铝团簇的结构、稳定性和电子性质的理论研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文采用遗传算法(GA)与密度泛函理论(DFT)相结合的理论方法,对中等尺度的铝团簇Aln (n = 27-40)的几何结构进行了全局搜索和研究,并且结合相关的实验结果,对铝团簇Aln (n = 2-40)的稳定性和电子性质等方面进行了系统的分析,我们得出以下主要结论:
     (1)中等尺度铝团簇Al27– Al40的稳定结构是具有层错的fcc堆积结构。我们的研究发现Al27– Al40都具有类似的堆积模式,这种模式的铝团簇结构是以一个(111)面为基底,分别以基底的上下两个方向以fcc模式堆积而成,我们也称之为双向fcc堆积。该堆积模式也可以看作是由两个fcc体片段组成的双向体结构。其中,Al27和Al28是共享一个基底的五层双四面体结构,Al29-Al32为三层的fcc堆积结构,当铝原子数达到Al33– Al35时,生长模式转变为四层原子的堆积,而到Al36– Al40时,又转变为五层原子的堆积。Aln (n = 33– 40)是在Al33的结构基础上衍生出来的一系列结构。并且,从Al23开始铝团簇已经呈现出了fcc的堆积趋势。
     (2)对铝团簇Aln (n = 2 - 40)的相对稳定性进行了系统的分析,其中包括结合能、二次差分能、HOMO-LUMO能隙的分析研究。研究结果表明Al13、Al20、Al23和Al36与它们相邻的铝团簇相比具有更好的能量稳定性和反应稳定性。而Al7的结合能大,但能隙相对较小。表明Al7的热化学稳定性好,但化学反应活性比较大。
     (3)对Aln (n = 2 - 40)团簇的解离能和解离通道进行了详细的计算研究。结果表明中性Aln团簇最主要的解离产物是一个Al原子;在Al+n团簇中,对于尺度较大的Al+n,最主要的解离产物是Al+n-1;而对于较小的Al+n,最主要的解离产物是Al+。我们计算得到的解离能和解离行为的结果与实验观测相一致。
     (4)计算研究了Al2– Al40团簇的绝热电离势(IP)。研究结果表明Al6、Al8、Al13、Al17、Al20、Al28、Al34和Al36比其它相邻的铝团簇具有更高的IP值。铝团簇的电离势在尺寸较小时峰值较突出,尤其是尺寸n=3?6时,比其它尺寸铝团簇的电离势高0.5eV以上。其结果与实验观测相符合。
Recently, aluminum clusters have attracted much attention of researchers because of its special electronic structures, super light weight and unique conductive characteristics and so on. Apart from clusters of alkali metals (Na and K in particular), aluminum clusters are perhaps the most extensively studied simple metal systems. The theoretical studies have been focused on the electronic and geometric structures of Al clusters. The experimental studies include measurements of ionization potentials, dissociation energies, mobilities, electron affinities, photoelectron spectra, and polarizabilities, etc. With the development of technology, the aluminum-related materials have gradually extended to the novel electronic device, electronic industries, micro-electronics, and nanomaterials, etc. Cluster have special structures and properties which are strongly size-dependent. Among various clusters, magic clusters with special stability play important roles in the synthesis of novel materials. It is well known that the jellium model provides a good description of the electronic shell structure and stability of simple metal clusters. Photoelectron experiments suggested a set of shell closings consistent with the jellium model. And the studies of medium-sized aluminum clusters can help us to find out the cluster growth trend. The appearance of the bulk motif in Al clusters is a very interesting topic.
     We use the genetic algorithm (GA) coupled with a TB potential of Al to search for low-energy candidates of Al clusters. The low-energy candidates were further optimized by all electrons Perdew-Burke-Ernzerhof (PBE) method and DND basis set of DMol3 included in Materials Studio (MS). We also performed calculations with the PBE method and plane wave (PW) basis set using VASP. In this paper, we search for stable structures of medium-sized Al clusters, and the binding energies,. HOMO-LUMO gaps, second differences in energies, the electronic affinities, ionization potentials, fragmentation energies and electron occupations have been caculated in order to analyze the stabilities and electronic structures of the clusters. The main research results are listed as follows:
     (1) It is found that the medium-sized aluminum clusters at the size range of Al31-40 favor a fcc-like motif with stacking fault. We found that Al27 - Al40 are formed by up and down fcc stackings with a stacking fault in the middle (or two fcc fragments), which is called a bidirectional fcc stacking. For Al27 and Al28, the lowest-energy isomers are double-tetrahedron structures with five layers. Al29-Al32 have the structures with three layers. The motif of Al33-Al35 has been changed to four layers stacking. Form Al36-Al40, the lowest-energy isomers have the structures of five layers stacking. We note that Al29 and Al30 favor a bidirectional fcc stacking pattern at the PBE functional. However at the BLYP level the double-tetrahedron structures are lower in energy. The orders of stabilities of two types of structures are different at the PBE and BLYP functionals. They can be expected to occur with similar probabilities, due to small energy differences. From another point of view, the growth motif from Al29 to Al32, is by capping atoms on Al29, and Aln (n = 33 - 40) is a series of structures by capping atoms on Al33. From Aln (n = 2 ? 40), it is obviously that Al23 already starts to have a fcc-like stacking tendency.
     (2) We have carried out a systematic study on relative stabilities of aluminum clusters Aln (n = 2 ? 40), including binding energies, second differences in energies, HOMO-LUMO gaps. Our results show that the binding energy curve can be roughly divided into four regions: n < 7 where the binding energy increases rapidly as the cluster size increases, 7 < n < 13 where the binding energy increases moderately with the cluster size, 13 < n < 23 where binding energy increases slowly, and n > 23 where binding energy increases smoothly. In particular, at Al7, Al13, Al20, Al23, Al28, and Al36, there are clear peaks, indicting that these clusters have special stabilities compared with their neighbors. The curve of the second differences in energies shows an oscillating behavior, and Al7, Al13, Al20, Al23, Al28 and Al36 correspond to local maxima on the curve. The large energy gaps are found at n= 8, 13, 18, 20, 23, 25, 27, 31, and 36. Al13, Al20, Al23 and Al36 have both higher energetic stability and reactive stability than their neighbors. Al7 has large thermostatic stability, but it’s energy gap is relatively small. This suggests that Al7, with a better thermodynamic stability, is more reactive due to the smaller energy gap.
