数据信息采掘与热工过程控制优化
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
要改善我国目前能源利用效率低下、浪费严重的不利局面,其中一个重要的措施就是通过提高现有能耗设备的操作运行水平,在不增加更新设备投资的前提下,以实现最大限度的节能增效。本文课题研究的着眼点也在于此。
    本文第一部分为热工过程控制与数据信息采掘,研究的重点是通过先进控制策略的应用以及运行数据中发掘的有用信息,提高现有典型热工过程控制系统的性能,内容包括:首次提出了借鉴数据信息采掘技术的思路和方法,用于完善现有的热力系统优化控制方案;在此基础上结合生产实际,提出了运用多模型自适应策略实施锅炉负荷控制,并利用关联规则的数据信息采掘方法,通过对燃料发热量信息的在线诊断,优化控制器结构,同时实现锅炉燃烧配风的自适应调整,提高负荷、燃烧控制系统性能。
    提出了基于工况辨识的多线性模型多变量预测控制策略,其中包括热力系统的工况区域划分、辨识方法(基于运行数据信息采掘),以及在此基础之上的全新的多模型融合、控制器重构策略。为进一步提高系统性能,研究了多非线性模型预测控制,提出了一些非线性预测控制方法应用于热工过程控制的改进策略,并通过实时仿真研究,对方法可行性和有效性进行了验证。
    文章第二部分的研究内容主要集中在热工过程运行优化以及数据信息采掘技术在这一领域内的一些实际应用。首先,针对目前供热系统热源负荷控制中的难点问题,提出了通过综合分析系统运行数据,间接提炼出供热系统热负荷需求模式,并通过动态预测补偿的方法以实现真正意义上的按需供热。
    为解决锅炉变工况运行条件下的燃烧优化控制问题,利用数据信息采掘技术对锅炉变工况运行数据进行分析,提出了一种行之有效的基于工况分类、辨识和RBF静态神经网络模型的最佳氧量设定模块,并将其应用于生产实际,获得了良好的效果。
Aiming at ameliorate the inefficient energy consumption method, improvement of the operation level is one of the most effective way in which energy can be saved to the maximum extent and additional investment for the substitution of equipment is unnecessary. This is the main focus of the research work of this dissertation. .
    The first part of this dissertation is about the automation control of the thermodynamic systems and the data mining technology applied in this field. The research objective is to improve the control system performance through the combination of the advanced control strategy with the meaningful information mined from the history operation database. Firstly, a new solution for the control performance enhancement is presented by the reference of the KDD technology. Aiming at practical application, a novel boiler load control method, which combines the multiple model adaptive control strategy with the data mining technology, is put forward in this dissertation. Through utilizing the association rules to identify the fuel heating characteristics, the auto-tuning of the air/fuel ratio in the boiler combustion control can be realized.
    Secondly, a thermodynamic system predictive control strategy based on the working regime identification online and multiple local linear models is presented, including a new working regime decomposition and identification method and the novel online multi-model combination and controller reconfiguration method. In order to upgrade the controller performance further, we extend our research work to the multiple nonlinear models predictive control and its application in the control of thermodynamic systems. Some amelioration strategies are presented to facilitate the practical application of the ordinary nonlinear predictive controller. Through the simulation test, the feasibility and superiority of these methods are proved.
    The second part of this dissertation mainly focuses on the thermal engineering process operation optimization and some applications of the data mining technology in this field. Firstly, aiming at solving the difficult problem in scheduling control of the heating load in a practical district heating system, a strategy is proposed which can realize the real balance between the quantity of heat needed for the resident and the quantity of heat provided by heating plant. This method is based on the heating load
    
