鼠疫耶尔森氏菌毒力相关转录调控子Zur和PhoP的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
鼠疫是一种古老的自然疫源性疾病,其病原菌鼠疫耶尔森氏菌(以下简称鼠疫菌)是多宿主寄生菌,体现在:鼠疫菌以蚤类为传播媒介寄居在特定的宿主(主要是啮齿动物),并在自然界宿主中造成鼠疫疫情的周期性爆发,该过程中偶然与患畜接触或被带菌跳蚤叮咬而感染到人。面对上述的复杂因素,鼠疫菌必须能够感应并快速适应每个环节的变化,才能在宿主体内存活并在自然界中传播最终致病,而每个适应性反应也必然伴随着鼠疫菌基因转录改变,这体现在:很多特定的调控子,分别感应特定的外界信号,介导特定基因(包括毒力基因)表达的上调和下调,最终组成复杂的毒力调控网络,控制鼠疫菌在媒介和贮存宿主中生存能力和致病力。
     病原菌从感应信号刺激到表达毒力因子的过程中,毒力调控子起着不可替代的作用。广谱或特异性的调控子,控制着毒力基因的表达;另外,若干个毒力调控基因的表达产物可组成一个复杂系统,执行毒力调控的功能,常称作毒力调控系统。一直作为研究热点的细菌毒力调控系统主要有QS系统、二元调控系统、Fur系统等等。这些系统又分成许多子调控系统,控制着不同类型毒力基因的表达,在细菌表现毒力的不同阶段起着调控作用。
     Zur阻遏蛋白属于Fur家族,可以调控锌离子的转运,锌离子在所有生物细胞中是一种重要的蛋白质功能组分。PhoP-PhoQ是一种二元调控系统(two-component system),可以调控细菌的毒力,参与细菌对Mg2+限制性生长环境的适应,从而有利于鼠疫菌在巨噬细胞内的存活和繁殖。为了鉴定鼠疫菌毒力调控子Zur和PhoP的靶基因,尤其是直接调控的靶基因,并进一步研究Zur和PhoP对其下游直接靶基因的精细调控机制,本研究首先利用基于Red系统的一步法突变技术缺失替换鼠疫菌的zur和phoP基因,进而利用鼠疫菌全基因组DNA芯片进行基因转录谱分析。通过比较突变株和野生株在特定条件下的转录水平差异,界定表达上调和下调的基因,这些基因组成了Zur或PhoP调控元。这一分析可从全基因组水平筛选出所有受Zur或PhoP直接或间接调控的靶基因。转录谱的分析结果可以通过Real time RT-PCR进行验证。凝胶阻滞实验技术的应用,可以鉴定直接调控的靶基因,选择若干关键毒力相关基因,采用DNA酶I足迹实验技术、引物延伸实验技术,深入研究Zur和PhoP是如何直接调控这些基因的转录和表达,将毒力表型和分子实验数据结合起来,认识Zur和PhoP如何通过激活或抑制特定基因的表达,控制着鼠疫菌的宿主适应力和致病力。
     与野生株相比,敲除了zur基因的鼠疫菌在锌离子刺激下有154个基因发生了转录丰度改变,其中64个基因转录上调,90个基因转录下调。汇总文献预测的Zur结合位点,通过consensus-matrix和convert-matrix程序计算Zur结合序列每个位置四个碱基出现的权重,得到Zur结合序列的Matrix,进而用WebLogo软件展示序列logo,最终预测得到Zur结合box:GAAATGTTATAWTATAACATTTC。基于上述Zur基序分析和Zur调控子的转录谱分析,我们通过Matrix scan程序查找Zur保守基序,选取weight值较高的4个基因ykgM、znuC、znuA、astA进行进一步的分子生化实验。通过凝胶阻滞实验明确了ykgM、znuC、znuA 3个转录单元直接受Zur调控。为了明确Zur的精细调控机制,本研究对这三个转录单元的启动子进行了足迹实验,得到了精确的Zur结合保护区域,在这个区域内存在着预测的Zur box,Zur蛋白直接调控的这三个转录单元,其Zur box均覆盖-10序列,这样就阻碍了RNA聚合酶的结合,可能正因为如此,使Zur表现出对它们的抑制特性。对锌离子刺激下的野生株和?zur突变株同时进行引物延伸实验,不仅可以明确受Zur转录调控的鼠疫菌ykgM、znuC和znuA的转录起始位点,也可以确定Zur对其转录的影响。同时结合足迹实验得到的Zur结合位点,推断出每个启动子内的RNA聚合酶结合位点(-10序列)以及-35序列,丰富了Zur调控元启动子区的分子特性。
     前期对于?phoP突变株和野生株在低镁条件下的转录谱分析,已经初步界定了PhoP调控元,同样,我们用Real time RT-PCR对转录谱的分析结果进行验证。凝胶阻滞实验确定了30个转录单元直接受PhoP的转录调控,对其中17个基因的启动子区做了足迹实验,得到19个PhoP结合保护区域。通过生物信息学分析将鼠疫菌的PhoP box归纳为TGTTTAW七核苷酸同向重复序列,结合引物延伸实验得到的基因转录起始位点的位置信息,根据鼠疫菌的PhoP box在靶基因启动子内的位置以及是否含有-35序列,我们将PhoP启动子结构特征归纳为三类:PhoP结合位点在-35序列上游;PhoP结合位点覆盖-35序列;PhoP结合位点在-10序列的下游。
     本研究首次较全面地鉴定了鼠疫菌Zur和PhoP直接调控的调控元,同时从分子水平上明确了鼠疫菌Zur box和PhoP box的特性,探究了Zur和PhoP转录调控机制,为Zur和PhoP这类毒力调控子调控网络的构建,以及这些调控元功能的进一步明确提供了实验证据,这些机制的系统阐述将为鼠疫菌致病机制和疫苗的研究奠定重要基础。
Plague has ravaged human populations for many centuries and claimed hundred millions of lives in history. Plague normally cycles between fleas and rodent hosts, with humans providing an unproductive alternative. Yersinia pestis is the etiologic agent of plague. Since Y. pestis undergoes various types of environmental changes during transmission and infection, a wide range of rapid, adaptive responses to the changing niches are required. There are specific regulators responsing to the environmentally specific signals and controlling the expression of their specific target genes (including virulence genes). Finally, the complex regulating network of virulence genes is composed of them, and the viability and pathgenicity of Yersinia pestis is controlled by this virulence-related regulating network.
