer D, Schlotterer C. 2003. MICROSATELLITE ANALYSER (MSA): a platform independent analysis tool for large microsatellite data sets [J]. Molecular EcologyNotes. 3: 167-169.
    Dopman E B. Perez L, Bogdanowicz S M, Harrison R G. 2005. Consequences of reproductive barriers for genealogical discordance in the European corn borer [J]. Proceedings of the National Academy of Sciences of the United States of America, 102: 14706-14711.
    Dowling T E, Moritz C, Palmer J D. 1990. Nucleic acids II: restriction site analysis [M]. In: Hillis DM. Moritz C (eds). Molecular Systematics, Sinauer Associates, Sunderland. MA.
    Evanno G, Regnaut S. Goudet J. 2005. Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study [J]. Molecular Ecology, 14: 2611-2620
    Excoffier L, Smouse P E, Quattiro J M. 1992. Analysis of molecular variance inferred from matrix distances among DNA haplotypes: application to human mitochondrial DNA restriction data [J]. Genetics, 131: 479-491.
    Excoffier L. Laval G, Schneider S. 2005. Arlequin ver. 3.0: An integrated software package for population genetics data analysis [J]. Evolutionary Bioinformatics Online, 1:47-50.
    Falush D. Wirth T. Linz B. Pritchard J K, Stephens M, et al. 2003. Traces of human migrations in Helicobacter pylori populations [J]. Science, 299: 1582-1585.
    Felsenstein J. 1982. Numerical methods for inferring evolutionary trees [J]. Quarterly Review of Biology, 57: 379-404.
    Felsenstein J. 1989. PHYLIP - Phylogeny Inference Package (Version 3.2) [J]. Cladistics, 5: 164-166.
    Finn D S. Theobald D M. William C. Black W C IV, Poff N L. 2006. Spatial population genetic structure and limited dispersal in a Rocky Mountain alpine stream insect [J]. Molecular Ecology, 15: 3553-3566.
    Francisco M R. Gibbs H L. Galetti M, Lunardi V O, Galettijunior P M. 2007. Genetic structure in a tropical lek-breeding bird, the blue manakin (Chiroxiphia caudata) in the Brazilian Atlantic Forest [J]. Molecular Ecology, 16: 4908 - 4918.
    Frankham R. 1996. Relationship of genetic variation to population size in wildlife [J]. Conservation Biology. 10: 1500-1508.
    Fu Y-X. 1997. Statistical tests of neutrality of mutations against population growth, hitchhiking and background selection [J]. Genetics, 147: 915-925.
    Gamier-Gere P. Dillmann C. 1992. A computer program for testing pairwise linkage disequilibria in subdivided populations [J]. Journal of Heredity, 83: 239.
    Goudet J. 1995. FSTAT version 1.2: a computer program to calculate F- statistics [J]. Journal of Heredity. 86: 485-486.
    Golding G B. 1987. The detection of deleterious selection using ancestors inferred from a phylogenetic history [J]. Genetics Research, 49: 71-82.
    Grant W S. Bowen B W. 1998. Shallow population histories in deep evolutionary lineages of marine fishes: insights from sardines and anchovies and lessons for conservation [J]. Journal of Heredity, 89: 415-426.
    Hamada H, Petrino M G. Kakunaga T. 1982. A novel repeated element with Z-DNA-forming potential id widely found in evolutionarily diverse eukaryotic genomes [J]. Proceedings of the National Academy of Sciences, USA. 79: 6465-6469.
    Harper G L, Maclean N. Goulson D. 2003. Microsatellite markers to assess the influence of population size, isolation and demographic change on the genetic structure of the UK butterfly Polyommatus bellargus [J]. Molecular Ecology, 12: 3349-3357.
    Harrison R G. 1989. Animal mitochondrial DNA as a genetic marker in population and evolutionary biology [J]. Trends in Ecology & Evolution, 4: 6-11.
    Hartl D L, Clark A G. 2007. Principles of population genetics [M]. Sinauer Associates. Sunderland. MA.
    Hayashi K. 1991. PCR-SSCP: A simple and sensitive method for detection of mutations in the genomic DNA [J]. PCR Methods and Applications, 1: 34-38.
    Hedrick P W. 2000. Genetics of populations [M]. Jones and Bartlett Publishers, Massachusetts.
    
    Hennig W. 1966. Phylogenetic Systematics [M]. Univ. Illinois Press.