     (3) The calculated fragmentation energies and the predicted dissociation products of Aln (n = 2 ? 40) reveal that the most dominant channel of neutral Al clusters is the evaporation of an atom from the cluster, and the main products from the dissociations of aluminum cluster ions are Al+n-1 for the larger clusters but Al+ for the smaller ones. The present calculated results and analyses of fragmentations are consistent with the experimental observations. Since the clusters with larger fragmentation energies should be more stable, the relative stable isomers from our present study are found to be Al7, Al13, Al20, Al23, Al27, Al30, Al34 and Al36.
     (4) We calculated adiabatic ionization potentials (IPs) for Al2– Al40. The results suggest that Al6、Al8、Al13、Al17、Al20、Al28、Al34 and Al36 have larger IPs than their neighbors. The IPs of Aln clusters increase steeply at small size, and the ionization energies for n = 3 - 6 are larger by more than 0.5 eV compared with those of other clusters studied in this work. A very large decrease from n =13 to 14 can be attributed by the special stability of Al13. The calculated general tendency of the adiabatic IPs and the oscillations of IPs agree well with the results of the photoionization spectroscopy measurements, though the calculated IPs are about 0.13~0.79 eV smaller than the experimental data. We note that the strong oscillations of the IPs in 12≤N≤23 are due to competition and coexistence of icosahedral, decahedral and fcc-based structures.
引文
[1] COTTON F A. Transition– metal compounds containing clusters of metal atoms [J]. Quarterly Review, Chemistry Society, 1966, 20: 389.
    [2]王广厚.团簇物理学[M].上海科技出版社, 2003.
    [3] STEIN G D. Atoms and molecules in small aggregates [J]. Phys. Teach., 1979, 17: 503.
    [4] FRIEDEL J. Concluding remarks [J]. Surf. Sci., 1981, 106: 582-588.
    [5]王广厚.团簇的结构和奇异性质[J].物理学进展, 1993, 13: 266.
    [6] MARTIN T P. Alkali halide clusters and microcrystals [J]. Phys. Rep., 1983, 95: 167.
    [7]王广厚.团簇物理学[J].物理, 1995, 24: 13.
    [8]王广厚.团簇物理的新进展[J].物理学进展, 1994, 12: 121.
    [9]徐光宪.原子团簇与有关分子的结构规则(I)[J].高等学校化学学报, 1982, 3(专刊): 114.
    [10]阎守胜.固体物理基础[M].北京大学出版社,第二版, 2003.
    [11] CASTLEMAN A W, BOWEN K H. Clusters: Structure, Energetics, and Dynamics of Intermediate States of Matter [J]. J. Phys. Chem, 1996, 100: 12911.
    [12] OCHS S A, COTE R E, KUSCH P. On the Radiofrequency Spectrumof the Components of a Sodium Chloride Beam.The Dimerization of the Alkali Halides [J]. J. Chem. Phys., 1953, 21: 459-466.
    [13] BECKER E W, BIER K, HENKES W. Strahlen aus kondensierten Atomen und Molekeln im Hochvakuum [J]. Z.Phys., 1956, 146: 333.
    [14] BENTLEY P G. Chemical Engineering Polymers of Carbon Dioxode [J]. Nature, 1961, 190: 432.
    [15] POULAIN J E, BENI' TEZ J I, CASTILLO S. A comparative theoretical study of the C2V and C3V reaction of Hz with a Pt4 cluster [J]. J. Molecular Structure (Theochem), 2004, 709: 67.
    [16] RENA Z–Y, LI.A F, GUOA P, et al. A computational investigation of theNi-doped Sin clusters by a density functional method [J]. J. Molecular Structure: THEOCHEM, 2005, 718: 165.
    [17] ARROUVEL C, BREYSSE M, TOULHOAT H, et al. A density functional theory Comparison Catalysis, of anatase(TiO2)-andγ-A1203 supported MoS2 catalysts [J]. J. 2005, 232: 161.
    [18] ZHAN H, CAI W -S, GUO Q–X, et al. A theoretical investigation of small Si/C clusters by a combination of MM and QM method [J]. Chem. Phys. Lett, 2005, 405: 97.
    [19] BAWENDI G, STEIGERWALD M L, BRUS L E. The quantum mechanics of larger semiconductor clusters ("quantum dots") [J]. Ann. Rev.Phys. Chem., 1990, 41: 477.
    [20]王广厚.原子团簇的稳定结构和幻数[J].物理学进展, 2000, 20: 52.
    [21] ECHT O, SATTLER K, RECHNAGEL E. MagicNumbers for Sphere Packings: Experimental Verification in Free Xenon Clusters [J]. Phys. Rev. Lett, 1981, 47: 1121.
    [22] KNIGHT W D, CLEMENGER K, HEER W A, et al. Electronic Shell Structure and Abundances of Sodium Clusters[J]. Phys. Rev. Lett., 1984, 52: 2141.
    [23] KNIGHT W D, HEER W A, SAUNDERS W A, et al. Alkali metal clusters and the jellium model [J]. Chem. Phys. Lett., 1987, 134(1): 1.
    [24] EKARDT W. Work function of small metal particles: Self-consistent spherical jellium-background model [J]. Phys. Rev. B, 1984, 29: 1558-1564.
    [25] HEER W A. The physics of simple metal clusters: experimental aspects and simple models [J]. Rev. Mod. Phys., 1993, 65: 611-676.
    [26] COHEN M L, CHOU M Y, KNIGHT W D, et al. Physics of metal clusters [J]. J. Phys. Chem., 1987, 91: 3141-3149.
    [27] Brack M [J]. J. Phys. Chem. 1993, 65, 677.
    [28] LI X, WU H, WANG X B, et al. s- p Hybridization and Electron Shell Structures in Aluminum Clusters: A Photoelectron Spectroscopy Study [J]. Phys. Rev. Lett., 1998, 81: 1909-1912.
    [29] MOORE C E. in Atomic Energy Levels [C]. Natl. Bur. Stand. (U.S.) Circ. (U.S. GPO, Washington, D.C., 1971), Vol. I.