     Pathogen responses to signal stimulation, and expresses virulence-related regulators. These regulators play irreplaceable role during this process. The global or specific regulators control the expression of virulence genes. Additionally, the products that are expressed by some virulence regulated genes build up a complex system. The system in charge of virulence regulating functions is refered to virulence regulated system, which is always taken as research hotspot in pathogen bacteriology, incluing quorum sensing (QS) system, two-component system and Fur system etc.These systems are divided into many subsystems to control expression of different type of virulence genes and play the regulation role at different virulence-related stage of bacteria.
     Zur belongs to the Fur family and regulates the transport of zinc ions. Zinc is an essential component of protein and has function in all living cells. The two-component system PhoP-PhoQ can govern bacterial virulence, helps bacteria to adapt to Mg2+-limiting environments, survival and proliferation in macrophage. For further indentifing target genes of Zur and PhoP, especially the directly regulated target genes, and investigating the mechanism of Zur or PhoP regulation, we employed gene knockout method, microarray-based gene expression profiling and conventional biochemical techniques to study the gene regulating targets of Zur and PhoP. The zur and phoP gene in Y. pestis were replaced, respectively, with kanamycin resistance cassette using one-step disruption protocol in this study. The whole-genome DNA microarray of Y. pestis was used to investigate global transcriptional responses. The transcription profile of the wild-type Y. pestis was then compared with that of the mutant for determining upregulated and downregulated genes. These genes composed of Zur or PhoP regulons. Then, the results of transcriptome analysis were proved by real-time reverse-transcription (RT-PCR). Electrophoretic mobility shift assay (EMSA), helped to identify direct target genes of the regulators. DNase I footprinting assay and primer extension analysis were used to study how the transcription and expression of these genes are regulated directly by Zur and PhoP. This will help us to understand the mechanism of how Zur and PhoP can help to control the adaptative ability and pathgenicity of Yersinia pestis in hosts.
     Through transcriptome analysis, under stimulation of zinc ions, those strains with zur gene deletion had totally 154 genes changed their transcription level comparing with the wild type ones. Among them, 64 genes were upregulated, whereas 90 genes downregulated. We also collected data from published lituratures to predict Zur binding sites.
     Presenting frequency of four bases at each site of Zur binding sequence was obtained by consensus-matrix and convert-matrix program, then the sequence logo were shown by WebLogo software. Finally, Zur binding box in Yersinia pestis was confirmed to be GAAATGTTATAWTATAACATTTC. Based on the above result and transcriptome analysis of Zur, we screened the conserved sequences of Zur by Matrix scan program and selected four genes(ykgM、znuC、znuA、astA) for further confirming by biochemical experiments. EMSA confirmed three transcriptional units, ykgM、znuC、znuA were regulated by Zur directly. In order to get the precise mechanism of Zur regulation, we used footprinting assay to study the promotors of these transcriptional units. The Zur bingding sequence was obtained, and the predicted conserved Zur box was present in this region. All the three Zur boxes covered -10 elements for blocking RNA polymerase binding. It is possible that this is why Zur inhibits their transcription. By using primer extension analysis, we compared the wild type with ?zur mutant under the stimulation of low zinc ions. Not only determined the transcription start sites of ykgM、znuC and znuA under the regulation of Zur, but also determined the effect of Zur to their transcription. Combined with the result of footprinting assay, -10 and -35 elements for RNA polymerase binding were localized. It was helpful to get more complete information of the promoter region of Zur regulon.
