硼氮碳纳米管的合成及NO电氧化研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文主要合成了含有硼碳氮元素的纳米管并研究其电化学特性,考察了各种纳米管材料修饰电极对NO的电催化氧化性能。为开发研制用于生物医学和环境检测的NO电化学传感器提供了理论依据。研究内容主要集中在以下三个部分:
     (1)采用X射线衍射(XRD)、红外光谱(FT-IR)、拉曼光谱(Raman)、扫描电镜(SEM)和透射电镜(TEM)等技术对化学改性前后的单壁碳纳米管(SWCNTs)进行了表征。采用循环伏安(CV)和交流阻抗(EIS)法考察了NO在化学改性前后SWCNTs修饰电极上电氧化特性。实验结果表明,依次对SWCNTs进行碱活化和羧基化处理,能够提高SWCNTs对NO的电催化活性。对NO电氧化过程机理的探讨表明,该电化学反应是一个有吸附作用影响的扩散控制过程。
     (2)采用CVD法利用不同原料合成了硼氮纳米管(BNNTs),利用XRD、XF-IR、Raman和TEM等技术对BNNTs的形貌进行了表征。采用XPS分析测试了其元素组成,并对不同方法合成的BNNTs进行对比分析,研究了BNNTs修饰电极NO电催化氧化的活性。
     (3)采用简单的方法合成了同时含有B、C和N三种元素的硼碳氮纳米管(BCNNTs),利用XRD、TEM和XPS等对BCNNTs进行了分析和表征。对比分析了B、N和C元素的成键状态,以及掺杂量随着生长温度的变化情况。研究了BCNNTs修饰电极对NO电催化氧化的活性。
In this paper, the different nanotubes containing B, N and C elements were synthesized, the structure characteristic and the electrocatalytic oxidation of NO were studied. The various nanotubes modified electrotrodes were used to investigate the electrocatalytic oxidation of NO. This work provides theoretical basis for the fabrication of electrochemical sensors for NO detection in biomedicine and ecological environment. The thesis includes following three parts:
     (1) Single walled carbon nanotubes (SWCNTs) before and after modification was characterized by FT-IR. The CV and EIS were carried on for the study of NO electrooxidation on the SWCNTs modified electrodes. Results show that the SWCNTs modified electrode treated with alkali and mixed acids step by step, exhibites higher electrocatalytic activity to NO than pristine SWCNTs. The NO electrooxidation at the SWCNTs modified electrode is controlled by diffusion of NO and is influenced by the adsorption of NO on the electrode surface.
     (2) The BNNTs were synthesized with differents material by CVD method, the structure characteristic was characterized by FT-IR, Raman, SEM and TEM. The elements in BNNTs were analysised by XPS, which compared difference between them. The material modified electrotrodes were used to investigate the electrocatalytic oxidation of NO.
     (3) The BCNNTs containing B, N and C elements were synthesized by the simple CVD method. The materials were characterized by XRD, TEM and XPS. The XPS data were analysised by the comparison, revealed the bonding state among B, N and C elements, found the relation between the doped content and the reactio temperature, and investigated electrocatalytic activity of NO.
引文
[1]Oberlin A., Endo M., Koyama T. Filamentous growth of carbon through benzene decomposition[J]. J. Cryst. Growth,1976,32(3):335-349.
    [2]Iijima S. Helieal microtubules of graphitic cathon[J]. Nature,1991,354(3):56-58.
    [3]Rubio A., Corkill J. L., Cohen M. L. Theory of graphitic boron nitride nanotubes[J]. Phys. Rev. B,1994,49:5081-5084.
    [4]Blase X., Rubio A., Louie S. G., et al. Stability and band gap constancy of boron nitride Nanotubes[J]. Europhys. Lett.,1994,28:335-340.
    [5]Chopra N. G., Luyken R. J., Cherrey K., et al. Boron Nitride Nanotubes[J]. Science,1995,269(5226):966-967.
    [6]Wildoer J. W. G., Venema L. C., Rinzler A. G., et al. Electronic structure of atomically resolved carbon nanotubes. Nature,1998,391(6662):59-62.
    [7]Pouch J. J., Alterovitz A. Synthesis and properties of boron nitride[M], Trans Tech Publications:Zurich 1990,66.
    [8]Chernozatonskii L. A., Gal'perin E. G., Stankevich I. V., et al. Nanotube C-BN heterostructures:electronic properties [J]. Carbon,1999,37(1):117-121.
    [9]Kwon Y. K., Tomanek D., Iijima S. "Bucky Shuttle" memory device:synthetic approach and molecular dynamics simulations [J]. Phys. Rev. Lett.,1999,82(7): 1470-1473.
    [10]Kral P., Mele E. J., Tomanek D. Photogalvanic effects in heteropolar nanotubes[J]. Phys. Rev. Lett.,2000,85(7):1512-1515.
    [11]Lammert P. E., Crespi V. H., Rubio A. Stohastic heterostructures and diodium in B/N-doped carbon nanotubes[J]. Phys. Rev. Lett.,2001,87:6402-6405.
    [12]Kongsted J., Osted A., Jensen L., et al. Frequency-Dependent Polarizability of Boron Nitride Nanotubes:A Theoretical Study[J]. J Phys. Chem. B.,2001, 105(42):10243-10248.
    [13]Bettinger H. F., Dumitrica T., Scuseria G., et al. Mechanically induced defects and strength of BN nanotubes[J]. Phys. Rev. B,2002,65(4):041406-041409.
    [14]Sai N., Mele E. J. Microscopic theory for nanotube piezoelectricity[J]. Phys. Rev. B,2003,68(7):241405-241407.
    [15]Dumitrica T., Bettinger H. F., Scuseria G., et al. Thermodynamics of yield in boron nitride nanotubes[J]. Phys. Rev. B,2003,68(12):085412-085417.