    [30] YAO C -H, SONG B, CAO P–L. Stable structures for Ahoclusters [J]. Physics Letters A, 2005, 341:177.
    [31] DOYE J P K. A model metal potential exhibiting polytetrahedral clusters [J]. J. Chem. Phys., 2003, 119: 1136.
    [32] YAO C–H; SONG B, CAO P–L. Structures of Ah9 cluster: A full-potential LMTO molecular-dynamics study [J]. Phys. Rev. B., 2004, 70: 195431.
    [33] HAN J–G, JORGE A, MORALES A. theoretical investigation on fullerene-like phosphorus clusters [J]. Chem. Phys. Lett., 2004, 396: 27.
    [34]陈莹.博士论文,金属团簇的结构和固液转变的研究[D].山东大学, 2004.
    [35] XIROUCHAKI C, PALMER R E. Pinning and implantation of size-selected metal clusters: a topical–review [J]. Vacuum, 2002, 66: 167.
    [36] JUAN R, S'ANCHEZ. Metal surface adsorbed clusters: Structure and dynamics [J]. J. Molecular Catalysis A: Chemical, 2005, 237: 206.
    [37] SONG X F, LIU G S, YU J G, et al. Density functional theoretical study of water molecular adsorption on surface of Moo with the cluster model [J]. J. Molecular Structure, 2004, 684: 81.
    [38] OKAMOTO Y. Density-functional calculations of atomic and molecular adsorptions on 55-atom metal clusters: Comparison with (111) surfaces [J]. Chem. Phys. Lett, 2005, 405: 79.
    [39] ORLOV A O, AMLANI I, BERNSTEIN G H, et al. [J].Science 1997, 277: 928.
    [40] SUN S, MURRAY C B, WELLER D, et al. [J]. Science 2000, 287: 1989.
    [41] VALDEN M, LAI X, GOODMAN D W. [J]. Science 1998, 281: 1647.
    [42] BERGERON D E, ROACH P J, CASTLEMAN A W, et al. Reactions of AlnIx- with Methyl Iodide: The Enhanced Stability of Al7I and the Chemical Significance of Active Centers [J]. J. Am. Chem. Soc. 2005, 127: 16048.
    [43] BERGERON D E, CASTLEMAN A W, MORISATO T, et al. [J]. Science 2004, 304: 84.
    [44] BERGERON D E, ROACH P J, CASTLEMAN A W, et al. [J]. Science 2005, 307: 231.
    [45] BERGERON D E, CASTLEMAN A W, MORISATO T, et al. Formation and properties of halogenated aluminum clusters [J]. J. Chem. Phys. 2004, 121: 10456.
    [46] JUNG J, KIM J C, HAN Y–K. Structure and electronic properties of Al13X ( X=F , Cl, Br, and I) clusters [J]. Phys. Rev. B, 2005, 72: 155439-155444.
    [47] HAN Y–K, JUNG J. Does the Al13– core exist in the Al13 polyhalide Al13In–(n=1–12) clusters? [J]. J. Chem. Phys. 2005, 123: 101102.
    [48] JONES N O, REVELES J U, KHANNA S N, et al. Structural, electronic, and chemical properties of multiply iodized aluminum clusters [J]. J. Chem. Phys., 2006, 124: 154311.
    [49] LI X, KUZNETSOV A E, ZHANG H–F, et al. [J]. Science 2001, 291: 859.
    [50] BELYAKOVA O A, ZUBAVICHUS Y V, NERETIN L S, et al. Atomic structure of nanomaterials: combined X-ray diffraction and EXAFS studies [J]. J. Alloys and Compounds, 2004, 382: 46.
    [51] PURVIS G D, BARTLETT R J. A Full Coupled-Cluster Singles and Doubles Model: The Inclusion of Disconnected Triples [J]. J. Chem. Phys. 1982, 76: 1910.
    [52] VOJISLAV R. STAMENKOVI?, MATTHIAS ARENZ, et al. Surface Chemistry on Bimetallic Alloy Surfaces: Adsorption of Anions and Oxidation of CO on Pt3Sn (111) [J]. J. AM. Chem. Soc., 2003, 125: 2736.
    [53] HARUTA M, KOBAYASHI T, et al. Novel Gold Catalysts for the Oxidation of Carbon Monoxide at a Temperature far below 0℃[J]. Chem. Lett. 1987, 4: 405.
    [54] SCHWERDTFEGE P. Gold Goes Nano-From Small Clusters to Low-Dimensional Assemblies Angew [J]. Chem. Int. Ed., 2003, 42: 1892.
    [55] DANIEL M C, ASTRUCT D. Gold Nanoparticles: Assembly, Supramolecular Chemistry, Quantum-Size-Related Properties, and Applications toward Biology, Catalysis, and Nanotechnology [J]. Chem. Rev., 2004, 104: 293.
    [56] SCHWARZ H. Relativistic Effects in Gas-Phase Ion Chemistry: An Experimentalist's View, Angew [J]. Chem. Int. Ed. 2003, 42: 4442.
    [57] KRESSE G, HAFNER J. Ab initio molecular-dynamics simulation of the liquid-metal–amorphous-semiconductor transition in germanium.Phycal Review B, 1994, 49: 14251– 14269.
    [58] ZHAO J, CHEN X, WANG G. [J]. Phys. Lett. A, 1996, 214: 211.
    [59] ERKO? S, SHALTAF R. Monte Carlo computer simulation of copper clusters [J]. Phys. Rev A, 1999, 60: 3053 - 3057.
    [60] WESTERGREN J, GR?NBECK H, ROSEN A, et al. Molecular dynamics simulation of metal cluster cooling and heating in noble gas atmosphere [J]. Nanostructured Materials 1999, 12: 281-286.
    [61]HECKE A D. A new mixing of Hartree–Fock and local density-functional theories [J]. J. Chem. Phys., 1993, 98: 1372.
    [62] ZIEGLER T. Approximate density functional theory as a practical tool in molecular energetics and dynamics [J]. Chem. Rev 1991, 91: 651–667.
    [63] BORN M, OPPENHEIMER R. [J]. Zur Quantentheorie der Molekeln Ann. Phsik. (Quantum Theory of the Molecules Ann. Phys.) 1927, 84: 457.