    Hewitt G. 2000. The genetic legacy of the Quaternary ice ages [J]. Nature, 405: 907- 913.
    Hillis D M, Mortiz C. Mable B K. 1996. Molecular systematics [M]. Sinauer Associates. Sunderland. MA.
    Hiss R H, Norris D E Dietrich C H, Whitcomb R F, West D F, Bosio C F, Kambhampati S. Piesman J, Antolin M F. Black IV W C. 1994. Molecular taxonomy using single strand conformation poh'morphism (SSCP) analysis of mitochondnal ribosomal DNA genes [J]. Insect Molecular Biology, 3: 171-182.
    Huelsenbeck J P. Rannala B, Larget B. 2000, A Bayesian framework for the analysis of cospeciation [J]. Evolution, 54: 353-364.
    Hutchinson D W. Templeton A R. 1999. Correlation of pairwise genetic and geographic distance measures: inferring the relative influences of gene flow and drift on the distribution of genetic variability [J]. Evolution, 53: 1898-1914.
    Ishiguro N, Tsuchida K. 2006. Polymorphic microsatellite loci for the rice stem borer, Chilo suppressalis (Walker) (Lepidoptera: Crambidae) [J]. Applied Entomology and Zoology. 41: 565-568.
    Ishiguro N, Yoshida K, Tsuchida K. 2006. Genetic differences between rice and water-oat feeders in the rice stem borer, Chilo suppressalis (Walker) (Lepidoptera : Crambidae) [J]. Applied Entomology and Zoology, 41: 585-593.
    Jin L. Nei M. 1990. Limitations of the evolutionary parsimony method of phylogenetic analysis [J]. Molecular Biology and Evolution, 7: 82-102.
    Johannesen J, Veith M, Seitz A. 1996. Population genetic structure of the butterfly Melitaea didyma (Nymphalidae) along a northern distribution border [J]. Molecular Ecology. 5: 259-267.
    Jukes T H, and Cantor C R. 1969. Evolution of protein molecules [M]. In: Mammalian protein metabolism (ed. Munro HN), pp. 21-132. Academic Press, New York.
    Kamau L. Mukabana W R. Hawley W A, Lehmann T, Irungu L W, Orago A A, Collins F H. 1999. Analysis of genetic variability in Anopheles arabiensis and Anopheles gumbiae using microsatellite loci [J]. Insect Molecular Biology, 8: 287-297.
    Katiyar S K, Chandel G, Tan Y, Zhang Y, Huang B, Nugaliyadde L, Fernando K, Bentur J S, Inthavong S, Constantino S, Bennett J. 2000. Biodiversity of Asian rice gall midge (Orseolia oryzae Wood Mason) from five countries examined by AFLP analysis [J]. Genome. 43: 322-332.
    Khan Z R. Litsinger J A. Barrion A T, Villanueva F F D. 1991. World bibliography of rice stem borers 1794-1990 [M]. International Rice Research Institute, Makati. Kitching I J, Forey P L. Humphries C J. 1998. Cladistics [M]. Oxford Univ. Press, Oxford. New York, Tokyo.
    Kumar S. Gupta J. Kumar N. Dikshit K. Navani N. Jain P, Nagarajan M. 2006. Genetic variation and relationships among eight Indian riverine buffalo breeds [J]. Molecular Ecology, 15: 593-600.
    Lando J P. Chiang Y C. Hung K H, Chiang T Y, Schaal B A. 2006. Phylogeography of Asian wild rice. Oryza rufipogon, reveals multiple independent domestications of cultivated rice. Oryza sativa [J]. Proceedings of the National Academy of Sciences of the United States of America. 103: 9578-9583.
    Lange C L. Scott K D. Graham G C, Sallam M N, Allsopp P G. 2004. Sugarcane moth borers (Lepidoptera: Noctuidae and Pyraloidae): phylogenetics constructed using COII and 16S mitochondrial partial gene sequences [J]. Bulletin of Entomological Research. 94: 457-464.
    Lansman R A. Shade R O. Shapira J F, Avise J C. 1981. The use of restriction endonucleases to measure mitochondrial sequence relatedness in natural populations. III. Techniques and Potential Applications [J]. Journal of Molecular Evolution, 17:214-226.
    Larget B, Simon D. 1999. Markov chain Monte Carlo algorithms for the Bayesian analysis of phylogenetic trees [J]. Molecular Biology and Evolution, 16: 750-759.