     In our previous work, the transcriptome analysis of ?phoP mutant and wild type strains under low Mg2+ environments had confirmed PhoP regulon. In the present study, real time RT-PCR were used to test the result of transcriptome analysis. EMSA elucidated that 30 transcriptional units were regulated directly by PhoP. The promotor region of 17 genes were tested by footprinting assay, 19 PhoP conserved binding regions were obtained. Through bioinformatics analysis, PhoP box in Yersinia pestis was confirmed to be TGTTTAWN4TGTTTAW. Primer extension analysis was used to obtain the transcription start sites of these PhoP regulons. Finally, the promoters of the target genes of PhoP were classified into three types: PhoP binding sites lie in upstream of -35 elements, cover -35 elements, and lie in downstream of -35 elements.
     This study firstly identified the regulons of Zur and PhoP of Yersinia pestis. At the same time, the result confirmed the Zur box and PhoP box of Yersinia pestis and explored the precise mechanism of Zur and PhoP regulation. It is helpful for building up virulence regulators networks and elucidating functional knowledge of these regulons. And further, these resluts will be helpful to investigating pathgenicity of Yersinia pestis.
引文
1. Li S, Chen Y, Rosen BP: Role of vicinal cysteine pairs in metalloid sensing by the ArsD As(III)-responsive repressor. Mol Microbiol 2001, 41(3):687-696.
    2. Engohang-Ndong J, Baillat D, Aumercier M, Bellefontaine F, Besra GS, Locht C, Baulard AR: EthR, a repressor of the TetR/CamR family implicated in ethionamide resistance in mycobacteria, octamerizes cooperatively on its operator. Mol Microbiol 2004, 51(1):175-188.
    3. McAuliffe O, O'Keeffe T, Hill C, Ross RP: Regulation of immunity to the two-component lantibiotic, lacticin 3147, by the transcriptional repressor LtnR. Mol Microbiol 2001, 39(4):982-993.
    4. Yamazaki H, Tomono A, Ohnishi Y, Horinouchi S: DNA-binding specificity of AdpA, a transcriptional activator in the A-factor regulatory cascade in Streptomyces griseus. Mol Microbiol 2004, 53(2):555-572.
    5. Nagel G, Lahrz A, Dersch P: Environmental control of invasin expression in Yersinia pseudotuberculosis is mediated by regulation of RovA, a transcriptional activator of the SlyA/Hor family. Mol Microbiol 2001, 41(6):1249-1269.
    6. Griffith KL, Wolf RE, Jr.: Systematic mutagenesis of the DNA binding sites for SoxS in the Escherichia coli zwf and fpr promoters: identifying nucleotides required for DNA binding and transcription activation. Mol Microbiol 2001, 40(5):1141-1154.
    7. Wolf DM, Arkin AP: Motifs, modules and games in bacteria. Curr Opin Microbiol 2003, 6(2):125-134.
    8. Frees D, Sorensen K, Ingmer H: Global virulence regulation in Staphylococcus aureus: pinpointing the roles of ClpP and ClpX in the sar/agr regulatory network. Infect Immun 2005, 73(12):8100-8108.
    9. Kreikemeyer B, McIver KS, Podbielski A: Virulence factor regulation and regulatory networks in Streptococcus pyogenes and their impact on pathogen-host interactions. Trends Microbiol 2003, 11(5):224-232.
    10. Reverchon S, Bouillant ML, Salmond G, Nasser W: Integration of the quorum-sensing system in the regulatory networks controlling virulence factor synthesis in Erwinia chrysanthemi. Mol Microbiol 1998, 29(6):1407-1418.
    11. Kovacikova G, Skorupski K: Regulation of virulence gene expression in Vibrio cholerae by quorum sensing: HapR functions at the aphA promoter. Mol Microbiol 2002, 46(4):1135-1147.
    12. Yamamoto K, Yata K, Fujita N, Ishihama A: Novel mode of transcriptionregulation by SdiA, an Escherichia coli homologue of the quorum-sensing regulator. Mol Microbiol 2001, 41(5):1187-1198.
    13. Eguchi Y, Itou J, Yamane M, Demizu R, Yamato F, Okada A, Mori H, Kato A, Utsumi R: B1500, a small membrane protein, connects the two-component systems EvgS/EvgA and PhoQ/PhoP in Escherichia coli. Proc Natl Acad Sci U S A 2007, 104(47):18712-18717.
    14. Afif H, Allali N, Couturier M, Van Melderen L: The ratio between CcdA and CcdB modulates the transcriptional repression of the ccd poison-antidote system. Mol Microbiol 2001, 41(1):73-82.
    15. Tzeng YL, Zhou X, Bao S, Zhao S, Noble C, Stephens DS: Autoregulation of the MisR/MisS two-component signal transduction system in Neisseria meningitidis. J Bacteriol 2006, 188(14):5055-5065.
    16. McPhee JB, Bains M, Winsor G, Lewenza S, Kwasnicka A, Brazas MD, Brinkman FS, Hancock RE: Contribution of the PhoP-PhoQ and PmrA-PmrB two-component regulatory systems to Mg2+-induced gene regulation in Pseudomonas aeruginosa. J Bacteriol 2006, 188(11):3995-4006.
    17. Hagiwara D, Yamashino T, Mizuno T: A Genome-wide view of the Escherichia coli BasS-BasR two-component system implicated in iron-responses. Biosci Biotechnol Biochem 2004, 68(8):1758-1767.