    [16]Xiang H. J., Yang J., Hou J. G., et al. First-principles study of small-radius single-walled BN nanotubes[J]. Phys. Rev. B,2003,68(6):035427-035431.
    [17]Xu H., Ma J., Chen X., et al. The Electronic Structures and Formation Mechanisms of the Single-Walled BN Nanotube with Small Diameter [J]. J. Phys. Chem. B,2004,108(23):4024-4034.
    [18]Chen C. W., Lee M. H., Clark S. J. Band gap modification of single-walled carbon nanotube and boron nitride nanotube under a transverse electric field[J]. Nanotechnology,2004,15(12):1837-1843.
    [19]Mon W. H., Hwang H. J. Molecular-dynamics simulation of structure and thermal behaviour of boron nitride nanotubes[J]. Nanotechnology,2004,15(8): 431-434.
    [20]Zheng F., G. Zhou, Hao S., et al. Structural characterizations and electronic properties of boron nitride nanotube crystalline bundles[J]. J. Chem. Phys.,2005, 123(12):124716-124720.
    [21]Dumitrica T., Yakobson B. I. Rate theory of yield in boron nitride nanotubes[J]. Phys. Rev. B,2005,72(3):035418-035422.
    [22]Ng M. F., Zhang R. Q. Optical spectra of single-walled boron nitride nanotubes[J]. Phys. Rev. B,2004,69(11):115417-115422.
    [23]Guo G. Y., Lin J. C. Systematic abinitio study of the optical properties of BN nanotubes[J]. Phys. Rev. B,2005,71(16):165402-165413.
    [24]Guo C. S., Fan W. J., Zhang R. Q. Diameter-dependent spin polarization of injected carriers in carbon-doped zigzag boron nitride nanotubes[J]. Appl. Phys. Lett.,2006,89(12):123103-123105.
    [25]Hwang H. J., Choi W. Y., Kang J. W. Molecular dynamics simulations of nanomemory element based on boron-nitride nanotube-to-peapod transition [J]. Comp. Sci. Eng.,2005,33(1):317-324.
    [26]Grujicic M., Cao G., Roy W. N. Suitability of boron-nitride single-walled nanotubes as fluid-flow conduits in nano-valve applications [J]. Appl. Surf. Sci., 2005,246(1):149-158.
    [27]Lisenkov S. V., Vinogradov G. A., Astakhova T. Y., et al. Nonchiral BN Haeckelite nanotubes[J]. Jetp Lett.,2005,81(7):346-350.
    [28]Lebedev N. G., L. Chernozatonski A. Quantum-chemical calculations of the piezoelectric characteristics of boron nitride and carbon nanotubes[J]. Phys. Solid State,2006,48(10):2028-2034.
    [29]Kang H. S. Theoretical Study of Boron Nitride Nanotubes with Defects in Nitrogen-Rich Synthesis[J]. J. Phys. Chem. B,2006,110(10):4621-4628.
    [30]Park C. H., Spataru C. D., Louie S. G. Excitons and Many-Electron Effects in the Optical Response of Single-Walled Boron Nitride Nanotubes[J]. Phys. Rev. Lett., 2006,96(12):126105-126108.
    [31]Wirtz L., Marini A., Rubio A. Excitons in Boron Nitride Nanotubes: Dimensionality Effects[J]. Phys. Rev. Lett.,2006,96:126104-126107.
    [32]Zhou Z., Zhao J., Chen Z., et al. True Nanocable Assemblies with Insulating BN Nanotube Sheaths and Conducting Cu Nanowire Cores[J]. J. Phys. Chem. B, 2006,110(6):2529-2532.
    [33]Wu X. J., An W., Zheng X. C. Chemical Functionalization of Boron-Nitride Nanotubes with NH3 and Amino Functional Groups[J]. J. Am. Chem. Soc,2006, 128(36):12001-12006.
    [34]Ishigami M., Sau J. D., Aloni S., et al. Symmetry Breaking in Boron Nitride Nanotubes[J]. Phys. Rev.Lett,2006,97(17):176804-176807.
    [35]Zhou Z., Zhao J., Chen Z., et al. Comparative Study of Hydrogen Adsorption on Carbon and BN Nanotubes[J]. J. Phys. Chem. B,2006,110(27):13363-13369.
    [36]Hao S. G., Zhou G., Duan W. H., et al. Tremendous Spin-Splitting Effects in Open Boron Nitride Nanotubes:Application to Nanoscale Spintronic Devices [J]. J. Am. Chem. Soc,2006,128(26):8453-8458.
    [37]Chen X., Gao X. P., Zhang H., et al. Preparation and Electrochemical Hydrogen Storage of Boron Nitride Nanotubes[J]. J. Phys. Chem. B,2005,109(23): 11525-11529.
    [38]Jhi S. H. Activated boron nitride nanotubes:A potential material for room-temperature hydrogen storage[J]. Phys. Rev. B,2006,74(15): 155424-155427.
    [39]Guo T., Nikolaev P., Rinzler A. G., et al. Self-Assembly of Tubular Fullerenes[J]. J. Phys. Chem.,1995,99(27):10694-10697.
    [40]Endo M., Takeuchi K., Igarashi S., et al. The production and structure of pyrolytic carbon nanotubes (PCNTs)[J]. J. Phys. Chem. Solids,1993,54(12): 1841-1848.
    [41]Golberg D., Bando Y., Eremets M., et al. Nanotubes in boron nitride laser heated at high pressure[J]. Appl. Phys. Lett.,1996,69(14):2045-2047.
    [42]Golberg D., Bando Y., Eremets M., et al. Boron nitride nanotube growth defects and their annealing-out under electron irradiation[J]. Chem. Phys. Lett.,1997, 279(5):191-196.