    Larget B. Simon D, Kadane J B. 2002. Bayesian phylogenetic inference from animal mitochondrial genome arrangements [J]. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 64: 681-693.
    Larson G, Dobney K, Albarella U, Fang M Y, Matisoo-Smith E, Robins J, Lowden S, Finlayson H, Brand T. Willersley E. Rowley-Conwy P, Andersson L, Cooper A. 2005. Worldwide Phylogeography of Wild Boar Reveals Multiple Centers of Pig Domestication [J]. Science, 307: 1618-1621.
    Loxdale H D. Lushai G. 1998. Molecular markers in entomology [J]. Bulletin of Entomological Research. 88: 577-600.
    Malausa T, Leniaud L, Martin J F, Audiot P, Bourguet D, Ponsard S, Lee S F, Harrison R G. Dopman E. 2007. Molecular differentiation at nuclear loci in French host races of the European corn borer (Ostrinia nubilalis) [J]. Genetics, 176: 2343-2355.
    Manly B F J. 1997. Randomization, Bootstrap and Monte Carlo Methods in Biology, 2nd edn [M]. Chapman & Hall, London.
    Mantel N. 1967. The detection of disease clustering as a generalised regression approach [JJ. Cancer Research. 27: 209-220.
    
    Matthews E G 1976. Insect ecology [M]. University of Queensland Press.
    McNeely J A. Miller. K R. Reid. W V, et al. 1990. Conserving the worlbiological Diversity [R]. IUCN. WRI, CI, WWFUS, The World Bank.
    Miritz C. Dowling T E. Brown W M. 1987. Evolution of animal mitochondrial DNA: relevance for population biology and systematics [J]. Annual Review of Ecology and Systematics. 18: 269-292.
    Nei M. 1987. Molecular Evolutionary Genetics [M]. NewYork: Columbia University Press.
    Nei M. 1991. Relative efficiencies of different tree making methods for molecular data [M]. In Miyamoto MM and Cracraft JL, eds., Recent Advances in Phylogenetic Studies of DNA Sequences, pp. 90-128. Oxford University Press, Oxford.
    Page R D M. 1996. TREEVIEW: An application to display phylogenetic trees on personal computers [J]. Computer Applications in the Biosciences, 12: 357-358.
    Peterson M A. 1996. Long-distance gene flow in the sedentary butterfly Euphilotes enoptes (Lepidoptera: Lycaenidae) [J]. Evolution, 50: 1990-1999.
    Peterson M A. Denno R F. 1998. The influence of dispersal and diet breadth on patterns of genetic isolation by distance in phytophagous insects [J]. American Naturalist, 152:428-446.
    Posada D. Crandall K A. 1998. Modeltest: testing the model of DNA substitution [J]. Bioinformatics. 14:817-818.
    Posada D. Crandall K A. 2001. Evaluation of methods for detecting recombination from DNA sequences: Computer simulations [J]. Proceedings of the National Academy of Sciences of the United States of America, 98: 13757-13762.
    Pritchard J K, Stephens M, Donnelly P. 2000. Inference of population structure using multilocus genotype data [J]. Genetics, 155: 945-959.
    Puterka G J, Black W C. Steiner W M, Burton R L. 1993. Genetic variation and phylogenetic relationships among worldwide collections of the Russian wheat aphid, Diuraphis noxia (Mordvilko), inferred from allozyme and RAPD-PCR markers [J]. Heredity. 70: 604-618.
    Ranala B. Yang Z. 1996. Probability distribution of molecular evolutionary trees: a new method of phylogenetic inference [J]. Journal of Molecular Evolution, 43: 304-311.
    Raymond M. Rousset F. 1995. GENEPOP (version 3.4): population genetics software for exact tests and ecumenicism [J]. Journal of Heredity, 86: 248-249.
    Rice W R. 1989. Analyzing tables of statistical tests [J]. Evolution, 43: 223-225.
    Rodin A. Li W H. 2000. A rapid heuristic algorithm for finding minimum evolution trees [J]. Molecular Phylogenetics and Evolution, 16: 173-179.
    Roff D A. 1994. The evolution of flightlessness: is history important? [J]. Evolutionary Ecology. 8:639-657.
    Ronquist F, Huelsenbeck J P. 2003. MrBayes 3: Bayesian phylogenetic inference under mixed models [J]. Bioinformatics, 19: 1572-1574.