    18. Wee S, Neilands JB, Bittner ML, Hemming BC, Haymore BL, Seetharam R: Expression, isolation and properties of Fur (ferric uptake regulation) protein of Escherichia coli K 12. Biol Met 1988, 1(1):62-68.
    19. Coy M, Neilands JB: Structural dynamics and functional domains of the fur protein. Biochemistry 1991, 30(33):8201-8210.
    20. Garrido ME, Bosch M, Medina R, Llagostera M, Perez de Rozas AM, Badiola I, Barbe J: The high-affinity zinc-uptake system znuACB is under control of the iron-uptake regulator (fur) gene in the animal pathogen Pasteurella multocida. FEMS Microbiol Lett 2003, 221(1):31-37.
    21. Friedman YE, O'Brian MR: The ferric uptake regulator (Fur) protein from Bradyrhizobium japonicum is an iron-responsive transcriptional repressor in vitro. J Biol Chem 2004, 279(31):32100-32105.
    22. Althaus EW, Outten CE, Olson KE, Cao H, O'Halloran TV: The ferric uptake regulation (Fur) repressor is a zinc metalloprotein. Biochemistry 1999, 38(20):6559-6569.
    23. Hantke K: Members of the Fur protein family regulate iron and zinc transport in E. coli and characteristics of the Fur-regulated fhuF protein. J Mol MicrobiolBiotechnol 2002, 4(3):217-222.
    24. Lee JH, Yeo WS, Roe JH: Induction of the sufA operon encoding Fe-S assembly proteins by superoxide generators and hydrogen peroxide: involvement of OxyR, IHF and an unidentified oxidant-responsive factor. Mol Microbiol 2004, 51(6):1745-1755.
    25. Hantke K: Iron and metal regulation in bacteria. Curr Opin Microbiol 2001, 4(2):172-177.
    26. Silver S, Walderhaug M: Gene regulation of plasmid- and chromosome-determined inorganic ion transport in bacteria. Microbiol Rev 1992, 56(1):195-228.
    27. Hantke K: Bacterial zinc transporters and regulators. Biometals 2001, 14(3-4):239-249.
    28. Moore CM, Helmann JD: Metal ion homeostasis in Bacillus subtilis. Curr Opin Microbiol 2005, 8(2):188-195.
    29. Liu T, Golden JW, Giedroc DP: A zinc(II)/lead(II)/cadmium(II)-inducible operon from the Cyanobacterium anabaena is regulated by AztR, an alpha3N ArsR/SmtB metalloregulator. Biochemistry 2005, 44(24):8673-8683.
    30. Contreras M, Thiberge JM, Mandrand-Berthelot MA, Labigne A: Characterization of the roles of NikR, a nickel-responsive pleiotropic autoregulator of Helicobacter pylori. Mol Microbiol 2003, 49(4):947-963.
    31. Groisman EA: The pleiotropic two-component regulatory system PhoP-PhoQ. J Bacteriol 2001, 183(6):1835-1842.
    32. Zwir I, Shin D, Kato A, Nishino K, Latifi T, Solomon F, Hare JM, Huang H, Groisman EA: Dissecting the PhoP regulatory network of Escherichia coli and Salmonella enterica. Proc Natl Acad Sci U S A 2005, 102(8):2862-2867.
    33. Shi Y, Cromie MJ, Hsu FF, Turk J, Groisman EA: PhoP-regulated Salmonella resistance to the antimicrobial peptides magainin 2 and polymyxin B. Mol Microbiol 2004, 53(1):229-241.
    34. Shi Y, Latifi T, Cromie MJ, Groisman EA: Transcriptional control of the antimicrobial peptide resistance ugtL gene by the Salmonella PhoP and SlyA regulatory proteins. J Biol Chem 2004, 279(37):38618-38625.
    35. Babu MM, Luscombe NM, Aravind L, Gerstein M, Teichmann SA: Structure and evolution of transcriptional regulatory networks. Curr Opin Struct Biol 2004, 14(3):283-291.
    36. Browning DF, Beatty CM, Wolfe AJ, Cole JA, Busby SJ: Independentregulation of the divergent Escherichia coli nrfA and acsP1 promoters by a nucleoprotein assembly at a shared regulatory region. Mol Microbiol 2002, 43(3):687-701.
    37. Chivers PT: A galvanizing story--protein stability and zinc homeostasis. J Bacteriol 2007, 189(8):2953-2954.
    38. Mocchegiani E: Zinc, metallothioneins, longevity: effect of zinc supplementation on antioxidant response: a zincage study. Rejuvenation Res 2008, 11(2):419-423.
    39. Mills DA, Schmidt B, Hiser C, Westley E, Ferguson-Miller S: Membrane potential-controlled inhibition of cytochrome c oxidase by zinc. J Biol Chem 2002, 277(17):14894-14901.
    40. Kuznetsova SS, Azarkina NV, Vygodina TV, Siletsky SA, Konstantinov AA: Zinc ions as cytochrome C oxidase inhibitors: two sites of action. Biochemistry (Mosc) 2005, 70(2):128-136.