    [43]Golberg D., Bando Y., Eremets M., et al. High-resolution analytical electron microscopy of boron nitrides laser heated at high pressure[J]. J. Electron Microsc, 1997,46(4):281-292.
    [44]Yu D. P., Sun X. S., Lee C. S., et al. Synthesis of boron nitride nanotubes by means of excimer laser ablation at high temperature[J]. Appl. Phys. Lett.,1998, 72(16):1966-1968.
    [45]Laude T., Matsui Y., Marraud A., et al. Long ropes of boron nitride nanotubes grown by a continuous laser heating[J]. Appl. Phys. Lett.,2000,76(22): 3239-3241.
    [46]Gerald J. F., Chen Y., Conway M. J. Nanotube growth during annealing of mechanically milled Boron[J]. Appl. Phys. A,2003,76(1):107-110.
    [47]Yu J., Chen Y., Wuhrer R., et al. In Situ Formation of BN Nanotubes during Nitriding Reactions[J]. Chem. Mater.,2005,17(20):5172-5176.
    [48]Gleize P., Schouler M. C., Gadelle P., et al. Growth of tubular boron nitride filaments[J]. J. Mater. Sci.,1994,29(6):1575-1580.
    [49]Tang C. C., Chapelle M. L., Li P.,et al. Catalytic growth of nanotube and nanobamboo structures of boron nitride[J]. Chem. Phys. Lett.,2001,342(5): 492-496.
    [50]Shimizu Y., Morioshi Y., Tanaka H., et al. Boron nitride nanotubes, webs, and coexisting amorphous phase formed by the plasma jet method[J]. Appl. Phys. Lett.,1999,75(7):929-931.
    [51]Bengu E., Marks L. D. Single-Walled BN Nanostructures[J]. Phys. Rev. Lett., 2001,86(11)::2385-2387.
    [52]Lourie O. R., Jones C. R., Bartlett B. M., et al. CVD Growth of Boron Nitride Nanotubes[J]. Chem. Mater.,2000,12(7):1808-1810.
    [53]Gao R., Yin L. W., Wang C. X., et al. High-Yield Synthesis of Boron Nitride Nanosheets with Strong Ultraviolet Cathodoluminescence Emission[J]. J. Phys. Chem. C,2009,113(34):15160-15165
    [54]Kuno M., Oku T., Suganuma K. Synthesis of boron nitride nanotubes and nanocapsules with LaB6[J]. Diamond Relat. Mater.,2001,10(3):1231-1234.
    [55]Wang J. S., Kayastha V. K., Yap Y. K., et al. Low Temperature Growth of Boron Nitride Nanotubes on Substrates [J]. Nano Lett.,2005,5(12):2528-2532.
    [56]Bechelany M., Bernard S., Brioude A., et al. Synthesis of Boron Nitride Nanotubes by a Template-Assisted Polymer Thermolysis Process[J]. J Phys. Chem. C,2007,111(36):13378-13384.
    [57]Bi J. Q., Wang W. L., Qi Y. X., et al. Large-scale synthesis of BN nanotubes using carbon nanotubes as template[J]. Materials Letters,2009,63(15): 1299-1302.
    [58]W. Han, Y. Bando, K. Kurashima, T. Sato, Synthesis of boron nitride nanotubes from carbon nanotubes by a substitution reaction[J]. Appl. Phys. Lett.,1998, 73(21):3085-3087.
    [59]Golberg D., Bando Y., Han W., et al. Single-walled B-doped carbon, B/N-doped carbon and BN nanotubes synthesized from single-walled carbon nanotubes through a substitution reaction[J]. Chem. Phys. Lett.,1999,308(3):337-342.
    [60]Golberg D., Bando Y., Bourgeois L., et al. Large-scale synthesis and HRTEM analysis of single-walled B-and N-doped carbon nanotube bundles. Carbon,2000, 38(14):2017-2027.
    [61]Golberg D., Bando Y., Kurashima K., et al. MoO3-promoted synthesis of multi-walled BN nanotubes from C nanotube templates[J]. Phys. Lett.,2000, 323(1):185-191.
    [62]Golberg D., Bando Y., Kurashima K., et al. Ropes of BN multi-walled nanotubes[J]. Solid State Commun.,2000,116(1):1-6.
    [63]Golberg D., Bando Y., Bourgeois L., et al. Insights into the structure of BN nanotubes[J]. Appl. Phys. Lett.,2000,77(13):1979-1981.
    [64]Golberg D., Bando Y., Kurashima K., et al. Synthesis. HRTEM and electron diffraction studies of B/N-doped C and BN nanotubes[J]. Diamond Relat. Mater., 2001,10(1):63-67.
    [65]Golberg D., Bando Y. Unique morphologies of boron nitride nanotubes[J]. Appl. Phys. Lett.,2001,79(3):415-417.
    [66]Golberg D., Bando Y., Kurashima K., et al. Nanotubes of boron nitride filled with molybdenum clusters[J]. J. Nanosci. Nanotechnol.,2001,1(1):49-54.
    [67]Golberg D., Bando Y., Mitome M., et al. Preparation of aligned multi-walled BN and B/C/N nanotubular arrays and their characterization using HRTEM, EELS and energy-filtered TEM[J]. Phys. B,2002,323(1):60-66.
    [68]Bando Y., Golberg D., Mitome M., et al. C to BN conversion in multi-walled nanotubes as revealed by energy-filtering transmission electron microscopy [J]. Chem. Phys. Lett.,2001,346(1):29-34.
    [69]Golberg D., Bando Y., Mitome M., et al. Nanocomposites:synthesis and elemental mapping of aligned B-C-N nanotubes[J]. Chem. Phys. Lett.,2002, 360(1):1-7.