    Rosenberg N A. 2004. DISTRUCT: a program for the graphical display of population structure [J]. Molecular Ecology Notes, 4: 137-138.
    Rosenberg N A. Pritchard J K. Weber J L, Cann H M, Kidd K K, Zhivotovsky L A, Feldman M W. 2002. Genetic Structure of Human Populations [J]. Science, 298: 2381-2385.
    Salvato P, Battisti A, Concato S. Masutti L, Patarnello T, Zane L. 2002. Genetic differentiation in the winter pine processionary moth (Thaumetopoea pilyucampa-wilkinsoni complex), inferred by AFLP and mitochondrial DNAmarkers [J]. Molecular Ecology, 11: 2435-2444.
    Schaal B A, Hayworth D A, Olsen K M, Rauscher J T, Smith W A. 1998. Phylogeographic studies in plants: problems and prospects [J]. Molecular Ecology, 7: 465-474.
    Schiffer M. Kennington W J. Hoffmann A A, Blacket M J. 2007. Lack of genetic structure among ecologically adapted populations of an Australian rainforest Drosophilu species as indicated by microsatellite markers and mitochondrial DNA sequences [J]. Molecular Ecology, 16: 1687-1700.
    Schneider S. Excoffier L. 1999. Estimation of past demographic parameters from the distribution of pairwise differences when the mutation rates vary among sites. Application to human mitochondrial DNA [J]. Genetics, 152: 1079-1089.
    Sezonlin M. Dupas S. Le Ru B. Le Gall P, Moyal P, Calatayud P A, Giffard I, Faure N, Silvain J F. 2006. Phylogeography and population genetics of the maize stalk borer Busseola fusca (Lepidoptera. Noctuidae) in sub-Saharan Africa [J]. Molecular Ecology, 15:407-420.
    Simon C. 1991. Molecular systematics at the species boundary: exploiting conserved and variable regions of the mitochondrial genome of animals via direct sequencing from amplified DNA [M]. In: Hewitt GM, Johnston AWB, Young JPW eds. Molecular Techniques in Taxonomy. Berlin: Springer Verlag, 33-72.
    Simon C. Frati F, Beckenbach A, Crespi B, Liu H, Flook P. 1994. Evolution, weighting, and phylogenetic utility of mitochondrial gene sequences and a compilation of conserved polymerase chain reaction primers [J]. Annals of the Entomological Society of America. 87: 651-701.
    Slatkin M. Hudson R R. 1991. Pairwise comparisons of mitochondrial DNA sequences in stable and exponentially growing populations [J]. Genetics, 129: 555-562.
    Smith C I. Farrell B D. 2005. Range expansions in the flightless longhorn cactus beetles, Moneilema gigas and Moneilema armatum, in response to Pleistocene climate changes [J]. Molecular Ecology, 14: 1025-1044.
    Stauffer C. Lakatos F, Hewitt G M. 1999. Phylogeography and postglacial colonization routes of Ips typographus L. (Coleoptera, Scolytidae) [J]. Molecular Ecology, 8: 763-773.
    Sunnucks P. De Barro P J, Lushai G. Maclean N, Hales D F. 1997. Genetic structure of an aphid studied using microsatellites: cyclic parthenogenesis, differentiated lineages and host specialization [J]. Molecular Ecology, 6: 1059-1073.
    Swofford D I.. 2002. PAUP*. Phylogenetic Analysis Using Parsimony* (and other methods). Version 4 [M]. Sinauer Associates, Sunderland, MA.
    Swofford D L. Olsen G J, Waddell P J, et al. 1996. Phylogenetic inference [M]. In Molecular Syslematics (2nd ed, Hillis D.M., C. Moritz and B.K. Mable, eds), Sinauer Associates. Sunderland. MA.
    Swofford D L. Selander R B. 1981. BIOSYS-1: a FORTRAN program for the comprehensive analysis of electrophoretic data in population genetics and sytematies [J]. Journal of Heredity, 72: 281-283.
    Tajima F. 1989. Statistical method for testing the neutral mutation hypothesis by DNA polymorphism [J]. Genetics. 123: 585-595.
    Tamura K. Nei M. 1993. Estimation of the number of nucleotide substitution in the control region of mitochrondrial DNA in humans and chimpanzees [J]. Molecular Phylogenetics and Evolution. 10: 512-526.