    41. Faxen K, Salomonsson L, Adelroth P, Brzezinski P: Inhibition of proton pumping by zinc ions during specific reaction steps in cytochrome c oxidase. Biochim Biophys Acta 2006, 1757(5-6):388-394.
    42. Francia F, Giachini L, Boscherini F, Venturoli G, Capitanio G, Martino PL, Papa S: The inhibitory binding site(s) of Zn2+ in cytochrome c oxidase. FEBS Lett 2007, 581(4):611-616.
    43. Patzer SI, Hantke K: The zinc-responsive regulator Zur and its control of the znu gene cluster encoding the ZnuABC zinc uptake system in Escherichia coli. J Biol Chem 2000, 275(32):24321-24332.
    44. Patzer SI, Hantke K: The ZnuABC high-affinity zinc uptake system and its regulator Zur in Escherichia coli. Mol Microbiol 1998, 28(6):1199-1210.
    45. Campoy S, Jara M, Busquets N, Perez De Rozas AM, Badiola I, Barbe J: Role of the high-affinity zinc uptake znuABC system in Salmonella enterica serovar typhimurium virulence. Infect Immun 2002, 70(8):4721-4725.
    46. Shin JH, Oh SY, Kim SJ, Roe JH: The zinc-responsive regulator Zur controls a zinc uptake system and some ribosomal proteins in Streptomyces coelicolor A3(2). J Bacteriol 2007, 189(11):4070-4077.
    47. Panina EM, Mironov AA, Gelfand MS: Comparative genomics of bacterial zinc regulons: enhanced ion transport, pathogenesis, and rearrangement of ribosomal proteins. Proc Natl Acad Sci U S A 2003, 100(17):9912-9917.
    48. Zhou D, Han Y, Qin L, Chen Z, Qiu J, Song Y, Li B, Wang J, Guo Z, Du Z et al: Transcriptome analysis of the Mg2+-responsive PhoP regulator in Yersinia pestis.FEMS Microbiol Lett 2005, 250(1):85-95.
    49. Song YM, Kim YS, Kim D, Lee DS, Kwon HJ: Cloning, expression, and biochemical characterization of a new histone deacetylase-like protein from Thermus caldophilus GK24. Biochem Biophys Res Commun 2007, 361(1):55-61.
    50. Zhou D, Tong Z, Song Y, Han Y, Pei D, Pang X, Zhai J, Li M, Cui B, Qi Z et al: Genetics of metabolic variations between Yersinia pestis biovars and the proposal of a new biovar, microtus. J Bacteriol 2004, 186(15):5147-5152.
    51. Datsenko KA, Wanner BL: One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc Natl Acad Sci U S A 2000, 97(12):6640-6645.
    52. Tusher VG, Tibshirani R, Chu G: Significance analysis of microarrays applied to the ionizing radiation response. Proc Natl Acad Sci U S A 2001, 98(9):5116-5121.
    53. Rajeevan MS, Daya G. Ranamukaarachchi, Vernon SD: Use of Real-Time Quantitative PCR to Validate the Results of cDNA Array and Differential Display PCR Technologies. METHODS 2001, 25:443-451.
    54. T. B. Ball, F. A. Plummer, HayGlass. KT: Improved mRNA Quantitation in LightCycler RT-PCR. Allergy and Immunology 2003, 130:82-86.
    55. van Helden J: Regulatory sequence analysis tools. Nucleic Acids Res 2003, 31(13):3593-3596.
    56. Crooks GE, Hon G, Chandonia JM, Brenner SE: WebLogo: a sequence logo generator. Genome Res 2004, 14(6):1188-1190.
    57. 胡堃, 史兆兴, 赛道建, 黄留玉: Red 重组系统及在微生物基因敲除中的应用. 遗传 2003, 25(5):628-632.
    58. Rhodius V, Van Dyk TK, Gross C, LaRossa RA: Impact of genomic technologies on studies of bacterial gene expression. Annu Rev Microbiol 2002, 56:599-624.
    59. Motin VL, Georgescu AM, Fitch JP, Gu PP, Nelson DO, Mabery SL, Garnham JB, Sokhansanj BA, Ott LL, Coleman MA et al: Temporal global changes in gene expression during temperature transition in Yersinia pestis. J Bacteriol 2004, 186(18):6298-6305.
    60. Han Y, Zhou D, Pang X, Song Y, Zhang L, Bao J, Tong Z, Wang J, Guo Z, Zhai J et al: Microarray Analysis of Temperature-Induced Transcriptome of Yersinia pestis. Microbiol Immunol 2004, 48(11):791-805.
    61. Han Y, Zhou D, Pang X, Zhang L, Song Y, Tong Z, Bao J, Dai E, Wang J, GuoZ et al: DNA microarray analysis of the heat- and cold-shock stimulons in Yersinia pestis. Microbes Infect 2005, 7(3):335-348.
    62. Han Y, Zhou D, Pang X, Zhang L, Song Y, Tong Z, Bao J, Dai E, Wang J, Guo Z et al: Comparative transcriptome analysis of Yersinia pestis in response to hyperosmotic and high-salinity stress. Res Microbiol 2005, 156(3):403-415.