    [70]Rao C. N. R., Satishkumar B. C., Govindaraj A., et al. Nanotubes[J]. Chem Phys Chem,2001,2(2):78-105.
    [71]Loiseau A., Willaime F., Demoncy N., et al. Boron Nitride Nanotubes with Reduced Numbers of Layers Synthesized by Arc Discharge[J]. Phys. Rev. Lett., 1996,76(25):4737-4740.
    [72]Terrones M., Hsu W. K., Terrones H., et al. Metal particle catalysed production of nanoscale BN structures [J]. Chem. Phys. Lett.,1996,259(5):568-573.
    [73]Saito Y., Maida M. Square Pentagon and Heptagon Rings at BN Nanotube Tips[J]. J. Phys. Chem. A,1999,103(10):1291-1293.
    [74]Lee R. S., Cavillet J., de la Chapelle M. L., et al. Catalyst-free synthesis of boron nitride single-wall nanotubes with a preferred zig-zag configuration[J]. Phys. Rev. B,2001,64(12):121405-121408.
    [75]Ma R. Z., Bando Y., Sato T., et al. Growth Morphology and Structure of Boron Nitride Nanotubes[J]. Chem. Mater.,2001,13(9):2965-2971.
    [76]Ma R. Z., Bando Y., Sato T. Controlled Synthesis of BN Nanotubes, Nanobamboos, and Nanocables[J]. Adv. Mater.,2002,14(5):366-368.
    [77]Terauchi M., Tanaka M., Suzuki K., et al. Production of zigzag-type BN nanotubes and BN cones by thermal annealing[J]. Chem. Phys. Lett.,2000, 324(5):359-364.
    [78]Tang C. C, Bando Y., Sato T., et al. A novel precursor for synthesis of pure boron nitride nanotubes[J]. Chem. Commun.,2002,12(1):1290-1291.
    [79]Zhi C. Y., Bando Y., Tang C., et al. Effective precursor for high yield synthesis of pure BN nanotubes [J]. Solid State Commun.,2005,135:67-70.
    [80]Iijima S., Ichihashi T. Single-shell carbon nanotubes of 1-nm diameter[J]. Nature, 1993,363:603-605.
    [81]Cumings J., Zettl A. Mass-production of boron nitride double-wall nanotubes and nanococoons[J].Chem. Phys. Lett.,2000,316(3):211-216.
    [82]Blase X., Devita A., Charlie J. C., et al. Frustration Effects and Microscopic Growth Mechanisms for BN Nanotubes[J]. Phys. Rev. Lett.,1998,80(58): 666-669.
    [83]Thess A., Nikolaev P., Dai H. J., et al. Crystalline Ropes of Metallic Carbon Nanotubes. Science,1996,273(5274):483-487.
    [84]Smith B. W., Monthioux M., Luzzi D. Encapsulated C60 in carbon nanotubes Nature,1998,396(4):323-324.
    [85]Golberg D., Bando Y., Stephan O., et al. Octahedral boron nitride fullerenes formed by electron beam irradiation[J]. Appl. Phys. Lett.,1998,73(17): 2441-2443.
    [86]Bando Y., Ogawa K., Golberg D. Insulating 'nanocables': Invar Fe-Ni alloy nanorods inside BN nanotubes[J].Chem. Phys. Lett.,2001,347(4):349-354.
    [87]Golberg D., Han W., Bando Y., et al. Fine structure of boron nitride nanotubes produced from carbon nanotubes by a substitution reaction[J]. J. Appl. Phys., 1999,86(4):2364-2366.
    [88]Golberg D., Bando Y., Kurashima K., et al. Synthesis and characteristics of boron nitride multi-walled nanotube ropes[J]. Scr. Mater.,2001,44:1561-1565.
    [89]Bourgeois L., Bando Y., Kurashima K., et al. Co-produced carbon and boron nitride helical cones and the nucleation of curved BN sheets[J]. Philos. Mag. A, 2000,80(1):129-142.
    [90]Iijima S., Ichihashi T., Ando Y. Pentagon, heptagon and negative curvature in graphite microtubule growth[J]. Nature,1992,356(8):776-778.
    [91]Zhang X. F., Zhang X. B., Van T. G., et al. Carbon nano-tubes; their formation process and observation by electron microscopy [J]. J. Cryst. Growth,1993, 130(3):368-382.
    [92]Bernaerts D., Amelinckx S., Lambin P.,et al. The diffraction space of circular and polygonized multishell nanotubules[J]. Appl. Phys. A,1998,67(1):53-64.
    [93]Golberg D., Bai X. D., Mitome M., et al. Structural peculiarities of in situ deformation of a multi-walled BN nanotube inside a high-resolution analytical transmission electron microscope[J]. Acta Mater.,2007,55(4):1293-1298.
    [94]Celik-Atkas A., Zuo J. M., Stubbins J. F., et al. Structure and chirality distribution of multiwalled boron nitride nanotubes[J]. Appl. Phys. Lett.,2005, 86(3):133110-133112.
    [95]Celik-Aktas A., Zuo J. M., Stubbins J. F., et al. Structure and chirality distribution of multiwalled boron nitride nanotubes. Appl. Phys. Lett.,2005, 86(13):133110-133112.
    [96]Bourgeois L., Bando Y., Sato T. Tubes of rhombohedral boron nitride. J. Phys. D, 2000,33(15):1902-1908
    [97]Demczyk B. G., Cumings J., Zettl A., et al. Structure of boron nitride nanotubules[J]. Appl. Phys. Lett,2001,78(18):2772-2774.
    [98]Arenal R., Kociak M., Loiseau A., et al. Determination of chiral indices of individual single-and double-walled boron nitride nanotubes by electron diffraction[J]. Appl. Phys. Lett.,2006,89(7):073104-073106.