    [64] (a) HEHRE W J, RADOM L, SCHLEYER P V R, et al. Ab Initio Molecular Orbital Theory [J]. John Wiley &Sons, Inc., 1986. (b) MCQUARRIE D A, [M]. Quantum Chemistry University Science Books: Mill Vally. CA. 1983.
    [65] (a)唐敖庆,杨忠志,李前树.量子化学[M].北京,科学出版社, 1982. (b)徐光宪,黎乐民,王德民,量子化学基本原理和从头计算法[M].北京,科学出版社, 1985.
    [66] LOWDIN P O. Correlation Problem in Many-Electron Quantum Mechanics Adv [J]. Chem. Phys. 1959, 2: 207.
    [67] POPLE J A, SEEGER R, KRISHNAN R. Variational Configuration Interaction Methods and Comparison with Perturbation Theory [J]. Int. J. Quant. Chem. Symp. 1977, 11: 149.
    [68] FORESMAN J B, Head-Gordon M, Pople J A, et al. Toward a SystematicMolecular Orbital Theory for Excited States [J]. J. Phys. Chem. 1992, 96: 135.
    [69] KRISHNAN R, SCHLEGEL H B, POPLE J A. Derivate Studies in Configuration Interaction Theory [J]. J. Chem. Phys., 1980, 72: 4654.
    [70] BROOKS B R, LAIDIG W D, SAXE P, et al. Analytic Gradient from Correlated Wave Functions via the Two-Particle Density Matrix and the Unitary Group Approach [J]. J. Chem. Phys., 1980, 72: 4652.
    [71] SALTER E A, TRUCKS G W, BARTLETT R J. Analytic Energy Derivatives in Many-Body Methods I. First Derivatives [J]. J. Chem. Phys. 1989, 90: 1752.
    [72] RAGHAVACHARI K, POPLE J A. Approximate fourth-order perturbation theory of the electron correlation energy [J]. Int. J. Quant. Chem. 1981, 14: 91-100.
    [73] POPLE J A, HEAD-GORDON M, RAGHAVACHARI K. Quadratic Configuration Interaction. A General Technique for Determining Electron Correlation Energies [J]. J. Chem. Phys., 1987, 87: 5968.
    [74] CIOSLOWSKI J. A New Robust Algorithm for Fully Automated Determination of Attactor Interaction Lines in Moleclues [J]. Chem. Phys. Lett., 1994, 219: 151.
    [75] SCHLEGEL H B, ROBB M A. MCSCF Gradient Optimization of the H2CO→H2+CO Transition Structure [J]. Chem. Phys. Lett., 1982, 93: 43.
    [76] EADE R H E, ROBB M A. Direct Minimization in MCSCF Theory, The Quasi-Newton Method [J]. Chem. Phys. Lett., 1981, 83: 362.
    [77] Hegarty D, Robb M A. Application of Unitary Group Methods to Configuration Interaction Calculations [J]. Mol. Phys. 1979, 38: 1795.
    [78] Pople J A, Krishnan R, Schlegel H B. Electron Correlation Theories and Their Application to the Study of Simple Reaction Potential Surfaces [J]. Int. J. Quant. Chem. 1978, XIV: 545?560.
    [79] BARTLETT R J, PURVIS G D. General Application of a Big Molecule Gaussian SCF/CI Program for Calculations of Excited Metastables and of Negative Ion Bound States and Resonances [J]. Int. J. Quant. Chem. 1978, 14:516.
    [80] SCUSERIA G E, SCHAEFER H F, III, Shift of First-Order Phase Transition in Thin Films Due to Boundary Fields: A Computational Simulation [J]. J. Chem. Phys., 1989, 90: 3700.
    [81] PURVIS G D, BARTLETT R J, A Full Coupled-Cluster Singles and Doubles Model: The Inclusion of Disconnected Triples [J]. J. Chem. Phys., 1982, 76: 1910.
    [82] SCUSERIA G E, JANSSEN C L, SCHAEFER H F, III, An Efficient Reformulation of the Closed-Shell Coupled Cluster Single and Double Excitation (CCSD) Equation, J. Chem. Phys. 1988, 89: 7382.
    [83] M?ller C, Plesset M S. Note on an Approximation Treatment for Many-Electron Systems [J]. Phys. Rev., 1934, 46: 618.
    [84] HEAD-GORDON M, POPLE J A, M.J. FRISCH M J. A Direct MP2 gradient Method [J]. Chem. Phys. Lett., 1988, 153: 503.
    [85] POPLE J A, BINKLEY J S, SEEGER R. Theoretical Models Incorporating Electron Correlation [J]. Int. J. Quant. Chem. Symp. 1976, 10: 1?19.
    [86] KRISHNAN R, POPLE J A. Appoximate Forth-Order Perturbation Theory of the Electron Correlation Energy [J]. Int. J. Quant. Chem. 1978, 14: 91?100.
    [87] RAGHAVACHARI K, POPLE J A, REPLOGLE E S. M. Head-Gordon, Fifth-Order Moller-Plesset Perturbation Theory: Comparison of Existing Correlation Methods and Implementation of New Methods Correct to Fifth-Order [J]. J. Phys. Chem., 1990, 94: 5579.
    [88] THOMAS. PROC L H, [J]. Camb. Phil. Soc. 1927, 23: 542.
    [89] FERMI. [J]. E. Z. Phys. 1928, 48: 73.
    [90] SLATER J C. A Simplification of the Hartree-Fock Method [J]. Phys. Rev., 1951, 81: 385.
    [91] HOHENBERG P, KOHN W, Inhomogeneous Electron Gas [J]. Phys. Rev., 1964, 136: B864?B871.
    [92] KOHN W, SHAM L J, Self-Consistent Equations Including Exchange andCorrelation Effects [J]. Phys. Rev., 1965, 140: A1133?A1138. [93] Buhl M, Kaupp M, Malkina O L, et al. The DFT route to NMR chemical shifts [J]. J. Comp. Chem., 1999, 20: 91-105.
    [94] Grafenstein J, Cremer D. The combination of density functional theory with multi-configuration methods - CAS-DFT [J]. Chem. Phys. Lett., 2000, 316: 569-577.
    [95] SLATER J C. Quantum Theory of Molecular and Solids. Vol. 4: The Self-Consistent Field for Molecular and Solids McGraw-Hill [M]. New York, 1974.