    predictive model which is extracted from the practical operation data recorded in production field by the data mining tools, and is realized through the online model-based dynamic optimization.
    Finally, in order to improve the combustion efficiency of the boiler which is operated in a wide working condition range, a novel optimum oxygen content setting module is proposed by the statistic analysis of the operation data record, which is based on working condition classification, identification and a RBF static mapping function model. This setting module has been implemented in a practical combustion control system and is proved to be effective in fuel-saving.
引文
[1] 中国能源(1997年版). 北京:中国电力出版社,1998,5.
    [2] 叶大均. 能源概论. 北京:清华大学出版社,1990
    [3] 张永照. 能源、环保方针和我国工业锅炉发展展望. 工业锅炉,1999,57(1):3~9
    [4] R. N. Silva, P. O. Shirley. Adaptive regulation of super-heated steam temperature: a case study in an industrial boiler. Control Engineering Practice, 2000(8), 1405~1415
    [5] Prasad. G, Swidenbank, E. A Neural net model-based multivariable long-range predictive control strategy applied in thermal power plant control. Energy Conversion, IEEE Transaction on, 1998, 13(2), 485~492
    [6] 宋春平. 自适应预估控制研究及其在火电机组中的应用: [博士学位论文]. 北京:清华大学,2000.
    [7] 刘建江. 大型火电厂中的H∞控制: [博士学位论文]. 北京:清华大学,1999.
    [8] Hong Zhao, John Guiver. A nonlinear industrial model predictive controller using integrated PLS and neural net state-space model. Control Engineering Practice, 2001(9), 125~133
    [9] Larimore, W. E. Automated Multivariable System Identification and Industrial Applications. Proc. 1999 American Control Conference. San Diego, CA: Jun. 2-4, 1999.
    [10] Peter Eserin. Application of Canonical Variate Analysis to the Dynamical Modeling and Control of Drum Level in an Industrial Boiler. Proc. 1999 American Control Conference. San Diego, CA: Jun. 2-4, 1999, 1163~1166
    [11] G. Prasad, E. Swidenbank, B. W. Hogg. Plant-wide Predictive Control for a Thermal Power Plant based on a Physical Plant Model. IEE Proc. Control Theory Application, 2000, 147(5), 523~537
    [12] Wei Li, Xiaoguang Chang. Application of hybrid fuzzy logic proportional plus conventional integral-derivation controller to combustion control of stoker-fired boilers. Fuzzy Sets and Systems, 2000(111), 267~284
    [13] 崔淑妮. 热力系统自主学习模糊控制体系研究: [博士学位论文]. 北京:清华大学,2000.
    [14] Tommy Moelbak. Advanced control of super-heater steam temperatures - an evaluation based on practical applications. Control Engineering Practice, 1999(7), 1~10
    
    
    [15] 岳洪. 热电厂热力系统最佳运行参数. 汽轮机技术,No. 10, 1994
    [16] 王培红. 动态规划及其在电厂经济负荷分配中的应用. 汽轮机技术,No. 4, 1990
    [17] 葛晓霞. 电厂负荷的最优分配. 汽轮机技术,No. 10, 1995
    [18] Y. Lee. Multi-objective Optimal Power Plant Operation Through Coordinate Control with Pressure Set Point Scheduling. IEEE Trans. on Energy Conversion, 2001, 16(2), 115~122
    [19] P. D. Roberts. An algorithm for steady state system optimization and parameter estimation. Int. J. Sys. Science, 1979(10), 719~734
    [20] P. Augustin, P. D. Roberts. On-line hierarchical steady-state optimizing control of a power plant using the ISOPE technique with dynamic information. Trans. Inst. Meas. Control, 1993, 15(4), 170~177
    [21] N. Li, S. Thompson. Power Plant air/fuel ratio optimization. Trans. Inst. Meas. Control, 1998, 20(4), 203~208
    [22] R. C. Booth, W. B. Roland. Pegasus Neural Network-based Combustion Optimization Reduces NOx Emissions While Simultaneously Improving Thermal Efficiency. Pegasus NeuSIGHT Closed Loop Combustion Optimization (Technique Report).
    [23] Carlos R. Combustion Optimization of a Load-Following Boiler with Flue Gas Recirculation Capability. Proceedings of 2000 Int. Joint Power Generation Conf., July 23-26, 2000.
    [24] Doris Saez, Aldo Cipriano, Andrzej W. Ordys. Optimization of Industrial Precesses at Supervisory Level - Application to Control of Thermal Power Plants. London: Springer, 2002.
    [25] 叶海文. 循环流化床锅炉建模与控制的人工神经网络方法研究: [博士学位论文]. 北京:清华大学,1997.
    [26] Xue Z. Wang. Data Mining and Knowledge Discovery for Process Monitoring and Control. New York: Springer, 1999.
    [27] Tony Ogilvie, B. W. Hogg. Use of Data Mining Techniques in the Performance Monitoring and Optimization of a Thermal Power Plant. IEE Colloquium on Knowledge Discovery and Data Mining, 1998.
    [28] Chen Jianhong. Knowledge discovery and data mining based on power plant real-time database: A Survey, Proc. Of International Conference on Power Engineering, Oct.8-12, 2001.
    [29] B. W. Hogg, N. M. El-Rabaie. Generalized Predictive Control of Steam Pressure in a Drum Boiler. IEEE Transactions on Energy Conversion, 1990, 5(3), 485~492
    