    [99]Menon M, Srivastava D. Structure of boron nitride nanotubes:tube closing versus chirality[J]. Chem. Phys. Lett.,1999,307(5):407-412.
    [100]Blase X., Charlie J. C., De Vita A. et al. Boron-Mediated Growth of Long Helicity-Selected Carbon Nanotubes[J]. Phys. Rev. Lett.,1999,83(24): 5078-5081.
    [101]Ma R. Z., Bando Y., Sato T. CVD synthesis of boron nitride nanotubes without metal catalysts[J]. Chem. Phys. Lett.,2001,337(1):61-64.
    [102]Kim Y. I., Jung J. K., Ryu K. S., et al. Quantitative phase analysis of boron nitride nanotubes using Rietveld refinement[J]. J. Phys. D:Appl. Phys.,2005,38: 1127-1131.
    [103]Chopra N. G., Benedict L. X., Grespi V. H., et al. Fully Collapsed Carbon Nanotubes[J]. Nature,1995,377(6545):135-138.
    [104]Mazzoni M. S. C., Chatham H. Bandgap closure of a flattened semiconductor carbon nanotube:A first-principles study [J]. Appl. Phys. Lett.,2000,76(2): 1561-1563.
    [105]Kim Y. H., Chang K. J., Louie S. G. Electronic structure of radially deformed BN and BC3 nanotubes[J]. Phys. Rev. B,2001,63(20):205408-205412.
    [106]Terauchi M., Tanaka M., Matsumoto M., et al. Electron energy-loss spectroscopy study of the electronic structure of boron nitride nanotubes [J]. J. Electron Microsc,1998,47(4):319-324.
    [107]Terrones M., Hsu W. K., Kroto H. W., et al. Nanotubes:A Revolution in Materials Science and Electronics. Berlin,1999,227.
    [108]Zhang Y., Suenaga K., Colliex C., et al. Coaxial Nanocable:Silicon Carbide and Silicon Oxide Sheathed with Boron Nitride and Carbon[J]. Science,1998, 281(5379):973-975.
    [109]Stephan O., Ajayan P. M., Colliex C., et al. Doping Graphitic and Carbon Nanotube Structures with Boron and Nitrogen[J]. Science,1994,266(5191): 1683-1685.
    [110]Blase X., Charlier J. C, De Vita A., et al. Theory of composite BxCyNz nanotube heteroj unctions [J]. Appl. Phys. Lett.,1997,70(2):197-199.
    [111]Suenaga K., Colliex C., Demoncy N., et al. Synthesis of Nanoparticles and Nanotubes with Well-Separated Layers of Boron Nitride and Carbon[J]. Science, 1997,278(5338):653-655.
    [112]Zhang Y., Gu H., Suenaga K., et al. Heterogeneious growth of laser ablated B-C-N nanotubes[J]. Chem. Phys. Lett.,1997,279(5):264-270.
    [114]Kohler-Redlich P., Terrones M., Manteca-Diego C., et al. Stable BC2N nanostructures:low-temperature production of segregated C/BN layered materials[J]. Chem. Phys. Lett.,1999,310(5):459-465.
    [114]Louchev O. A., Sato Y., Kanda H., et al. Coupling of kinetic and transport phenomena in self-organization of C-B-N nanotube growth into sandwich structures[J]. Appl. Phys. Lett.,2000,77(10):1446-1448.
    [115]Golberg D., Bando Y., Han W., et al. Multi-and single-shelled boron nitride nanotubes produced from carbon nanotubes by a substitution reaction[J]. MRS Symp. Proc,2000,593,27-32.
    [116]Han W. Q., Cumings J., Zettl A. Pyrolytically grown arrays of highly aligned BxCyNz nanotubes[J]. Appl. Phys. Lett.,2001,78(18):2769-2771.
    [117]Golberg D., Dorozhkin P., Bando Y., et al. Semiconducting B C N nanotubes with few layers[J]. Chem. Phys. Lett.,2002,359(3):220-228.
    [118]Bando Y., Mitome M., Golberg D., et al. New 300 kV Energy-Filtering Field Emission Electron Microscope[J]. Jpn. J. Appl. Phys.2001,40:1193-1196.
    [119]Kar T., Cuma M., Scheiner S. Structure, Stability and Bonding of BC2N:An ab Initio Study[J]. J. Phys. Chem. A,1998,102(49):10134-10141.
    [120]Golberg D., Dorozhkin P., Bando Y., et al. Synthesis Analysis and Electrical Property Measurements of Compound Nanotubes in the B-C-N Ceramic System[J]. MRS Bull.,2004,29(1):38-42.
    [121]Golberg D., Dorozhkin P. S., Bando Y., et al. Structure, transport and field-emission properties of compound nanotubes:CNx vs. BNCx (x<0.1) [J]. Appl. Phys. A,2003,76(4):499-507.
    [122]Kalyan R., Dinesh J., Mousumi U. K., et al. Synthesis structure and properties of homogeneous BC4N nanotubes[J]. J. Mater. Chem.,2008,18(1):83-90.
    [123]Wang W. L., Bai X. D., Liu K. H., et al. Direct Synthesis of B-C-N Single-Walled Nanotubes by Bias-Assisted Hot Filament Chemical Vapor Deposition[J]. J. Am. Chem. Soc.,2006,128(20):6530-6531.
    [124]Miyamoto Y., Rubio A., Louie S. G., et al. Electronic properties of tubule forms of hexagonal BC3[J]. Phys. Rev. B,1994,50(24):18360-18366.
    [125]Liu A. Y., Wetzcovitch R. M., Cohen M. L. Atomic arrangement and electronic structure of BC2N[J]. Phys. Rev. B,1988,39(3):1760-1765.