    63. Hantke K: Bacterial zinc uptake and regulators. Curr Opin Microbiol 2005, 8(2):196-202.
    64. 巨立中, 成军, 钟彦伟: 启动子 DNA 结合蛋白研究策略. 世界华人消化杂志 2004, 12(1):141-142.
    65. Bader MW, Sanowar S, Daley ME, Schneider AR, Cho U, Xu W, Klevit RE, Le Moual H, Miller SI: Recognition of antimicrobial peptides by a bacterial sensor kinase. Cell 2005, 122(3):461-472.
    66. Outten CE, Tobin DA, Penner-Hahn JE, O'Halloran TV: Characterization of the metal receptor sites in Escherichia coli Zur, an ultrasensitive zinc(II) metalloregulatory protein. Biochemistry 2001, 40(35):10417-10423.
    67. Lukaszewski RA, Kenny DJ, Taylor R, Rees DG, Hartley MG, Oyston PC: Pathogenesis of Yersinia pestis infection in BALB/c mice: effects on host macrophages and neutrophils. Infect Immun 2005, 73(11):7142-7150.
    68. Pujol C, Bliska JB: The ability to replicate in macrophages is conserved between Yersinia pestis and Yersinia pseudotuberculosis. Infect Immun 2003, 71(10):5892-5899.
    69. Straley SC, Harmon PA: Growth in mouse peritoneal macrophages of Yersinia pestis lacking established virulence determinants. Infect Immun 1984, 45(3):649-654.
    70. Cornelis GR, Boland A, Boyd AP, Geuijen C, Iriarte M, Neyt C, Sory MP, Stainier I: The virulence plasmid of Yersinia, an antihost genome. Microbiol Mol Biol Rev 1998, 62(4):1315-1352.
    71. Charnetzky WT, Shuford WW: Survival and growth of Yersinia pestis within macrophages and an effect of the loss of the 47-megadalton plasmid on growth in macrophages. Infect Immun 1985, 47(1):234-241.
    72. Pujol C, Bliska JB: Turning Yersinia pathogenesis outside in: subversion of macrophage function by intracellular yersiniae. Clin Immunol 2005, 114(3):216-226.
    73. Straley SC, Harmon PA: Yersinia pestis grows within phagolysosomes in mouse peritoneal macrophages. Infect Immun 1984, 45(3):655-659.
    74. Groisman EA: The ins and outs of virulence gene expression: Mg2+ as a regulatory signal. Bioessays 1998, 20(1):96-101.
    75. Minagawa S, Ogasawara H, Kato A, Yamamoto K, Eguchi Y, Oshima T, Mori H, Ishihama A, Utsumi R: Identification and molecular characterization of the Mg2+ stimulon of Escherichia coli. J Bacteriol 2003, 185(13):3696-3702.
    76. Yamamoto K, Ogasawara H, Fujita N, Utsumi R, Ishihama A: Novel mode of transcription regulation of divergently overlapping promoters by PhoP, the regulator of two-component system sensing external magnesium availability. Mol Microbiol 2002, 45(2):423-438.
    77. Lejona S, Aguirre A, Cabeza ML, Garcia Vescovi E, Soncini FC: Molecular characterization of the Mg2+-responsive PhoP-PhoQ regulon in Salmonella enterica. J Bacteriol 2003, 185(21):6287-6294.
    78. Oyston PC, Dorrell N, Williams K, Li SR, Green M, Titball RW, Wren BW: The response regulator PhoP is important for survival under conditions of macrophage-induced stress and virulence in Yersinia pestis. Infect Immun 2000, 68(6):3419-3425.
    79. Hitchen PG, Prior JL, Oyston PC, Panico M, Wren BW, Titball RW, Morris HR, Dell A: Structural characterization of lipo-oligosaccharide (LOS) from Yersinia pestis: regulation of LOS structure by the PhoPQ system. Mol Microbiol 2002, 44(6):1637-1650.
    80. Fujita M, Gonzalez-Pastor JE, Losick R: High- and low-threshold genes in the Spo0A regulon of Bacillus subtilis. J Bacteriol 2005, 187(4):1357-1368.
    81. Moncrief MB, Maguire ME: Magnesium transport in prokaryotes. J Biol Inorg Chem 1999, 4(5):523-527.
    82. Kawasaki K, Ernst RK, Miller SI: Purification and characterization of deacylated and/or palmitoylated lipid A species unique to Salmonella enterica serovar Typhimurium. J Endotoxin Res 2005, 11(1):57-61.
    83. Puskarova A, Ferianc P, Kormanec J, Homerova D, Farewell A, Nystrom T: Regulation of yodA encoding a novel cadmium-induced protein in Escherichia coli. Microbiology 2002, 148(Pt 12):3801-3811.
    84. Kvint K, Nachin L, Diez A, Nystrom T: The bacterial universal stress protein: function and regulation. Curr Opin Microbiol 2003, 6(2):140-145.