    [96] SALAHUB D R, ZERNER M C, eds. The Challenge of d and f Electrons ACS [C]. Washington, D.C., 1989.
    [97] PARR R G, YANG W. Density-functional theory of atoms and molecules [M]. Oxford Univ. Press: Oxford, 1989.
    [98] POPLE J A, GILL P M W, JOHNSON B G. Kohn-Sham density-functional theory within a finite basis set [J]. Chem. Phys. Lett., 1992, 199: 557.
    [99] JOHNSON B G, FRISCH M J. An implementation of analytic second derivatives of the gradient-corrected density functional energy [J]. J. Chem. Phys. 1994, 100: 7429.
    [100] Zhao Y, Lynch B J, Truhlar D G.. Doubly hybrid meta DFT: New multi-coefficient correlation and density functional methods for thermochemistry and thermochemical kinetics [J]. J. Phys. Chem. A, 2004, 108: 4786-4791.
    [101] LABANOWSKI J K, ANDZELM J W, eds. Density Functional Methods in Chemistry [J]. Springer-Verlag: New York, 1991.
    [102] ZIEGLER T, [J]. Chem. Rev., 1991, 91: 651.
    [103] JONES R O, GUNNARSSON O. [J]. Rev Mod. Phys., 1989, 61: 689.
    [104] VOSKO S H, WILK L, NUSAIR M. CAN. [J]. J. Phys. 1980, 58: 1200.
    [105] CEPERLEY D M, ALDER B J. [J]. Phys. Rev Lett., 1980, 45: 566.
    [106] MARTIN R M. Electronic Structure: Basic Theory and Practical Methods [M]Canbridge University Press 2004.
    [107] PERDEW J P. [J]. Phys. Rev A, 1988, 38: 3098.
    [108] BURKE K, PERDEW J P, WANG Y. Electronic Density Functional Theory: Recent Progress and NewDirections [J]. Ed. Dobson J F, Vignale G and Das M P. Plenum, 1998.
    [109] ADAMO C, BARONE V. Exchange functionals with improved long-range behavior and adiabatic connection methods without adjustable parameters: The mPW and mPW1PW models [J]. J. Chem. Phys., 1998, 108: 664.
    [110] PERDEW J P, CHEVARY J A, VOSKO S H, et al. Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlation [J]. Phys. Rev B, 1992, 46: 6671-6687; PERDEW J P, BURKE K, WANG Y, Generalized gradient approximation for the exchange-correlation hole of a many-electron system [J]. Phys. Rev B, 1996, 54: 16533-16539; PERDEW J P, WANG Y, Accurate and simple analytic representation of the electron-gas correlation energy [J]. Phys. Rev B, 1992, 45: 13244-13249.
    [111] PERDEW J P, BURKE K, ERNZERHOF M. Generalized Gradient Approximation Made Simple [J]. Phys. Rev Lett., 1996, 77: 3865 - 3868.
    [112] PENIEW J P. Density-functional approximation for the correlation energy of the inhomogeneous electron gas [J]. Phys. Rev. B, 1986, 33: 8822 - 8824.
    [113] LEE C, YANG W, PARR R G.. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density [J]. Phys. Rev. B, 1988, 37: 785-789.
    [114] HECKE A D. A new mixing of Hartree–Fock and local density-functional theories [J]. J. Chem. Phys., 1993, 98: 1372.
    [115] BECKE A D. Density-functional thermochemistry. III. The role of exact exchange [J]. J. Chem. Phys. 1993, 98: 5648.
    [116] STEVENS P J, DEVLIN J F, CHABALOWSKI C F, et al. [J]. J. Phys. Chem. 1994, 98: 623.
    [117] ADAMO C, BARONE V. Toward reliable density functional methods without adjustable parameters: The PBE0 model [J]. J. Chem. Phys. 1999, 110: 6158.
    [118] XU X., ZHANG Q S, MULLER R P, et al. An extended hybrid density functional (X3LYP) with improved descriptions of nonbond interactions and thermodynamic properties of molecular systems [J]. J. Chem. Phys. 2005, 122 :14105.
    [119] KOCH W, HOLTHAUSEN M C. A Chemist's Guide to Density Functional Theory [M]. Second Edition, Wiley-VCH, 2001.
    [120]EMZERHOF M, SCUSERIA G E. Assessment of the Perdew–Burke–Ernzerhof exchange-correlation functional [J]. J. Chem. Phys., 1999, 110: 5029.
    [121]PERDEW J P, BURKE K, EMZERHOF M. [J]. Phys. Rev. Lett., 1997, 78: 1396.
    [122] RAJAGOPA A K, CALLAWAY J. Inhomogeneous Electron Gas [J]. Phys. Rev B, 1973, 7: 1912 - 1919.
    [123] RAJAGOPA A K. [J]. J. Phys. C, 1978, 11: L943.
    [124] YANAI T, NAKAJIMA T, et al. A highly efficient algorithm for electron repulsion integrals over relativistic four-component Gaussian-type spinors [J]. J. Chem. Phys., 2002, 116: 10122.
    [125] PANT P V K, HAN J, SMITH G D, et al. A molecular dynamics simulation of polyethylene [J]. J. Chem. Phys., 1993, 99: 597.
    [126] ANDRAE D, HAUSSERMANN U, DOLG M, et al. [J]. Theor. Chim. Acta, 1990, 77: 123 ; KUECHLE W, DOLG M, STOLL H, et al. [J]. Mol. Phys., 1991, 74 : 1245.
    [127] STEVENS W J, BASCH H, KRAUSS J. Compact effective potentials and efficient shared-exponent basis sets for the first- and second-row atoms [J]. J. Chem. Phys., 1984, 81: 6026; STEVENC W J, KRAUSS M, BASCH H, et al. Can. J. Chem.,1992, 70: 612; CUNDARI T J, STEVENS W J, [J]. J. Chem. Phys., 1993, 98: 5555.
    [128] HAY P J, WADT W R. Ab initio effective core potentials for molecular calculations. Potentials for the transition metal atoms Sc to Hg [J]. J. Chem. Phys., 1985, 82: 270; WADT W R, HAY P J, [J]. ibid. 1985, 82: 284; HAY P J, WADT W R, [J]. ibid. 1985, 82: 299.