    [126]Tang C, Bando Y., Huang Y., et al. Fluoridation and electrical conductivity of BN nanotubes[J]. J. Am. Chem. Soc.,2005,127(18):6552-6553.
    [127]Okada S., Saito S., Oshiyama A. Semiconducting form of the first-row elements: C6o chain encapsulated in BN nanotubes[J]. Phys. Rev. B,2001,64(20): 201303-201306.
    [128]Mickelson W., Aloni S., Han W. Q., et al. Packing C6o in Boron Nitride Nanotubes[J]. Science,2003,300(5618):467-469.
    [129]Dujardin E., Ebbesen T. W., Hiura H., et al. Capillarity and wetting of carbon nanotubes[J]. Science,1994,265(5180):1850-1852.
    [130]Tsang S. C, Chen Y. K., Harris P. J. F., et al. A simple chemical method of opening and filling carbon nanotubes[J]. Nature,1994,372(6502):159-162.
    [131]Ajayan P. M., Ebbesen T. W., Ichihashi T., et al. Opening carbon nanotubes with oxygen and implications for filling[J]. Nature,1993,362(6420):522-525.
    [132]Han W., Redlich P., Ernst F., et al. Synthesizing boron nitride nanotubes filled with SiC nanowires by using carbon nanotubes as templates[J]. Appl. Phys. Lett., 1999,75(13):1875-1877.
    [133]Han W. Q., Kohler-Redlich P., Ernst F.,et al. Formation of (BN)xCy and BN Nanotubes Filled with Boron Carbide Nanowires[J]. Chem. Mater.,1999,11(12): 3620-3623.
    [134]Han W. Q., Zettl A. GaN Nanorods Coated with Pure BN[J]. Appl. Phys. Lett., 2002,81(26):5051-5053.
    [135]Han W. Q., Zettl A. Encapsulation of one-dimensional potassium halide crystals within BN nanotubes[J]. Nano Lett.,2004,4(7):1355-1357.
    [136]Han W. Q., Zettl A. Nanocrystal cleaving[J]. Appl. Phys. Lett.,2004,84(14): 2644-2645.
    [137]Shelimov K. B., Mockovits M. Composite nanostructures based on template-grown boron nitride nanotubules[J]. Chem. Mater.,2000,12(6): 250-254.
    [138]Zhu Y. C., Bando Y., Xue D. F., et al. Insulating tubular BN sheathing on semiconducting nanowires[J]. J. Am. Chem. Soc.,2003,125(47):14226-14227.
    [139]Li Y. B., Dorozhkin P., Bando Y., et al. Controllable Modification of SiC Nanowires Encapsulated in BN Nanotubes[J]. Adv. Mater.,2005,17(6): 545-549.
    [140]Golberg D., Xu F. F., Bando Y. Filling boron nitride nanotubes with metals[J]. Appl. Phys. A,2003,76(4):479-485.
    [141]Ma R. Z., Bando Y., Sato T. Coaxial nanocables:Fe nanowires encapsulated in BN nanotubes with intermediate C layers[J]. Chem. Phys. Lett.,2001,350(1): 1-5.
    [142]Golberg D., Bando Y., Fushimi K., et al. Nanoscale Oxygen Generators: MgO2-Based Fillings of BN Nanotubes[J]. J. Phys. Chem. B,2003,107(34): 8726-8729.
    [143]D Golberg., Bando Y., Mitome M., et al. Boron nitride nanotubes as nanocrucibles for morphology and phase transformations in encapsulated nanowires of the Mg-O system[J]. Acta Mater.,2004,52(3):3295-3303.
    [144]Han W. Q., Zettl A. Functionalized Boron Nitride Nanotubes with a Stannic Oxide Coating:A Novel Chemical Route to Full Coverage[J]. J. Am. Chem. Soc.,2003,125(8):2062-2063.
    [145]Xie S. Y., Wang W., Fernando K. A. S., et al. Solubilization of boron nitride nanotubes[J]. Chem. Commun.,2005,29:3670-3672.
    [146]Zhi C. Y., Bando Y., Tang C. C., et al. Covalent Functionalization:Towards Soluble Multiwalled Boron Nitride Nanotubes[J]. Angew. Chem. Int. Ed.,2005, 44(9):7932-7935.
    [147]Zhi C. Y., Bando Y., Tang C., et al. Perfectly Dissolved Boron Nitride Nanotubes Due to Polymer Wrapping[J]. J. Am. Chem. Soc.,2005,127(46): 15996-15997.
    [148]Zhi C. Y., Bando Y., Tang C., et al. Purification of boron nitride nanotubes through polymer wrapping[J]. J. Phys. Chem. B,2006,110(4):1525-1528.
    [149]Zhi C. Y., Bando Y., Tang C.,.et al. Engineering of electronic structure of boron-nitride nanotubes by covalent functionalization[J]. Phys. Rev. B,2006, 74(15):153413-153414.
    [150]C Zhi. Y., Bando Y., Tang C., et al. Characteristics of Boron Nitride Nanotube-Polyaniline Composites[J]. Angew. Chem. Int. Ed.,2005,44(48): 7929-7932.
    [151]Zhi C. Y., Bando Y., Wang W., et al. Grafting boron nitride nanotubes:From polymers to amorphous and graphitic carbon[J]. J phys. chem. C,2007,111(3): 1230-1233.
    [152]Chang C. W., Fennimore A. M., Afanasiev A., et al. Isotope Effect on the Thermal Conductivity of Boron Nitride Nanotubes[J]. Phys. Rev. Lett.,2006,97: 085901-085904.
    [153]Chang C. W., Okawa D., Majumdar A., et al. Solid-State Thermal Rectifier[J]. Science,2006,314(5802):1121-1124.