    
    [30] 李明. 热力过程容错控制系统研究: [博士学位论文]. 北京:清华大学,2001.
    [31] T. A. Johansen, B. A. Foss. Multiple Model Approach to Modeling and Control. Int. J. Control, 1999, 72(7/8), 575
    [32] Narendra, K. S, Balakrishnan, J. Adaptive Control using Multiple Models. IEEE Transactions on Automatic Control, 1997, 42(2), 171~187
    [33] Karl J. Astrom, Bjorn Wittenmark. Computer-Controlled Systems: Theory and Design. N.J.: Prentice Hall, 1997.
    [34] G. Prasad, E. Swidenbank, B. W. Hogg. A Local Model Networks Based Multivariable Long-Range Predictive Control Strategy for Thermal Power Plant. Automatica, 1998, 34(10), 1185~1204
    [35] 韩曾晋. 自适应控制. 北京:清华大学出版社,1995
    [36] 王伟,李晓理. 多模型自适应控制. 北京:科学出版社,2001
    [37] 李遵基. 热工自动控制系统. 北京:中国电力出版社,1997.
    [38] 郭德仁. 锅炉运行规程,石景山热电厂技术资料. 1990
    [39] Trevor Hastie, Robert Tibshirani, Jerome Friedman. The Elements of Statistical Learning: Data Mining, Inference and Prediction. New York: Springer. 2001
    [40] Agrawal, R. Swami, A. Mining Association Rules Between Sets of Items in Large Database. Proceedings of Conference on Management of Data, New York: ACM Press, 1993, 207~216
    [41] Christian Borgelt, Rudolf Kruse. Induction of Association Rules: Apriori Implementation. Research Report of School of Computer Science, Magdeburg University, 2002
    [42] Songling Cao, R. Russell Rhinehart. An Efficient Method for on-line Identification of Steady State. J. Proc. Control, 1995, 5(6), 363~374
    [43] Songling Cao, R. Russell Rhinehart. Critical Values for a Steady-state Identifier. J. Proc. Control, 1997, 7(2), 149~152
    [44] Pedro M. Saraiva, George Stephanopoulos. Continuous Process Improvement Through Inductive and Analogical Learning. AICHE Journal, 1992, 38(2), 161~183
    [45] 徐春晖,徐向东. 电厂计算机控制系统开发及调试平台. 清华大学学报, 1999, 39(3), 25~31
    [46] 卢勇. 中小型煤粉炉控制系统仿真调试平台研究: [学士学位论文]. 北京:清华大学,1998.
    
    黄勇理,瞿坦,周怀春,等. 电站锅炉炉膛火焰自动化监测中的图像处理技术. 仪
    
    [47] 表技术与传感器,2000,8:23~26
    [48] 张玉铎,王满稼. 热工自动控制系统. 北京:水力电力出版社,1985
    [49] Bernhard Eikens, M. Nazmul Karim. Process Identification with Multiple Neural Network Models. Int. J. Control, 1999, 72(7/8), 576~590
    [50] M. Sugeno, G. T. Kang. Fuzzy Modeling and Control of Multilayer Incinerator. Fuzzy Sets and Systems, 1986, 18(3), 329~346
    [51] R. Pickhardt. Adaptive Control of a Solar Power Plant using a Multi-Model. IEE Proc. Control Theory Applications, 2000, 147(5), 493~501
    [52] Bjarne A. Foss, Song-Bo Cong. Nonlinear MPC Based on Multi-Model for Distillation Columns. Proceedings of 14th IFAC World Congress, Beijing, 1999, 337~342
    [53] 熊智华. 复杂系统建模与控制的研究及在精馏过程的应用:[博士学位论文]. 北京:清华大学,2000
    [54] Lainiotis, D. G. Optimal Adaptive Estimation: Structure and Parameter Adaptation. IEEE Transactions on Automatic Control, 1971, AC-16(2), 321
    [55] A. Banerjee, Y. Arkun. Estimation of Nonlinear Systems Using Linear Multiple Models. AICHE Journal, 1997, 43(5), 1204~1226
    [56] T. A. Johansen and Bjarne A. Foss. Operating Regime Based Process Modeling and Identification. Computers Chem. Eng., 1997, 21(2), 159~176
    [57] T. A. Johansen and B. A. Foss. Constructing NARMAX models using ARMAX models. Int. J. Control, 1993, 58, 1125~1153
    [58] K. J. Hunt and T. A. Johansen. Design and Analysis of Gain-Scheduled Control using Local Controller Networks. Int. J. Control, 1997, 66(5), 619~651
    [59] 王伟. 广义预测控制理论及其应用. 北京:科学出版社,1998
    [60] Richalet J. A., Rault A. Model Predictive Heuristic Control: Applications to Industrial Processes. Automatica, 1978, 14(5), 413~428
    [61] Rouhani, R. and Mehra, R. K. Model Algorithmic Control(MAC), Basic Theoretical Properties. Automatica, 1982, 18(4), 401~414
    [62] Cutler, C. R. and Ramaker, B. L. Dynamical Matrix Control - A Computer Control Algorithm. Proc. of Joint Automatic Control Conference, 1980
    [63] N. Lawrence Ricker. Model Predictive Control with State Estimation. Ind. Eng. Chem. Res., 1990, 29(2), 374~382
    