    [129] CUNDARI T R, STEVENS W J. Effective core potential methods for the lanthanides[J]. J. Chem. Phys., 1993, 98: 5555.
    [130] CURTISS L A, K. RAGHAVACHARI, TRUCKS G W, et al. Gaussian-2 theory for molecular energies of first- and second-row compounds [J]. J.Chem.Phys, 1991, 94: 7221.
    [131] BODY R G, et al. SCF Wavefunctions for the NH3 Molecule. Potential-Energy Surface and Vibrational Force Constants [J]. J. Chem. Phys., 1968, 49: 4916.
    [132] GARTON D, SUTCHIFFE B T, Theoretical Chemistry [M]. Vol. 1 (Ed. R. N. Dixon), The Chemical Society, London, 1974.
    [133] PULAY P, [J]. Mol. Phys. 1969, 17: 197.
    [134] PULAY P. Modern Theoretical Chemistry [M]. Vol. 4, Plenum Press, New York, 1977.
    [135] FLETCHER R, POWELL M J D. [J]. Computer J. 1963, 6 : 163.
    [136]. MURTAGH A A, et al. [J].Computer J. 1970, 13 : 185.
    [137] MURTAGH J W, et al. [J].Chem. Phys. Lett. 1971, 10: 303.
    [138] POPPINGER D. [J]. Chem. Phys. Lett. 1975, 34: 332.
    [139] PANCIV J. [J]. Collect. Czech. Chem. Commun, 1975, 40: 2726.
    [140]HOLLAND J H. [M]. MIT Press,1975.
    [141]潘小冬.博士论文,铜团簇结构和能量的计算机模拟研究[D].兰州大学,2008.
    [142] HARTKE B. [J]. J. Phys. Chem., 1993, 97: 9973.
    [143] GREGURICK S K, ALEXANDER M H, HARTKE B. Global geometry optimization of (Ar)n and B(Ar)n clusters using a modified genetic algorithm [J]. J. Chem. Phys. 1996, 104: 2684.
    [144] NIESSE J A, MAYNE H R. Global geometry optimization of atomic clustersusing a modified genetic algorithm in space-fixed coordinates [J]. J. Chem. Phys., 1996, 105: 4700.
    [145] DEAVEN D M, HO K M. Molecular Geometry Optimization with a Genetic Algorithm [J]. Phys. Rev. Lett., 1995, 75: 288 - 291.
    [146] DEAVEN D M, TIT N, MORRIS J R, et al. [J]. Chem. Phys. Lett. 1996, 256: 195.
    [147] WANG C Z, HO K M. Environment-dependent tight-binding models Handbook of Materials Modeling [J]. Vol. 1, edited by S. Yip (Springer), 2005: 307.
    [148] KOHN W, SHAM J. Self-Consistent equations including exchange and correlation effects [J], Phys. Rev., 1965, 140 (4): A1133-A1138.
    [149] BECKE A D. A Multicenter Numerical Integration Scheme for polyatomic molecules [J]. J. Chem. Phys., 1988, 88 (4): 2547-2553.
    [150] JOHN P PERDEW, WANG Y. Accurate and simple analytic representation of the electron-gas correlation energy [J]. Phys. Rev. B, 1992, 45(23): 13244-13249.
    [151] HOHENBERG P, KOHN W. Inhomoyeneous Electron Gas [J]. Phys. Rev. 136, 1964:B864-B871.
    [152] CEPERLEY D VI, ALDER B J. Ground state of the electron gos by stochastic method [J]. Phys. Rev Lett., 45, 1980: 566-569.
    [153] HEDIN L, LUNDQUIST S. in Solid State Physics, edited by H. Ehenreich,F. Seitz, and D, [M]. 'Ilrrnbull, Academic Press, New York, 1969, 23: 1.
    [154] PERDEW J P, ZUNGER A. Self-interaction correction to density-functional approximations for many-electron systems [J]. Phys. Rev. B, 1981, 23: 5048-5079.
    [155] JUAN Y M, KAXIRA E. Application of gradient corrections to density-functional theory for atoms and solids [J]. Phys. Rev. B, 1993: 14944-14952.
    [156] BATH U V, HEDIN L. A local exchange-corredatio}n potential for the spinpolarized case: I, J. Phys. C, 1972, 5:1629-1642.
    [157] JANAK J F, MORRUZI V L, WILLIAMS A R. Ground-state thermomechanical properties of some cubic elements in the local-density formalism [J]. Phys. Rev. B, 1975, 12:1257-1261.
    [158] VOSKO S J, WILLS L, NUSAIR M. Accurate spin-dependent electron liquid correlation eneryies far local spin density calculations:A critical analysis[J]. Can. J. Phys., 1980, 58: 1200-1211.
    [159] BECKE A D. A multicenter numerical integration scheme far polyatomic molecnle.s [J]. J. Chem. Phys., 1988, 88:2547-2553.
    [160] LEE C, YANG W T, PARR R G. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density [J]. Phys. Rev. B, 1988, 37: 785-789.
    [161] ANDZELM J, WIMMER E, SALAHUB D R. Spin density functional approach to the chemistry of transition metal clusters: Gaussian-type orbital implementation, in "The Challenge of d- and f-Electrons: Theory and Computation",D. R. Salahub, M. C. Zerner,[C].Eds., ACS Symposium ser.,1989, 394.
    [162] VERSLUIS L, ZIEGLER T. The determination of molecular strictures by density functional theory. The evaluation of analytical energy gradients by numerical inteyration [J]. J. Chem. Phys., 1988, 88: 322-328.
    [163]肖慎修,孙泽民,刘洪霖,乌肠国森.量子化学中的离散变分xa方法及计算程序[M].四川大学出版社, 1986.
    [164]肖慎修,王崇愚,陈天朗.密度泛函理论的离散变分法在化学和材料物理学中的应用[M].科学出版社, 19981.
    [165] PARR R U. Density-Functional Theory of Atoms and Molecules [M]. Oxford University Press: New York, 1971.
    [166] MONKHORST H J, PACK J D. Special points for Brillouin-zone integrations [J].Phys. Rev.B, 1976, 13(12):5188-5192.
    [167] JEPSEN O, ANDERSEN O K. The electronic structure of h. c. p. Ytterbium [J].Solid State Commun. 1971, 9(20):1763-1767.