    [154]Yum K., Yu M. F. Measurement of wetting properties of individual boron nitride nanotubes with the Wilhelmy method using a nanotube-based force sensor[J]. Nano Lett.,2006,6(2):329-333.
    [155]Barber A. H., Cohen S. R., Wagner H. D. Static and dynamic wetting measurements of single carbon nanotubes[J]. Phys. Rev. Lett.,2004,92(18): 186103-186104.
    [156]Jia J. F., Wu H. S., Jiao H. The structure and electronic property of BN nanotube[J]. Phys. B,2006,381(1):90-95.
    [157]Mele E. J., Kral P. Electric Polarization of Heteropolar Nanotubes as a Geometric Phase[J].Phys. Rev. Lett.,2002,88:056803-056806.
    [158]Cumings J., Zettl A. Electronic Properties of Molecular Nanostructures[M], AIP Conf. Proc. Series, American Institute of Physics, New York 2001,.577.
    [159]Dorozhkin P., Golberg D., Bando Y., et al. Field emission from individual B-C-N nanotube rope[J]. Appl. Phys. Lett.,2002,81(6):1083-1085.
    [160]Golberg D., Dorozhkin P. S., Bando Y., et al. Cables of BN-insulated B-C-N nanotubes[J]. Appl. Phys. Lett.,2003,82(8):1275-1277.
    [161]Zhu H. Y., Klein D. J., March N. H., et al. Small Band-Gap Graphitic CBN Layesrs[J]. J. Phys. Chem. Solids,1998,59(8):1303-1308.
    [162]Zhi C. Y., Guo J. D., Bai X. D., et al. Adjustable boron carbonitride nanotubes[J]. J. Appl. Phys.,2002,91(8):5325-5333.
    [163]Dean K. A., Chalamala B. R. Current Saturation Mechanism in Carbon Nanotube Field Emitters[J]. Appl. Phys. Lett.,2000,76(3):375-377.
    [164]Gomer R. Field Emission and Field Ionization[M], Harvard University Press, Harvard 1961.
    [165]Bonard J. M., M. Croci, C. Klinke, et al. Carbon nanotube films as electron field emitters[J]. Carbon,2002,40(10):1715-1728.
    [166]Radosavljevic M., Appenzeller J., Derycke V., et al. Electrical properties and transport in boron nitride nanotubes[J]. Appl. Phys. Lett.,2003,829(23): 4131-4133.
    [167]Bai X. D., Golberg D., Bando Y., et al. Deformation-Driven Electrical Transport of Individual Boron Nitride Nanotubes[J]. Nano Lett.,2007,7(3): 632-637.
    [168]Golberg D., Mitome M., Kurashima K., et al. In situ electrical probing and bias-mediated manipulation of dielectric nanotubes in a high-resolution transmission electron microscope[J]. Appl. Phys. Lett.,2006,88(6): 123101-123103.
    [169]Poncharal P., Wang Z. L., de Heer W. A. Electrostatic Deflections and Electromechanical Resonances of Carbon Nanotubes[J]. Science,1999, 283(5407):1513-1516.
    [170]Cumings J., Zettl A. Low-Friction Nanoscale Linear Bearing Realized from Multiwall Carbon Nanotubes[J]. Science,2000,289(5479):602-604.
    [171]Huang Q., Sandanayaka A. S., Bando Y., et al. Donor-Acceptor Nanoensembles Based on Boron Nitride Nanotubes[J]. Adv. Mater.,2007,19(7):934-938.
    [172]Wu J., Han W. Q., Walukievicz W., et al. Raman Spectroscopy and Time-Resolved Photoluminescence of BN and BxCyNz Nanotubes[J]. Nano Lett.,2004,4(4):647-650.
    [173]Lauret J. S., Arenal R., Ducastelle F., et al. Optical Transitions in Single-Wall Boron Nitride Nanotubes[J]. Phys. Rev. Lett.,2005,94(3),037405-037408.
    [174]Arenal R., Stephan O., Kociak M., et al. Single-Wall Boron Nitride Nanotubes[J]. Phys. Rev. Lett.,2005,94(3),037403-037405.
    [175]Zhi C. Y., Bando Y., Tang C. C., et al. Phonon characteristics and cathodolumininescence of boron nitride nanotubes[J]. Appl. Phys. Lett.,2005, 86(2):213110-213112.
    [176]Chopra N. G., Zettl A. Measurement of the elastic modulus of a multi-wall boron nitride nanotube[J]. Solid State Commun.,1998,105(5):297-300.
    [177]Banhart F., Grobert N., Terrones M., et al. Metal Atoms in Carbon Nanotubes and Related Nanoparticles[J]. Int. J. Mod. Phys. B,2001,15(31):4037-4069.
    [178]Zhi C. Y., Bando Y., Tang C., et al. Boron nitride nanotubes/polystyrene composites[J]. J. Mater. Res.,2006,21(11):2794-2800.
    [179]Bansal N. P., Hurst J. B., Choi S. R. Boron Nitride Nanotubes-Reinforced Glass Composites[J]. J. Am. Ceram. Soc,2006,89(1):388-390.
    [180]Huang Q., Bando Y., Xu X., et al. in Proc.16th Int. Conf. on Composite Materials[M]. Kyoto,2007,810.
    [181]Dillon A. C., Jones K. M., Bekkedahl T. A., et al. Storage of hydrogen in single-walled carbon nanotubes[J]. Nature,1997,386(27):377-379.
    [182]Chambers A., Park C., Baker R. T. K., et al. Hydrogen Storage in Graphite Nanofibers[J]. J. Phys. Chem. B,1998,102(22):4253-4256.
    [183]Liu C., Fan Y. Y., Liu M., et al. Hydrogen Storage in Single-Walled Carbon Nanotubes at Room Temperature[J]. Science,1999,286(5442):1127-1129.