    [64] Ricker N. L. The Use of Quadratic Programming for Constrained Internal Model Control. Ind. Eng. Chem. Des. Dev., 1985, 24, 925~936
    
    
    [65] S. Kanev and M. Verhaegen. Controller Reconfiguration for Nonlinear Systems. Control Engineering Practice, 2000, 8, 1223~1235
    [66] 方崇智,肖德云. 过程辨识. 北京:清华大学出版社,1994
    [67] P. Van Overschee and B. de Moor. N4SID: Subspace algorithms for the identification of combined deterministic-stochastic systems. Automatica, 1994, 30(1), 75~93
    [68] M. Verhaegen. Identification of the deterministic part of MIMO state space models giver in innovation form from input-output data. Special Issue on Statistical Signal Processing and Control of Automatica, 1993, 30(1), 61~74
    [69] L. Ljung. System Identification: Theory for the user. New Jersey: Prentice Hall. 1999.
    [70] Gibbs, B. P., Weber, D. S. Application of Nonlinear Model-based Predictive control to Fossil Power Plants. Proceedings of the 30th Conference on Decision and Control, Brighton, England: 1991, 1850~1856
    [71] 杨献勇. 热工过程自动控制. 北京:清华大学出版社,2000.
    [72] Bezdek J. C. Pattern Recognition with Fuzzy Objective Function Algorithm. New York: Plenum Press, 1981.
    [73] 仲蔚,俞金寿. 基于模糊c均值聚类的多模型软测量建模. 华东理工大学学报, 2000, 26(1), 83~87
    [74] 张永哲,徐向东. 循环流化床锅炉动态数学模型与仿真研究. 中国电机工程学报, 2000, 20(12), 84~88
    [75] 李政,张巍,苟建兵等. 循环流化床锅炉动态仿真试验平台研制. 清华大学学报, 1999, 39(3), 100~102
    [76] 薛定宇. 控制系统计算机辅助设计—MATLAB语言及应用. 清华大学出版社,1996.
    [77] T. A. Badgwell and S. J. Qin. Review of Nonlinear Model Predictive Control Application. In: D. P. Atherton and G. W. Irwin, eds. Nonlinear Model Predictive Control Theory and Practice. London: Institute of Electrical Engineering, 2001.
    [78] Guillermo B. Sentoni and Lorenz T. Biegler. State-Space Nonlinear Process Modeling: Identification and Universality. AICHE Journal, 1998, 44(10), 2229~2239
    [79] G. B. Sentoni and L. T. Biegler. Model Reduction for Nonlinear DABNet Models. Proceedings of the American Control Conference, San Diego, CA, 1999, 2052~2056
    
    [80] F. J. Doyle III, R. K. Rearson and B. A. Ogunnaike. Identification and Control Using Volterra Models. New York: Springer, 2002, 121~125
    [81] Zheng, A. A Computational Efficient Nonlinear MPC Algorithm. Proceedings of American Control Conference, Albuquerque, NM, 1997, 1623~1627
    