    [168] KRESSE G, HAFNER J. Norm-conserving and ultrasoft pseudopotentials for first-row and transition elements [J]. J. Phys.: Condens. Matter., 1994, 6 (40): 8245-8257.
    [169] KRESSE G, FURTHMULLER J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set [J]. Phys. Rev. B, 1996, 54 (16):11169-11186.
    [170] KRESSE G, JOUBERT D. From ultrasoft pseudopotentials to the projector augmented-wave method [J]. Phys. Rev. B, 1999, 59 (3):1758-1775.
    [171] PRESS W H, TEUKOLSKY S A, VETTERLING W T, et al. Numerical Recipes in Fortran 90: The Art of Parallel Scientific Computing [M]. England: Cambridge University Press, 1996.
    [172] POLAK E. Computational Methods in Optimization [M].New York: Academic, 1971.
    [173] DAVIDSON E R, DIERCKSEN G H F, WILSON S. eds., Methods in Computational Molecular Physics [J]. NATO Advanced Study Institute, Series C: Mathematical and Physical Sciences, 1983, 113:95-99.
    [174] PULAY P. Convergence acceleration of iterative sequences. the case of scf iteration [J]. Chem. Phys. Lett. 1980, 73(2):393-398.
    [175] PERDEW J P, BURKE K, ERNZERHOF M. Generalized Gradient Approximation Made Simple [J]. Phys.Rev. Lett., 1996, 77(18):3865-3868.
    [176] BL?CHL P E, JEPSEN O, ADERSEN O K. Improved tetrahedron method for Brillouin-zone integrations [J]. Phys. Rev. B, 1994, 49 (23): 16223-16233.
    [177] Kresse G, Furthmuller J. VASP the GUIDE [EB/O1]. http://cms.mpi.univie.ac. at/vasp/vase/vase.html
    [178] FU C L, HO K M. First-principles calculation of the equilibrium ground-state properties of transition metals: Applications to Nb and Mo [J]. Phys. Rev. B, 1983, 28 (10): 5480-5486.
    [179] METHFESSEL M, PAXTON A T. High-precision sampling for Brillouin-zoneintegration in metals [J]. Phys. Rev. B, 1989, 40(6): 3616-3621.
    [180] AKOLA J, HAKKINEN H, MANNINEN M. Ionization potential of aluminum clusters [J]. Phys. Rev. B, 1998, 58: 3601-3604.
    [181] CHUANG F C, WANG C Z, HO K H. Structure of neutral aluminum clusters Aln (2 n 23): Genetic algorithm tight-binding calculations [J]. Phys. Rev. B , 2006, 73 : 125431.
    [182] GESKE G D, BOLDYRV A I. On the origin of planarity in Al5- and Al5 clusters: The importance of a four-center peripheral bond [J]. J Chem Phys, 2000,113 : 5130-5133.
    [183] LLOYD L D, JOHNSTON R L. Modelling aluminium clusters with an empirical many-body potential [J]. Chem Phys, 1998,236:107-121.
    [184] RAO B K, JENA P. Evolution of the electronic structure and properties of neutral and charged aluminum clusters: A comprehensive analysis [J]. J. Chem Phys, 1999, 111: 1890-1999.
    [185] YAO C H, SONG B, CAO P L. Structures of Al19 cluster: A full-potential LMTO molecular-dynamics study [J]. Phy Rev B, 2004, 70: 195431.
    [186] UPTON T H. Structural, Electronic, and Chemisorption Properties of Small Aluminum Clusters [J]. Phys. Rev. Lett, 1986, 56: 2168-2171.
    [187] PETTERSSON L G M, BAUSCHLICHER C W, HALICIOGLU T. Small Al clusters. II. Structure and binding in Aln (n=2–6, 13) [J]. J. Chem. Phys, 1987,87 :2205.
    [188] YI J Y, OH D J, BERNHOLC J, CAR R. Structural transitions in aluminum clusters [J]. Chem. Phys. Lett, 1990, 174: 461-466.
    [189] CHENG H P, BERRY R S, WHETTEN R L. Electronic structure and binding energies of aluminum clusters [J]. Phys. Rev. B , 1991, 43: 10647-10653.
    [190] JONES R O. Structure and bonding in small aluminum clusters [J]. Phys. Rev. Lett., 1991, 67: 224-227; Jones R O. Simulated annealing study of neutral and charged clusters: Aln and Gan [J]. J. Chem. Phys., 1993, 99:1194-1206.
    [191] YANG S H, DRABOLD D A, ADAMS J B, SACHDEV A. First-principleslocal-orbital density-functional study of Al clusters [J]. Phys. Rev. B, 1993, 47: 1567-1576.
    [192] AHLRICHS R, ELLIOTT S D. Clusters of aluminium, a density functional study [J]. Phys. Chem. Chem. Phys., 1999,1: 13-21.
    [193] KAWAMURA H, KUMAR V, SUN Q, KAWAZOE Y. Magic behavior and bonding nature in hydrogenated aluminum clusters [J]. Phys. Rev. B, 2001, 65: 045406.
    [194] DESHPANDE M D, KANHERE D G, VASILIEV I, et al. Ab initio absorption spectra of Aln(n=2–13) clusters [J]. Phys. Rev.B, 2003, 68: 035428.
    [195] Park K., Lee J H, Kwon Y. The effect of simultaneous addition of Gd and Al on the photoluminescence characteristics of (Y0.94-x-yAlxGdyEu0.06)BO3 phosphors [J]. Materials Research Bulletin, 2009, 44: 1077-1080.
    [196] AKOLA J, MANNINEN M, H?KKINEN H, et al. Photoelectron spectra of aluminum cluster anions: Temperature effects and ab initio simulations[J].Phys. Rev. B, 1999, 60: R11297-R11300.
    [197] PENG P, LI G F, YANG F. [J].Trans Nonferrous MetSOC. China, 2006, 16: 808.
    [198] FERRANDO R, FORTUNELLI A, JOHNSTON R. Searching for the optimum structures of alloy nanoclusters [J]. Phys. Chem. Chem. Phys, 2008, 10: 640-649.
    [199] HO K M, SHVARTSBURG A A, CPAN B, et al. Structures of medium-sized silicon clusters [J]. Nature, 1998, 392: 582.