    85. Yang J, Hwang JS, Camakaris H, Irawaty W, Ishihama A, Pittard J: Mode of action of the TyrR protein: repression and activation of the tyrP promoter of Escherichia coli. Mol Microbiol 2004, 52(1):243-256.
    86. Monnet V: Bacterial oligopeptide-binding proteins. Cell Mol Life Sci 2003,60(10):2100-2114.
    87. Yamamoto K, Ishihama A: Transcriptional response of Escherichia coli to external zinc. J Bacteriol 2005, 187(18):6333-6340.
    88. Leclere V, Bechet M, Blondeau R: Functional significance of a periplasmic Mn-superoxide dismutase from Aeromonas hydrophila. J Appl Microbiol 2004, 96(4):828-833.
    89. Niu W, Kim Y, Tau G, Heyduk T, Ebright RH: Transcription activation at class II CAP-dependent promoters: two interactions between CAP and RNA polymerase. Cell 1996, 87(6):1123-1134.
    90. Ishihara S, Fujimoto K, Shibata T: Cross talking of network motifs in gene regulation that generates temporal pulses and spatial stripes. Genes Cells 2005, 10(11):1025-1038.
    91. Norte VA, Stapleton MR, Green J: PhoP-responsive expression of the Salmonella enterica serovar typhimurium slyA gene. J Bacteriol 2003, 185(12):3508-3514.
    92. Parkhill J, Dougan G, James KD, Thomson NR, Pickard D, Wain J, Churcher C, Mungall KL, Bentley SD, Holden MT et al: Complete genome sequence of a multiple drug resistant Salmonella enterica serovar Typhi CT18. Nature 2001, 413(6858):848-852.
    1. Chivers PT: A galvanizing story--protein stability and zinc homeostasis. J Bacteriol 2007, 189(8):2953-2954.
    2. Mocchegiani E: Zinc, metallothioneins, longevity: effect of zinc supplementation on antioxidant response: a zincage study. Rejuvenation Res 2008, 11(2):419-423.
    3. Mills DA, Schmidt B, Hiser C, Westley E, Ferguson-Miller S: Membrane potential-controlled inhibition of cytochrome c oxidase by zinc. J Biol Chem 2002, 277(17):14894-14901.
    4. Kuznetsova SS, Azarkina NV, Vygodina TV, Siletsky SA, Konstantinov AA: Zinc ions as cytochrome C oxidase inhibitors: two sites of action. Biochemistry (Mosc) 2005, 70(2):128-136.
    5. Faxen K, Salomonsson L, Adelroth P, Brzezinski P: Inhibition of proton pumping by zinc ions during specific reaction steps in cytochrome c oxidase. Biochim Biophys Acta 2006, 1757(5-6):388-394.
    6. Francia F, Giachini L, Boscherini F, Venturoli G, Capitanio G, Martino PL, Papa S: The inhibitory binding site(s) of Zn2+ in cytochrome c oxidase. FEBS Lett 2007, 581(4):611-616.
    7. Moore CM, Helmann JD: Metal ion homeostasis in Bacillus subtilis. Curr Opin Microbiol 2005, 8(2):188-195.
    8. Lee JW, Helmann JD: Functional specialization within the Fur family of metalloregulators. Biometals 2007, 20(3-4):485-499.
    9. Patzer SI, Hantke K: The ZnuABC high-affinity zinc uptake system and its regulator Zur in Escherichia coli. Mol Microbiol 1998, 28(6):1199-1210.
    10. Patzer SI, Hantke K: The zinc-responsive regulator Zur and its control of the znu gene cluster encoding the ZnuABC zinc uptake system in Escherichia coli. J Biol Chem 2000, 275(32):24321-24332.
    11. Campoy S, Jara M, Busquets N, Perez De Rozas AM, Badiola I, Barbe J: Role of the high-affinity zinc uptake znuABC system in Salmonella enterica serovar typhimurium virulence. Infect Immun 2002, 70(8):4721-4725.
    12. Gaballa A, Wang T, Ye RW, Helmann JD: Functional analysis of the Bacillus subtilis Zur regulon. J Bacteriol 2002, 184(23):6508-6514.
    13. Shin JH, Oh SY, Kim SJ, Roe JH: The zinc-responsive regulator Zur controls a zinc uptake system and some ribosomal proteins in Streptomyces coelicolor A3(2). J Bacteriol 2007, 189(11):4070-4077.
    14. Panina EM, Mironov AA, Gelfand MS: Comparative genomics of bacterial zinc regulons: enhanced ion transport, pathogenesis, and rearrangement of ribosomal proteins. Proc Natl Acad Sci U S A 2003, 100(17):9912-9917.
    15. Gaballa A, Helmann JD: A peroxide-induced zinc uptake system plays an important role in protection against oxidative stress in Bacillus subtilis. Mol Microbiol 2002, 45(4):997-1005.
    16. Traore DA, El Ghazouani A, Ilango S, Dupuy J, Jacquamet L, Ferrer JL, Caux-Thang C, Duarte V, Latour JM: Crystal structure of the apo-PerR-Zn protein from Bacillus subtilis. Mol Microbiol 2006, 61(5):1211-1219.