    
    [82] Zheng, A. and Allgower, F. Towards a Practical Nonlinear Predictive Control Algorithm with Guaranteed Stability for Large-Scale Systems. Proceedings of American Control Conference, Philadelphia, PA, 1998, 2534~2538
    [83] A. Banerjee and Y. Arkun. Model Predictive Control of Plant Transitions Using a New Identification Technique for Interpolating Nonlinear Models. Journal of Process Control, 1998, 8(5-6), 441~457
    [84] 卢勇,徐向东. 基于神经网络模型的锅炉广义预测控制. 热能动力工程, 2001, 16(1), 55~58
    [85] 石兆玉. 供热系统运行调节与控制. 北京:清华大学出版社,1994.
    [86] Yoshihiko Iwasaki, Shuichirou Kobayashi and Akihiro Nagaiwa. Development of District Heating and Cooling Plant Operation Support System. ASHRAE Transactions, 1998, 104, 4~12
    [87] Masatoshi Sakawa and Kosuke Kato. Cooling Load Prediction in a District Heating and Cooling System Through Simplified Robust Filter and Multilayered Neural Network. Applied Artificial Intelligence, 2001, 15, 633~643
    [88] Minoru Kawashima, Charles E. Dorgan and John W. Mitchell. Hourly Thermal Load Prediction For the Next 24 Hours by ARIMA, EWMA, LR, and an Artificial Neural Network. ASHRAE Transactions, 1995, 1, 186~200
    [89] 吕崇德. 热工参数测量与处理. 北京:清华大学出版社,1990
    [90] 陈德钊. 多元数据处理. 北京:化学工业出版社,1998.
    [91] 王惠文. 偏最小二乘回归方法及其应用. 北京:国防工业出版社,1999.
    [92] 王永骥,涂健. 神经元网络控制. 北京:机械工业出版社,1998.
    [93] Philip Brierley and Bill Batty. Data mining with Neural Network - an Applied Example in Understanding Electricity Consumption Patterns in: M. A. Bramer, (eds). Knowledge Discovery and Data Mining. London: The Institute of Electrical Engineers, 1999, 241~303
    [94] Chen, L. and Narendra, K. S. On a New Approach to the Design of Tracking Controllers for Nonlinear Dynamical Systems. In Proceedings of American Control Conference, 1999, 5, 3534~3538
    
    [95] Chen, L. and Narendra, K. S. Nonlinear Adaptive Control using Neural Networks and Multiple Models. Automatica, 2001, 37, 1245~1255
    [96] Philip E. Gill and Walter Murray. Practical Optimization. New York: Academic Press, 1981.
    
    
    [97] 陈宝林. 最优化理论与算法. 北京:清华大学出版社,1994.
    [98] Stephen G. Nash and Ariela Sofer. Linear and Nonlinear Programming. New York: McGraw-Hill, 1996, 511~519
    [99] ASHRAE. 1993. 1993 ASHRAE handbook - Fundamentals, chap. 26, table 2. Atlanta: American Society of Heating, Refrigerating and Air-conditioning Engineer, Inc.
    [100] 周昊, 朱洪波, 曾庭华等. 基于人工神经网络的大型电厂飞灰含碳量建模. 中国电机工程学报, 2002, 22(6), 96~100
    [101] 周昊, 朱洪波, 曾庭华等. 基于遗传算法的燃煤锅炉热效率优化. 中国电机工程学报, 2002, 22(7), 125~128
    [102] 上海市科学技术交流站组. 正交试验设计法:多因素的试验方法. 上海:上海人民出版社, 1975.
    [103] M.J.L Orr. Regularization in the Selection of Radial Basis Function Centers. Neural Computation, 1995, 7(3), 606~623
    [104] Genichi Emoto, Atushi Tsuda and Mark T. Monical. Integrated Large-scale Multi-variable Control and Real-time Optimization of a Power Plant. Proceedings of the 1998 IEEE International Conference on Control Applications, Trieste, Italy, 1998, 1368~1372
    [105] E. Swidenbank, J. Garcia and D. Flynn. On-line Optimization and Monitoring of Power Plant Performance Through Machine Learning Techniques. UKACC International Conference on Control, 1998, 257~262
    [106] 徐玲,徐礼国等. 工业锅炉燃烧过程的稳态优化模型. 无锡轻工大学学报, 2001, 20(5), 518~521
    [107] 鄂春盛. 大型火力电站锅炉燃烧系统稳态建模与优化的实现:[硕士学位论文]. 北京:清华大学,2001.
    [108] 陈念贻., 钦佩, 陈瑞亮等. 模式识别方法在化学化工中的应用. 北京:科学出版社, 2000.
    [109] Antonio Copado, Francisco Rodriguez. CESAR-SIRE: advanced software for boiler efficiency and NOx optimization. Fuel, 2002, 81, 619~626
    [110] 徐春晖. 中小煤粉炉燃烧控制的新方法—主导因素法研究:[博士学位论文]. 北京:清华大学,1999

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700