    [200] DE HEER W A. The physics of simple metal clusters: experimental aspects and simple models [J]. Rev. Mod. Phys, 1993, 65: 611.
    [201] KNIGHT W D, et al. Electronic Shell Structure and Abundances of Sodium Clusters [J]. Phys. Rev. Lett, 1984, 52: 2141-2143.
    [202] ECKER A, et al. Synthesis and structural characterization of an AI77 cluster [J]. Nature, 1997, 387: 379.
    [203] GONG X G, SUN D Y, WANG X Q. Phys. Atomic and electronic shells ofAl77 [J].Rev. B, 2000, 62: 15413- 15416.
    [204] PETERSON M R, DOOM T E, M L RAYMER M L. GA-Facilitated Knowledge Discovery and Pattern Recognition Optimization Applied to the Biochemistry of Protein Solvation [J]. LNCS, 2004, 3102: 426.
    [205] XU C H, WANG C Z, CHAN C T, et al. A transferable tight-binding potential for carbon [J]. J. Phys.: Condens. Matter, 1992, 4: 6047-6054.
    [206] WANG C Z, PAN B C, HO K M. Environment-dependent tight-binding potential for Si [J].J. Phys. Condens. Matter, 1999, 11: 2043.
    [207] M S TANG, C Z WANG, C T CHAN, K M HO.Environment-dependent tight-binding potential mode[J].Phys. Rev. B, 1996,53 : 979-982.
    [208] KRESSE G, HAFNER J. Ab initio molecular dynamics for liquid metals [J].Phys. Rev. B,1993, 47: 558-561.
    [209] YI J Y, OH D J, BERNHOLC J. Structural distortions in metal clusters [J].Phys. Rev. Lett, 1991, 67: 1594-1597.
    [210] LI C Y, WANG H Y, WEI J J, et al. [J]. Chinese J Atom Molec Phys, 2003, 20: 177.
    [211] KNIGHT W D, CHOU M Y, COHEN M L. Electronic Shell Structure and Abundances of Sodium Clusters [J]. Phys. Rev. Lett, 1984, 52: 2141-2143.
    [212] Reimann S M, Koskinen M, Ha¨kkinen H, et al. Magic triangular and tetrahedral clusters. [J]. Phys. Rev. B. 1997, 56: 12147.
    [213] LI X, WU H B, WANG X B, et al. s- p Hybridization and Electron Shell Structures in Aluminum Clusters: A Photoelectron Spectroscopy Study [J].Phys. Rev. Lett, 1998, 81: 1909 - 1912 .
    [214] SUN J, LU W C, LI Z S, et al. Appearance of the bulk motif in Al clusters [J]. J.Chem.Phys, 2008, 129: 014707.
    [215] ZHANG W, LU W C, JIAO S, WANG C Z, HO K M. Structures of Aln (n = 27, 28, 29 and 30) clusters with double-tetrahedron structures [J].Chem. Phys.Lett, 2008, 455: 232 -237.
    [216] STARACE A K, NEAL C M, CAO B P, et al. Correlation between the latentheats and cohesive energies of metal clusters [J]. J. Chem. Phys, 2008, 129: 144702.
    [217] ZIEGLER T. Approximate density functional theory as a practical tool in molecular energetics and dynamics [J].Chem. Rev, 1991, 91: 651-667.
    [218] SCHRIVER K E, PERSSON P L, HONEA E C, WHETTEN R L.Electronic shell structure of group-IIIA metal atomic clusters [J]. Phys. Rev. Lett., 1990, 64: 2539.
    [219] RAY U, JARROLD M F, BOWER J E, KRAUS J S. Photodissociation kinetics of aluminum cluster ions: Determination of cluster dissociation energies [J]. J. Chem.Phys, 1989, 91: 2912.
    [220] JARROLD M F, BOWER J E. Mobilities of metal cluster ions: Aluminum and the electronic shell model [J]. J.Chem.Phys., 1993, 98: 2399.
    [221] TAYLOR K J, PETTIETTE C L, CRAYCRAFT M J, et al. [J].Chem.Phys.Lett, 1988, 152: 347.
    [222] CHA C Y, GANTEFOR G, EBERHARDT W.The development of the 3p and 4p valence band of small aluminum and gallium clusters [J]. J.Chem. Phys., 1994, 100: 995.
    [223] GANTEFOR G, MEIWES-BROER K H, LUTZ H O. Photodetachment spectroscopy of cold aluminum cluster anions [J]. Phys. Rev.A , 1988, 37: 2716– 2718.
    [224] DE HEER W A, MILANI P, CHTELAIN A. Nonjellium-to-jellium transition in aluminum cluster polarizabilities [J]. Phys. Rev.Lett, 1989, 63: 2834 - 2836.
    [225] JARROLD M F, BOWER J E, KRAUS J S. Collision induced dissociation of metal cluster ions: Bare aluminum clusters, Aln+ (n=3–26) [J]. J. Chem. Phys, 1987, 86: 3876.
    [226] INGOLFSSON O, TAKEO H, NONOSE S. Energy-resolved collision-induced dissociation of Aln+ clusters (n = 2–11) in the center of mass energy range from few hundred m eV to 10 eV [J]. J.Chem. Phys, 1998, 110: 4382.
    [227] Zhang W, Lu W C, Zang Q J, et al. Bulk-Like Structures for Medium-SizedAln (n = 31 ? 40) Clusters [J]. J. Chem. Phys., 2009, 130: 144701.
    [228] BRUCAT P J, ZHENG L S, PETTIETTE C L, et al. Metal cluster ion photofragmentation [J]. J.Chem.Phys, 1986, 84: 3078.
    [229]BRéCHIGNAC C, CAHUZAC P H, CARLIER F, LEYGNIER J.Photoionization of mass-selected Kn+ ions: A test for the ionization scaling law [J]. Phys. Rev. Lett,1989, 63: 1368 - 1371.
    [230] MESLEH M F, HUNTER J M, SHVARTSBURG A A, et al. [J]. J. Phys. Chem, 1997, 100: 968.
    [231] SHVARTSBURG A A, JARROLD M F. An exact hard-spheres scattering model for the mobilities of polyatomic ions [J]. Chem. Phys. Lett., 1996, 261: 86-91.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700