    Templeton A R. 2006. Population genetics and microevolutionary theory [M]. John Wiley & Sons. Inc., Hoboken, New Jersey.
    
    Templeton A R. Crandall K A, Sing C F. 1992. A cladistic analysis of phenotypic associations with haplotypes inferred from restriction endonuclease mapping and DNA sequence data. III. Cladogram estimation [J]. Genetics, 132: 619-633.
    Templeton A R. Routman E. Phillips C A. 1995. Separating population structure from population history: a cladistic analysis of the geographical distribution of mitochondrial DNA haplotypes in the tiger salamander, Ambystoma tigrinum [J]. Genetics. 140: 767-782.
    Thompson .J D. Gibson T J, Plewniak F. et al. 1997. The Clustal X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools[J]. Nucleic Acids Research. 24: 4876-4882.
    Timmermans M J T N. Ellers J, Marien J, Verhoef S C, Ferwerda E B, Van Straalen N M. 2005. Genetic structure in Orchesella cincta (Collembola): strong subdivision of European populations inferred from mtDNA and AFLP markers [J]. Molecular Ecology. 14:2017-2024.
    Tzedakis P C, Roucoux K H, de Abreu L, Shackleton N J. 2004. The duration of forest stages in southern Europe and interglacial climate variability [J]. Science, 306: 2231-2235.
    Van Oosterhoul C. Hutchinson W F, Wills DPM, Shipley P. 2004. MICRO-CHECKER: software for identifying and correcting genotyping errors in microsatellite data [J]. Molecular Ecology Notes, 4: 535-538.
    Vos P, Hogers R. Bleeker M, Reijans M, van deLee T, Homes M, Frijters A, Pot J,Peleman J. Kuiper M. Zabeau M. 1995. AFLP: a new technique for DNA fingerprinting [J]. Nucleic Acids Research, 23: 4407-4411.
    Wang D G, Fan J B. Siao C J, Berno A. Young P, Sapolsky R, et al. 1998. Large-scale identification, mapping, and genotyping of single-nucleotide polymorphisms in the human genome [J]. Science. 280: 1077-1082.
    Weber J L. Wong C. 1993. Mutation of human short tandem repeats [J]. Human Molecular Genetics. 2: 1123-1128.
    Weir B S, Cockerham C C. 1984. Estimating F-statistics for the analysis of population structure [J]. Evolution, 38: 1358-1370.
    Welsh J, McClelland M. 1990. Fingerprinting genomes using PCR with arbitrary primers [J]. Nucleic Acids Research, 18: 7214-7218.
    Williams C L, Goldson S L. Baird D B. Bullock D W. 1994. Geographical origin of an introduced insect pest. Listronotus bonariensis (Kuschel), determined by RAPD analysis [J]. Heredity. 72: 412-419.
    Williams J G. Kubelik A R. Livak K J, Rafalski J A, Tingey S V. 1990. DNA polymorphisms amplified by arbitrary primers are useful as genetic markers [J]. Nucleic Acids Research, 18: 6531-6535.
    Winter P C. Hickey G I. Fletcher H L. 2002. Instant Notes in Genetics (Second Edition) [M]. BIOS Scientific Publishers Limited, Boca Raton, Florida.
    Yan G, Romero Seveson J, Walton M. Chadee D D, Severson D W. 1999. Population genetics of the yellow fever mosquito in Trinidad: comparisons of amplified fragment length polymorphism (AFLP) and restriction fragment length polymorphism (RFLP) markers [J]. Molecular Ecology, 8: 951-963.
    
    Yang Z, Rannala B. 1997. Bayesian phylogenetic inference using DNA sequences: a Markov chain Monte Carlo method [J]. Journal of Molecular Evolution, 14: 717-724.
    
    Zardus J D, Etter R J. Chase M R, Rex M A, Boyle E E. 2006. Bathymetric and geographic population structure in the pan-Atlantic deep-sea bivalve Deminucula atacellanu (Schenck. 1939) [J]. Molecular Ecology, 15: 639-651.
    
    Zhang H, Yan J. Zhang G Q. Zhou K Y. 2008. Phylogeography and demographic history of Chinese black-spotted frog populations (Pelophylax nigromaculata): evidence for independent relugia expansion and secondary contact [OL]. BMC Evolutionary Biology, 8. 21 (24 January 2008).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700