    [184]Ma R. Z., Bando Y., Zhu H. W., et al. Hydrogen Uptake in Boron Nitride Nanotubes at Room Temperature[J]. J. Am. Chem. Soc,2002,124(26): 7672-7673.
    [185]Tang C. C., Bando Y., Ding X. X., et al. Catalyzed Collapse and Enhanced Hydrogen Storage of BN Nanotubes[J]. J. Am. Chem. Soc.,2002,124(49): 14550-14551
    [186]Yin L. W., Bando Y., Zhu Y. C., et al. A Two-Stage Route to Coaxial Cubic-Aluminum-Nitride-Boron-Nitride Composite Nanotubes[J]. Adv. Mater., 2004,16(11):929-933.
    [187]Sugino T., Kimura C., Yamamoto T. Electron field emission from boron-nitride nanofilms[J]. Appl. Phys. Lett.,2002,80(19):3602-3604.
    [188]Zhao G. C., Zhang L., Wei X. W., et al. Myoglobin on multi-walled carbon nanotubes modified electrode:direct electrochemistry and electrocatalysis[J]. Electrochem. Commun.,2003,5(9):825-829.
    [189]Wang L., Wang J. X., Zhou F. M. Direct Electrochemistry of Catalase at a Gold Electrode Modified with Single-Wall Carbon Nanotubes[J]. Electroanal.,2004, 16(8):627-632.
    [190]Colthup N. B., Daly, L. H., Wiberlay S. E. Introduction to Infrared and Raman Spectroscopy[M]. Acadamic Press, Boston,1990.
    [191]Kuznetsova A., Mawhinney DB., Naumenko V., et al. Enhancement of adsorption inside of single-walled nanotubes:opening the entry ports[J]. Chem. Phys. Lett.,2000,321(3):292-296.
    [192]Lee S. M., Lee S. C., Jung J. H., et al. Pore characterization of multi-walled carbon nanotubes modified by KOH[J]. Chem. Phys. Lett.,2005,416(4): 251-255
    [193]Jiang Q., Zhao Y. Effects of activation conditions on BET specific surface area of activated carbon nanotubes[J]. Micropor. Mesopor. Mater.,2004,76(1): 215-219
    [194]. Do J S and Wu K J. Anodic oxidation of nitric oxide on Au/Nafion(?):Kinetics and mass transfer[J]. J. Appl. Electrochem.,2001,31:437-443.
    [195]De Vooysl A. C. A., Beltramo G. L., van Riet B., et al. Mechanisms of electrochemical reduction and oxidation of nitric oxide[J].2004 Electrochim. Acta,49(8):1307-1314.
    [196]Deepak F.L., Vinod C.P., Mukhopadhyay K., et al. Boron nitride nanotubes and nanowires[J]. Chem. Phys. Lett.2002,353(5):345-352.
    [197]Tang C. C., Lamydela C. M., Li P. Catalytic growth of nanotubes and nanobamboo structures of boron nitride[J]. Chem. Phys. Lett.,2001,342(5): 492-496.
    [198]陈坤,袁颂东.氮化硼球形纳米粒子的制备及影响因素分析[J].武汉理工大学学报,2006,28:10-19.
    [199]Goto T., Hirai T. ESCA study of amorphous CVD Si3N4-BN composites[J]. Mater. Sci,1988,7(5):548-550.
    [200]Kim D. H., Byon E., Lee S., et al. Characterization of ternary boron carbon nitride films synthesized by RF magnetron sputtering[J]. Thin Solid Films,2004, 447(30):192-196.
    [201]Linss V., Rodil S. E., Reinke P., et al. Bonding characteristics of DC magnetron sputtered B-C-N thin films investigated by Fourier-transformed infrared spectroscopy and X-ray photoelectron spectroscopy[J]. Thin Solid Films,2004, 467(1):76-87.
    [202]Yu J., Wang E. G., Ahn Jt., et al. Turbostratic Boron Carbonitride Films Produced by Bias-Assisted Hot Filament Chemical Vapor Deposition[J]. J Appl. Phys.,2000,87(8):4022-4025.
    [203]Terrones M., Benito A. M., Manteca-Diego C., et al. Pyrolytically grown BxCyNz nanomaterials:nanofibres and nanotubes[J]. Chem. Phys. Lett.,1996, 257(5):576-582.
    [204]L ing H., Wu J. D., Sun J., et al. Electron cyclotron resonance p lasma-assisted pulsed laser deposition of boron carbon nitride films[J]. D iamond Relat Mater, 2002,11(9):1623-1628.
    [205]Ayala P., Gruneis A., Gemming T., et al. Tailoring N-Doped Single and Double Wall Carbon Nanotubes from a Nondiluted Carbon/Nitrogen Feedstock[J]. J. Phys. Chem. C,2007; 111(7):2879-2884.
    [206]Bulusheva L. G., Okotrub A. V., Kudashov A. G., et al. Effect of Fe/Ni catalyst composition on nitrogen doping and field emission properties of carbon nanotubes[J]. Carbon,2008,46(6):864-869.
    [207]Choi H. C., Park J., Kim B. Distribution and Structure of N Atoms in Multiwalled Carbon Nanotubes Using Variable-Energy X-Ray Photoelectron Spectroscopy[J]. J. Phys. Chem. B,2005,109(10):4333-4340.
    [208]Kim S. Y., Lee J. Y., Na C. W., et al. N-doped double-walled carbon nanotubes synthesized by chemical vapor deposition[J]. Chem. Phys. Lett.,2005,413(4): 300-305.
    [209]Kim S. Y., Park J., Choi H. C, et al. X-ray Photoelectron Spectroscopy and First Principles Calculation of BCN Nanotubes[J]. J. Am. Chem. Soc,2007,129(6): 1705-1716.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700