    17. Loo CY, Mitrakul K, Voss IB, Hughes CV, Ganeshkumar N: Involvement of the adc operon and manganese homeostasis in Streptococcus gordonii biofilm formation. J Bacteriol 2003, 185(9):2887-2900.
    18. Ellison DW, Miller VL: Regulation of virulence by members of the MarR/SlyA family. Curr Opin Microbiol 2006, 9(2):153-159.
    19. Maciag A, Dainese E, Rodriguez GM, Milano A, Provvedi R, Pasca MR, Smith I, Palu G, Riccardi G, Manganelli R: Global analysis of the Mycobacterium tuberculosis Zur (FurB) regulon. J Bacteriol 2007, 189(3):730-740.
    20. Lucarelli D, Russo S, Garman E, Milano A, Meyer-Klaucke W, Pohl E: Crystal structure and function of the zinc uptake regulator FurB from Mycobacterium tuberculosis. J Biol Chem 2007, 282(13):9914-9922.
    21. Garrido ME, Bosch M, Medina R, Llagostera M, Perez de Rozas AM, Badiola I, Barbe J: The high-affinity zinc-uptake system znuACB is under control of the iron-uptake regulator (fur) gene in the animal pathogen Pasteurella multocida. FEMS Microbiol Lett 2003, 221(1):31-37.
    22. Outten CE, Tobin DA, Penner-Hahn JE, O'Halloran TV: Characterization of the metal receptor sites in Escherichia coli Zur, an ultrasensitive zinc(II) metalloregulatory protein. Biochemistry 2001, 40(35):10417-10423.
    23. Mitrakul K, Loo CY, Gyurko C, Hughes CV, Ganeshkumar N: Mutational analysis of the adcCBA genes in Streptococcus gordonii biofilm formation. Oral Microbiol Immunol 2005, 20(2):122-127.
    24. Dintilhac A, Alloing G, Granadel C, Claverys JP: Competence and virulence of Streptococcus pneumoniae: Adc and PsaA mutants exhibit a requirement for Zn and Mn resulting from inactivation of putative ABC metal permeases. Mol Microbiol 1997, 25(4):727-739.
    25. Hantke K: Members of the Fur protein family regulate iron and zinc transport in E. coli and characteristics of the Fur-regulated fhuF protein. J Mol MicrobiolBiotechnol 2002, 4(3):217-222.
    26. Gaballa A, Helmann JD: Identification of a zinc-specific metalloregulatory protein, Zur, controlling zinc transport operons in Bacillus subtilis. J Bacteriol 1998, 180(22):5815-5821.
    27. Lee JW, Helmann JD: Biochemical characterization of the structural Zn2+ site in the Bacillus subtilis peroxide sensor PerR. J Biol Chem 2006, 281(33):23567-23578.
    28. Banerjee S, Wei B, Bhattacharyya-Pakrasi M, Pakrasi HB, Smith TJ: Structural determinants of metal specificity in the zinc transport protein ZnuA from synechocystis 6803. J Mol Biol 2003, 333(5):1061-1069.
    29. Grass G, Wong MD, Rosen BP, Smith RL, Rensing C: ZupT is a Zn(II) uptake system in Escherichia coli. J Bacteriol 2002, 184(3):864-866.
    30. Grass G, Franke S, Taudte N, Nies DH, Kucharski LM, Maguire ME, Rensing C: The metal permease ZupT from Escherichia coli is a transporter with a broad substrate spectrum. J Bacteriol 2005, 187(5):1604-1611.
    31. Zheng D, Feeney GP, Kille P, Hogstrand C: Regulation of ZIP and ZnT zinc transporters in zebrafish gill: zinc repression of ZIP10 transcription by an intronic MRE cluster. Physiol Genomics 2008.
    32. Gabriel SE, Miyagi F, Gaballa A, Helmann JD: Regulation of the Bacillus subtilis yciC gene and insights into the DNA-binding specificity of the zinc-sensing metalloregulator Zur. J Bacteriol 2008, 190(10):3482-3488.
    33. Kershaw CJ, Brown NL, Hobman JL: Zinc dependence of zinT (yodA) mutants and binding of zinc, cadmium and mercury by ZinT. Biochem Biophys Res Commun 2007, 364(1):66-71.
    34. Akanuma G, Nanamiya H, Natori Y, Nomura N, Kawamura F: Liberation of zinc-containing L31 (RpmE) from ribosomes by its paralogous gene product, YtiA, in Bacillus subtilis. J Bacteriol 2006, 188(7):2715-2720.
    35. Nanamiya H, Akanuma G, Natori Y, Murayama R, Kosono S, Kudo T, Kobayashi K, Ogasawara N, Park SM, Ochi K et al: Zinc is a key factor in controlling alternation of two types of L31 protein in the Bacillus subtilis ribosome. Mol Microbiol 2004, 52(1):273-283.
    36. Nanamiya H, Kawamura F, Kosono S: Proteomic study of the Bacillus subtilis ribosome: Finding of zinc-dependent replacement for ribosomal protein L31 paralogues. J Gen Appl Microbiol 2006, 52(5):249-258.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700